JPH0350827B2 - - Google Patents

Info

Publication number
JPH0350827B2
JPH0350827B2 JP59104312A JP10431284A JPH0350827B2 JP H0350827 B2 JPH0350827 B2 JP H0350827B2 JP 59104312 A JP59104312 A JP 59104312A JP 10431284 A JP10431284 A JP 10431284A JP H0350827 B2 JPH0350827 B2 JP H0350827B2
Authority
JP
Japan
Prior art keywords
steel
sol
ferritic stainless
stainless steel
secondary workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104312A
Other languages
Japanese (ja)
Other versions
JPS60248868A (en
Inventor
Kazuo Hoshino
Katsuhisa Myakusu
Isamu Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP59104312A priority Critical patent/JPS60248868A/en
Priority to KR1019850003290A priority patent/KR920009990B1/en
Priority to IT67451/85A priority patent/IT1187823B/en
Priority to GB08512667A priority patent/GB2159177B/en
Priority to ES543398A priority patent/ES8706847A1/en
Priority to BR8502419A priority patent/BR8502419A/en
Priority to SE8502523A priority patent/SE459663B/en
Priority to FR858507710A priority patent/FR2564864B1/en
Priority to DE19853518618 priority patent/DE3518618A1/en
Publication of JPS60248868A publication Critical patent/JPS60248868A/en
Publication of JPH0350827B2 publication Critical patent/JPH0350827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、成形性および二次加工性にすぐれた
P添加フエライト系ステンレス鋼に関する。 フエライト系ステンレス鋼は、オーステナイト
系ステンレス鋼に比べて比較的に安価でありなが
ら適度な加工性および耐食性を有しているので、
厨房機器や建築用材料などの耐久消費材を中心に
多量に商用されている。また、特にAISI409系お
よびSUS410L系の低クロムフエライト系ステン
レス鋼は、普通鋼と比較した場合にその優れた高
温強度および耐高温酸化性ゆえに、自動車の排ガ
ス関係部品などの用途への使用量も多い。しか
し、これら低クロムのフエライト系ステンレス鋼
も、普通鋼の冷間圧延鋼板や表面処理鋼板に比較
すると、耐食性や高温特性などの材料特性の面で
は優れているものの、価格が高価であるという経
済的な面では制約があり、より安価な材料の開発
が強く望まれている。 本発明はこのような要求を満たすことを目的と
したもので、安価に製造ができ且つ成形性および
二次加工性にすぐれたフエライト系ステンレス鋼
を提供するものである。すなわち本発明は、特許
請求の範囲の記載したように、 重量%において、 C;0.0050〜0.0500%、 Cr;10.00〜18.00%、 Si;0.50%以下、 Mn;0.50%以下、 P;0.040%を越え〜0.200%、 S;0.030%以下、 Ni;0.60%以下、 Sol.Al;0.005〜0.200%、 B;tr(痕跡程度)〜0.0050%、 であつて、且つ、 (Cr+50×P)の式に従う含有量を横軸とし、
(C+10×B+Sol.Al)の式に従う含有量を縦軸
としたときに、第1図に示されるように4つの座
標点、A(12.0、0.30)、B(12.0、0.005)、C
(22.0、0.020)およびD(22.0、0.30)を直線で結
んで形成される四辺形の領域内となる関係を満足
し、 残部がFeおよび不可避的不純物からなる成形
性および二次加工性にすぐれたP添加フエライト
系ステンレス鋼を提供するものである。 以下に本発明の内容を詳述する。 本発明のフエライト系ステンレス鋼は、従来の
フエライト系ステンレス鋼では低くすることが必
要であるとされていたPを、他の成分との関連に
おいて積極的に且つ適量含有させる点に基本的な
特徴がある。そこで先ず、このPについての説明
を行う。 JISG4304の熱間圧延ステンレス鋼板と
JISG4305の冷間圧延ステンレス鋼板にそれぞれ
規定されているフエライト系ステンレス鋼を例に
とると、SUS447J1(Cr;28.50〜32%)および
SUSXM27(Cr;25.00〜27.50%)の2種類につ
いては、Pは0.030%以下と規定されており、そ
の他のフエライト系ステンレス鋼には、いずれも
Pは0.040%以下と規定されている。これは、フ
エライト系ステンレス鋼は、結晶構造的には体心
立法構造であつてこの結晶構造的にも靱性に乏し
いうえに、Crが11%以上も含有されているので
更に靱性が劣りがちになるという短所を元来内蔵
していることから、Pのような靱性に悪影響を及
ばすとされている元素はできるだけ低下させるこ
とが必要であるという配慮のもとに、Pは0.040
%以下もしくは0.030%以下と規定されている。 一方、本発明者らの研究によると、フエライト
系ステンレス鋼にPを適量添加した場合には、深
絞り性および酸洗性を向上させることができるこ
とが明らかとなつた。第2図にP添加による深絞
り性向上の一例を示す。この第2図は、13%Cr
−0.03%の基本成分系においてP含有量を変化さ
せたフエライト系ステンレス鋼を溶製し、通常の
熱管圧延、熱延板焼鈍、冷間圧延および焼鈍を経
て得た板厚0.7mmの鋼板の値とP含有量との関
係を示したものであり、多少のバラツキを考慮し
て図中のハツチ部分の幅をもつた範囲で値のP
含有量に対する変化が示される。値は、よく知
られているように、深絞り性の代表的な指標であ
る。この値が大きい程、特に1を越えて大きい
程、深絞り性は良好であると言える。この第2図
に見られるように、通常のフエライト系ステンレ
ス鋼に含有される0.025%程度のP濃度では値
は1.0より低いが、P含有量の増加と共に値は
高くなり、0.075%以上のP含有量になると、
値は1.4以上にもなるのである。 また、このP添加によつてフエライト系ステン
レス鋼の酸洗性が向上し、その結果、フエライト
系ステンレス鋼の熱延鋼帯の酸洗法として通常行
われている硝弗酸による酸洗に代えて、普通鋼と
同じく塩酸酸洗が可能となることも判明した。 このような、P添加によるフエライト系ステン
レス鋼の加工性および酸洗性の向上効果は、安価
なステンレス鋼を提供するうえで、二つの重要な
意義をもつている。 第一に、Pそのものが非常に安価な添加元素で
あることである。従来、元素添加による加工性の
改善には、Ti、Nb、Alなどの高価な合金元素が
用いられ、これによる製品価格の上昇は避けられ
なかつた。Pの添加には、Fe−P合金などのP
源を添加する場合と、含P溶銑を使用する場合と
が挙げられるが、前者の場合でも製品価格への影
響は極めて僅かであり、後者の場合にいたつて
は、従来不純物として除去していたものを有効利
用するのであるから製品価格へのはね返りはな
い。 第二は製造上の意義である。高炉溶銑を主たる
鉄源として使用する場合にはその脱隣処理が省略
可能であることから精錬操作に多大のメリツトが
現れるし、P含有のために経済的価値が低かつた
鉄鉱石やCr鉱石の原料を使用対象とすることも
可能となる。そして、熱延鋼板の酸洗においてコ
スト的および操業的に有利な塩酸酸洗ができるこ
とである。 このように、P添加フエライト系ステンレス鋼
は、合金成分の面からもまた製造上の面からも安
価な鋼を提供するうえで有意義であり、加えて、
加工性の向上という材質面でもすぐれた効果を発
揮するものであると言える。 しかし、一方において、鋼中のPは、通常の場
合には材料特性への悪影響をもたらすことを否定
できない。 その一つは、既述のように、靱性への悪影響で
ある。この点は、C量およびCr量をそれぞれ規
制し、微量のSol.Alを添加することでこのPによ
る靱性の低下を抑制することが可能である。 その二は、二次加工性への悪影響である。ここ
でいう二次加工性とは、一次加工としてプレスに
よる深絞り成形を行つた後の加工性を指す。P添
加による成形性の向上により、より厳しい深絞り
成形が可能となるので、この効果を十分に享受す
べく、より厳しい成形を要求される分野にこの鋼
を適用すると、ここに、新な(二次加工性の)問
題が生じることが判明した。例えば一次絞り(フ
アースト・ドロー)に引き続いて二次絞り(リス
トライク)を行つた際や、プレス後にフランジ・
カツトで衝撃が加わつた際に、絞り方向と平行に
脆性的な割れ(亀裂・たて割れ)を生じることが
あることがわかつた。この割れは、一次加工によ
る靱性の低下に起因するものであり、一次加工が
厳しい程、また、温度が低い程、生じやすい。従
つてこの二次加工性は、素材の靱性や成形性とは
異なつた別種の材料特性であると言うことができ
る。この二次加工性の問題により、素材の値が
高くても、つまり、素材が深絞り性にすぐれてい
ても、この二次加工性が劣るが故に、プレス最終
成品にまで加工出来ない場合がある。 この二次加工性に及ぼすPの影響について、そ
の詳細な機構は現在のところ必ずしも明らかでは
ないが、Pは元来、粒界偏析傾向の大きい元素で
あるため、粒界の結合力を弱める作用が一次加工
により顕著となつて粒界破壊によるたて割れを生
じさせやすくなる結果、二次加工性が劣化するの
ではないかと本発明者らは推察している。 以上のようなPによるフエライト系ステンレス
鋼の材質面への悪影響を除くべく本発明者らは
種々の試験研究を重ねた。その結果、合金組成を
厳密に制御するこによつて、前記第一の弊害であ
る靱性の低下を極力抑制すると共に、第二の弊害
である二次加工性をも同時に解決し、ここに、加
工性に優れかつ二次加工性にも優れたP添加フエ
ライト系ステンレス鋼を発明することができた。 以下に、実験データをしながら本発明内容をよ
り具体的に説明しよう。 第3図は、Sol.Alによる靱性改善効果の一例を
示したものである。供試材は、基本的に13%Cr、
0.03%C、0.10%Pを含有するフエライト系ステ
ンレス鋼をベースとし、これにSol.Alの含有量を
変化させた鋼を溶製して、それぞれ30Kg鋼塊を作
り、1100℃で鍛造の後、さらに760℃で4時間均
熱処理を施したものから試験片を切出したもので
ある。試験は20℃および0℃の各温度でのシヤル
ピー衝撃試験を行つた。鋼板等の成品を製造する
上での製造上問題のない衝撃値としては5Kgf・
m/cm2が目安である。第3図から明らかなよう
に、Sol.Alを0.002%含有する鋼では衝撃値は各
温度とも零に近いが、Sol.Alを0.010%含有する
付近から急激に上昇し(0.005%以上のSol.Alで
衝撃値は5Kgf・m/cm2を越えるようになる)、
Sol.Alを0.020%を越えて含有させても衝撃値は
あまり変化しない。このように、Sol.Alの微量添
加はこの種のP添加フエライト系ステンレス鋼の
靱性の向上に著しい効果をもたらすが、製造上問
題のない靱性を得るには、0.005%以上のSol.Al
の添加が必要である。 第4図は、P添加フエライト系ステンレス鋼の
二次加工性に及ぼす合金元素の影響を検討し、そ
の結果を整理して示したものである。供試材は、
合金成分を種々変化させ、通常の熱間圧延、冷間
圧延、焼鈍を経て作成した0.7mm厚の冷延焼鈍板
であり、二次加工性を評価する試験は、各供試材
の板から、絞り比2.0、外径27.0mmの深絞りカツ
プを作製し、このカツプを0℃で円錐ポンチによ
つて拡管し、そのさいの割れが延性的か脆性的か
を判定する方法によつた。また、一つの供試鋼か
ら5〜10個のカツプを作製して各々拡管し、脆性
的に割れたカツプの割合を求め、脆性破壊率とし
た。以後、この試験を単に拡管試験と呼ぶことに
する。この拡管試験において、脆性的な割れが生
じなければ、つまり、すべて延性破壊であり脆性
破壊率が0%であれば、特別に厳しい深絞り加工
を施さないかぎりは、二次加工性は実用的には十
分であると言える。 多数の拡管試験を実施し、供試材の合金成分と
その脆性破壊率との関係を整理したのが第4図で
ある。第4図の結果に見られるように、横軸に鋼
中の(Cr+50×P)%を、縦軸に鋼中の(C+
10×B+Sol.Al)%をとつた場合に、点B(12.0、
0.005)と点C(22.0、0.020)とを結ぶ直線BCよ
り上側で、且つ点C(22.0、0.020)と点D(22.0、
0.30)とを結ぶ直線より左側の領域にある化学組
成では、供試鋼P1と供試鋼P2の例外鋼(これに
ついては後述する)を省くと、脆性的な割れは全
く生じておらず、明確な相関がある。すなわち、
この第4図より、CrとPは二次加工性を劣化さ
せ、C、BおよびSol.Alは二次加工性を向上させ
る元素であることがわかるが、各成分を単独に規
制または添加しただけでは不十分であつて、C、
B、Sol.AlおよびCr、Pを相互に関連させて適
切に規制することによつてはじめて良好な二次加
工性が得られることが明らかである。 なお、第4図の関係において、B(硼素)につ
いては、分析値がtr(トレース、痕跡)として表
示したほうが適切なほど微量な場合(特にBを添
加していない場合)には、縦軸の(C+10×B+
Sol.Al)は、Bを0として、すなわち(C+Sol.
Al)として算出している。 また、第4図で例外的な挙動、すなわち直線
BCより上で直線CDより左にありながら脆性的な
割れを生じたP1およびP2は、特定の成分の含有
量にその原因があると考えられる。P1およびP2
の供試材の化学成分値を第1表に示す。
The present invention relates to a P-added ferritic stainless steel that has excellent formability and secondary workability. Ferritic stainless steel is relatively inexpensive compared to austenitic stainless steel, and has appropriate workability and corrosion resistance.
It is used commercially in large quantities, mainly in durable consumer goods such as kitchen equipment and building materials. In addition, low chromium ferritic stainless steels, especially AISI409 series and SUS410L series, are often used in applications such as automobile exhaust gas related parts due to their superior high temperature strength and high temperature oxidation resistance when compared to ordinary steel. . However, although these low-chromium ferritic stainless steels have superior material properties such as corrosion resistance and high-temperature properties compared to ordinary cold-rolled steel sheets and surface-treated steel sheets, they are expensive and economical. There are limitations in terms of performance, and there is a strong desire to develop cheaper materials. The present invention is aimed at meeting such demands, and provides a ferritic stainless steel that can be manufactured at low cost and has excellent formability and secondary workability. That is, the present invention, as described in the claims, contains, in weight percent, C: 0.0050 to 0.0500%, Cr: 10.00 to 18.00%, Si: 0.50% or less, Mn: 0.50% or less, P: 0.040%. Exceeding ~0.200%, S: 0.030% or less, Ni: 0.60% or less, Sol.Al: 0.005~0.200%, B: tr (trace level) ~ 0.0050%, and the formula (Cr+50×P) The horizontal axis is the content according to
When the content according to the formula (C+10×B+Sol.Al) is taken as the vertical axis, there are four coordinate points, A (12.0, 0.30), B (12.0, 0.005), and C, as shown in Figure 1.
(22.0, 0.020) and D (22.0, 0.30) with straight lines, and satisfies the relationship of being within the quadrilateral region formed by connecting straight lines, and has excellent formability and secondary workability, with the remainder being Fe and unavoidable impurities. The present invention provides a P-added ferritic stainless steel. The content of the present invention will be explained in detail below. The basic feature of the ferritic stainless steel of the present invention is that P, which was required to be kept low in conventional ferritic stainless steels, is actively contained in an appropriate amount in relation to other components. There is. Therefore, first, this P will be explained. JISG4304 hot rolled stainless steel plate and
For example, ferritic stainless steels specified for JISG4305 cold-rolled stainless steel sheets include SUS447J 1 (Cr; 28.50-32%) and
For two types of SUSXM27 (Cr; 25.00 to 27.50%), P is specified to be 0.030% or less, and for other ferritic stainless steels, P is specified to be 0.040% or less. This is because ferritic stainless steel has a body-centered cubic crystal structure and has poor toughness due to this crystal structure, and it also tends to have poorer toughness because it contains more than 11% Cr. Considering that it is necessary to reduce elements such as P that are said to have a negative effect on toughness as much as possible, P is 0.040.
% or less or 0.030% or less. On the other hand, according to research conducted by the present inventors, it has become clear that when an appropriate amount of P is added to ferritic stainless steel, deep drawability and pickling properties can be improved. FIG. 2 shows an example of improvement in deep drawability by adding P. This figure 2 shows 13%Cr
A steel plate with a thickness of 0.7 mm obtained by melting ferritic stainless steel with a basic composition of −0.03% and varying the P content, and then undergoing conventional hot tube rolling, hot rolled sheet annealing, cold rolling, and annealing. This shows the relationship between the value and P content, and taking into account some variation, the value of P is calculated within the range of the width of the hatched part in the figure.
Changes to content are shown. As is well known, the value is a representative index of deep drawability. It can be said that the larger this value is, especially the larger it exceeds 1, the better the deep drawability is. As seen in Figure 2, the value is lower than 1.0 at a P concentration of about 0.025%, which is contained in ordinary ferritic stainless steel, but as the P content increases, the value increases, and at P concentrations of 0.075% or more, the value increases. When it comes to content,
The value is even greater than 1.4. In addition, the addition of P improves the pickling properties of ferritic stainless steel, and as a result, it is possible to replace the pickling method with nitric-hydrofluoric acid that is normally used as a pickling method for hot-rolled ferritic stainless steel strips. It was also found that it can be pickled with hydrochloric acid in the same way as ordinary steel. The effect of improving the workability and pickling property of ferritic stainless steel by adding P has two important meanings in providing inexpensive stainless steel. First, P itself is a very inexpensive additive element. Conventionally, to improve workability by adding elements, expensive alloying elements such as Ti, Nb, and Al were used, which inevitably led to an increase in product prices. For addition of P, P such as Fe-P alloy is used.
There are cases where P-containing hot metal is added and cases where P-containing hot metal is used, but even in the former case, the impact on the product price is extremely small, and in the latter case, conventionally it was removed as an impurity. Since resources are used effectively, there is no rebound in product prices. The second reason is manufacturing significance. When blast furnace hot metal is used as the main source of iron, the removal treatment can be omitted, which brings great benefits to the refining operation, and iron ore and Cr ore, which have low economic value due to their P content, It is also possible to target raw materials for use. Further, in pickling hot rolled steel sheets, hydrochloric acid pickling can be performed which is advantageous in terms of cost and operation. In this way, P-added ferritic stainless steel is meaningful in providing inexpensive steel from both the alloy composition and manufacturing standpoints, and in addition,
It can be said that it has an excellent effect in terms of material quality, such as improved workability. However, on the other hand, it cannot be denied that P in steel usually has an adverse effect on material properties. One of them, as mentioned above, is the negative effect on toughness. Regarding this point, it is possible to suppress the decrease in toughness due to P by regulating the amount of C and the amount of Cr, and adding a small amount of Sol.Al. The second is an adverse effect on secondary processability. The term "secondary workability" as used herein refers to the workability after deep drawing with a press is performed as the primary work. The improvement in formability due to the addition of P makes it possible to perform more severe deep drawing, so if this steel is applied to fields that require more severe forming in order to fully enjoy this effect, new ( It was found that problems (of secondary processability) occurred. For example, when performing a secondary drawing (restriking) following the primary drawing (first draw), or after pressing the flange.
It was found that when an impact is applied from a cut, brittle cracks (cracks/vertical cracks) may occur parallel to the drawing direction. This cracking is caused by a decrease in toughness due to primary processing, and the more severe the primary processing and the lower the temperature, the more likely it is to occur. Therefore, it can be said that this secondary workability is a different type of material property that is different from the toughness and formability of the material. Due to this problem of secondary workability, even if the value of the material is high, that is, even if the material has excellent deep drawability, it may not be possible to process it into a final press product because of the poor secondary workability. be. The detailed mechanism of the effect of P on this secondary workability is not necessarily clear at present, but since P is an element with a strong tendency to segregate at grain boundaries, it has the effect of weakening the bonding strength of grain boundaries. The present inventors conjecture that secondary workability deteriorates as a result of the primary processing becoming more pronounced and making vertical cracks more likely to occur due to intergranular fracture. In order to eliminate the above-mentioned adverse effects of P on the material quality of ferritic stainless steel, the present inventors have conducted various tests and studies. As a result, by strictly controlling the alloy composition, the first problem, the decrease in toughness, is suppressed as much as possible, and the second problem, secondary workability, is also solved at the same time. We were able to invent a P-added ferritic stainless steel that has excellent workability and secondary workability. The content of the present invention will be explained in more detail below using experimental data. FIG. 3 shows an example of the toughness improving effect of Sol.Al. The sample material is basically 13% Cr,
Based on ferritic stainless steel containing 0.03%C and 0.10%P, steel with varying Sol.Al content is melted into 30Kg steel ingots, and after forging at 1100℃. A test piece was cut from the sample which was further subjected to soaking treatment at 760°C for 4 hours. A Charpy impact test was conducted at each temperature of 20°C and 0°C. The impact value that causes no manufacturing problems when manufacturing products such as steel plates is 5Kgf.
The standard is m/cm 2 . As is clear from Figure 3, for steel containing 0.002% Sol.Al, the impact value is close to zero at each temperature, but it increases rapidly from around 0.010% Sol.Al (for steel containing 0.005% or more Sol. .Al, the impact value exceeds 5Kgf・m/ cm2 ),
Even if Sol.Al is contained in excess of 0.020%, the impact value does not change much. As described above, the addition of a small amount of Sol.Al has a remarkable effect on improving the toughness of this type of P-added ferritic stainless steel.
It is necessary to add FIG. 4 shows the effects of alloying elements on the secondary workability of P-added ferritic stainless steel, and the results are summarized and shown. The sample material is
This is a 0.7mm thick cold-rolled annealed plate created by varying the alloy composition through normal hot rolling, cold rolling, and annealing. A deep-drawn cup with a drawing ratio of 2.0 and an outer diameter of 27.0 mm was prepared, and this cup was expanded using a conical punch at 0°C, and it was determined whether the cracks were ductile or brittle. In addition, 5 to 10 cups were made from one sample steel, each of which was expanded, and the percentage of cups that were brittlely cracked was determined, which was defined as the brittle fracture rate. Hereinafter, this test will simply be referred to as the tube expansion test. If no brittle cracks occur in this tube expansion test, that is, if all ductile fractures occur and the brittle fracture rate is 0%, the secondary workability is not practical unless particularly severe deep drawing is performed. It can be said that this is sufficient. Figure 4 shows the relationship between the alloy components of the test materials and their brittle fracture rates after conducting a number of tube expansion tests. As seen in the results in Figure 4, the horizontal axis shows (Cr+50×P)% in steel, and the vertical axis shows (C+50×P)% in steel.
If 10×B+Sol.Al)% is taken, point B (12.0,
0.005) and point C (22.0, 0.020), and above the straight line BC connecting point C (22.0, 0.020) and point D (22.0,
0.30), no brittle cracks occur at all if the exceptional steels of test steel P 1 and test steel P 2 (this will be discussed later) are omitted. There is a clear correlation. That is,
From this Figure 4, it can be seen that Cr and P deteriorate secondary workability, and C, B, and Sol.Al are elements that improve secondary workability, but each component is regulated or added individually. alone is not enough, C.
It is clear that good secondary processability can only be obtained by appropriately regulating B, Sol.Al, Cr, and P in relation to each other. Regarding the relationship shown in Figure 4, when the analysis value of B (boron) is so small that it is appropriate to display it as tr (trace, trace) (especially when B is not added), the vertical axis of (C+10×B+
Sol.Al) is calculated by setting B to 0, that is, (C+Sol.
Calculated as Al). In addition, in Figure 4, we can see the exceptional behavior, that is, the straight line.
P 1 and P 2 , which were located above BC and to the left of the straight line CD, were brittle cracks, but the cause is thought to be the content of a specific component. P1 and P2
Table 1 shows the chemical composition values of the sample materials.

【表】 第1表に示すように、P1ではCが0.0035%と非
常に低く、従つてSol.Alがある程度含有されても
十分な二次加工性を示さず、またP2ではCrが
18.60%と高いためにPがやや低くても二次加工
性を劣化させたものと考えられる。従つて、本発
明鋼では、Cについてはその含有量の下限を規制
することが、またCrについてはその含有量の上
限を規制することが必要となる。この理由によつ
て本発明鋼では、第4図(第1図も同様)の関係
を各成分が相互に満たしたうえで、なお且つCに
ついては0.005%以上、Crについては18.00%以下
と規制している。 このように、P添加フエライト系ステンレス鋼
においては、C、B、Sol.AlおよびCr、Pの含
有量を相互に関連をもつて厳密に規制することが
二次加工性の向上に必要となることが明らかとな
つたが、C、BおよびSol.Alが二次加工性に及ぼ
す有益な効果について、その理由は現時点では必
ずしも明らかではないが本発明者らは次のように
推察している。すなわち、CおよびBについて
は、それぞれ自身が粒界に偏析することで、二
次加工性に有害なPの粒界偏析を抑制するか、も
しくは、これらが粒界に偏析することで粒界が
強化されるためと考えている。また、Sol.Alにつ
いては、AlがCr炭化物の析出を抑制するので、
Cr炭化物として消費されるCを減少させる結果、
固溶Cもしくは粒界偏析Cの量を実質的に増加さ
せることになり、このCによつて前述の機構で二
次加工性を向上させると推察される。 第4図の結果は、本発明の基礎をなす重要な結
果であり、各成分を単独規制するのみならず、相
互を関連して規制することが重要であることを示
しているが、ここで、各成分の各々についてその
上下限の規制理由を説明する。 Cは、既述のように(前記P1の供試鋼)あま
り低いと二次加工性の面から好ましくないので、
0.0050%以上とする必要がある。しかし、あまり
高いと材料が硬質となり成形性が劣化すると共に
溶接性にも害を及ぼす。これらを回避するには、
その上限を0.0500%とする必要がある。 Crの下限の10.00%は鋼の耐食性保持のための
必要最低量である。第1図における直線ACは、
このCrの下限値とPの下限値から求められたも
のである。一方、Crが高いと靱性が損なわれ且
つ既述のように(前記P2供試鋼)二次加工性も
劣化するので18.00%をその上限とする。 Siは、耐高温酸化性を向上させるが、あまり高
いと材料が硬化するので、0.50%をその上限とす
る。 Mnは、熱間加工性や溶接部の靱性を改善する
元素であるが、0.50%を越えて含有させても効果
が飽和すると共にコスト上昇を招くので0.50%を
その上限とする。 Sは、耐食性や熱間加工性に有害な元素であり
低いほうが好ましいので0.030%以下とする。 Niは、フエライト系金属材料の靱性改善に効
果があるが、あまり高いと製品が高価となり本発
明の目的に沿わなくなり、通常のフエライト系ス
テンレス鋼で規定されている上限を許容限度とし
て0.60%以下とする。 Pは、既述のように本発明合金において基本的
な合金元素であり、安価なフエライ系ステンレス
鋼を得るうえでは0.040%を超えて含有させるこ
とが必要となる。靱性や熱間加工性、さらには二
次加工性に対してのPの悪影響が本発明によつて
抑制されるが、P含有量は無制限であつてよいわ
けではなく、0.20%を上限とする。 Alは、製鋼時には脱酸在として鋼中酸素を低
減し、鋼を清浄化する。またPによる靱性および
二次加工性への悪影響を抑制し、これを改善する
有用な元素である(第3図)。この効果を確保す
るには、Sol.Alとして0.005%以上の添加が必要
である。しかし、Sol.Alとして0.200%を超えて
含有させてもこの効果が飽和すると共に鋳造時に
おいてノズル閉塞を起こしたり製造上問題となる
ことがあるので、Sol.Alとして0.200%を上限と
する。 Bは、極く微量でも二次加工性の改善に有効に
作用する。Bがtr(トレース、分析上痕跡として
示される程度)であつても、本発明で規定するC
やSol.ALの添加量さらにはCrやPの含有量によ
つては二次加工性を確保することもできるが、良
好な二次加工性を得るにはBを0.0005%以上含有
させることが好ましい。しかし、あまり含有させ
ると成形性を劣化させるので、0.0050%以下とす
るのがよい。 Nは、本発明において特に規定するものではな
いが、製鋼段階で不可避的に混入してくる元素で
あり、通常のフエライト系ステンレス鋼に含有さ
れる程度の0.0050〜0.05%を含有することができ
る。 以上の各元素の上下限値の限定だけでは、二次
加工性に対しては不十分であり、この二次加工性
に対しての目的を達成するには、すでに述べたと
おり、第4図の関係、ひいては第1図の関係を満
足することが必要である。第1図の関係において
Bを分析精度内で含有しない場合には、第1図の
縦軸の指標である(C+10×B+Sol.Al)は、B
=0として、すなわち(C+Sol.Al)として算出
する。以上により、成形性および二次加工性に優
れ、強度の成形加工を伴う用途への適用が可能な
安価なフエライト系ステンレス鋼が提供される。 以下に実施例を上げて本発明鋼の特徴をより具
体的に説明する。 第2表に示した化学成分の鋼をそれぞれ溶製し
たうえ、通常の熱間圧延、冷間圧延および焼鈍条
件のもとで板厚0.7mmの冷延焼鈍板を製造した。 第3表にこの各鋼板の値および二次加工性試
験結果を示した。値は板の圧延方向に対して、
0°、45°、90°方向についてそれぞれ求めたところ
のγ0、γ45、γ90の値から、 =(γ0+2γ45+γ90)/4 により、算出した。 また、二次加工性については、前記の第4図で
説明した拡管試験を0°で行い、その破壊の形態を
第4図で説明したのと同様にして評価した。
[Table] As shown in Table 1, P 1 has a very low C content of 0.0035%, so even if it contains a certain amount of Sol.Al, it does not show sufficient secondary workability, and P 2 has a very low Cr content.
It is thought that because the P content was as high as 18.60%, the secondary workability deteriorated even though the P content was slightly low. Therefore, in the steel of the present invention, it is necessary to regulate the lower limit of the content of C and the upper limit of the content of Cr. For this reason, in the steel of the present invention, after each component mutually satisfies the relationship shown in Figure 4 (the same applies to Figure 1), C is regulated at 0.005% or more and Cr is regulated at 18.00% or less. are doing. Thus, in P-added ferritic stainless steel, it is necessary to strictly control the contents of C, B, Sol.Al, Cr, and P in relation to each other in order to improve secondary workability. However, the reason for the beneficial effects of C, B and Sol.Al on secondary workability is not necessarily clear at present, but the inventors speculate as follows. . In other words, C and B either suppress the grain boundary segregation of P, which is harmful to secondary workability, by segregating to the grain boundaries, or they can suppress the grain boundary segregation by segregating to the grain boundaries. I think this is because it will be strengthened. In addition, regarding Sol.Al, since Al suppresses the precipitation of Cr carbides,
As a result of reducing C consumed as Cr carbide,
This substantially increases the amount of solid solution C or grain boundary segregated C, and it is presumed that this C improves secondary workability through the above-mentioned mechanism. The results shown in Figure 4 are important results that form the basis of the present invention, and show that it is important not only to regulate each component individually, but also to regulate them in relation to each other. , the reasons for regulating the upper and lower limits for each component will be explained. As mentioned above, C is undesirable from the viewpoint of secondary workability if it is too low (in the sample steel of P 1 above).
It needs to be 0.0050% or more. However, if it is too high, the material becomes hard and formability deteriorates, and weldability is also adversely affected. To avoid these,
The upper limit needs to be 0.0500%. The lower limit of 10.00% of Cr is the minimum amount necessary to maintain corrosion resistance of steel. The straight line AC in Figure 1 is
This value was determined from the lower limit value of Cr and the lower limit value of P. On the other hand, if the Cr content is high, the toughness is impaired and, as mentioned above, the secondary workability is also deteriorated (as in the P2 sample steel), so the upper limit is set at 18.00%. Si improves high-temperature oxidation resistance, but if the content is too high, the material will harden, so the upper limit is set at 0.50%. Mn is an element that improves hot workability and the toughness of welded parts, but if it is contained in an amount exceeding 0.50%, the effect will be saturated and the cost will increase, so 0.50% is set as the upper limit. S is an element harmful to corrosion resistance and hot workability, and a lower content is preferable, so it is set to 0.030% or less. Ni is effective in improving the toughness of ferritic metal materials, but if it is too high, the product becomes expensive and does not meet the purpose of the present invention, and the permissible upper limit is 0.60% or less, which is the upper limit specified for ordinary ferritic stainless steel. shall be. As mentioned above, P is a basic alloying element in the alloy of the present invention, and in order to obtain an inexpensive ferrite stainless steel, it is necessary to contain it in an amount exceeding 0.040%. Although the present invention suppresses the adverse effects of P on toughness, hot workability, and furthermore secondary workability, the P content is not limited to any limit and is limited to 0.20%. . During steel manufacturing, Al acts as a deoxidizer, reducing oxygen in the steel and cleaning the steel. It is also a useful element that suppresses and improves the adverse effects of P on toughness and secondary workability (Figure 3). To ensure this effect, it is necessary to add 0.005% or more of Sol.Al. However, even if Sol.Al is contained in an amount exceeding 0.200%, this effect will be saturated and may cause nozzle clogging during casting, which may cause manufacturing problems. Therefore, the upper limit of Sol.Al is set at 0.200%. B effectively acts on improving secondary processability even in a very small amount. Even if B is tr (trace, to the extent that it is shown as a trace in analysis), C as defined in the present invention
Secondary workability can be ensured depending on the amount of addition of Sol.AL and Cr and P content, but in order to obtain good secondary workability, it is necessary to contain B at 0.0005% or more. preferable. However, if it is contained too much, the moldability will be deteriorated, so the content is preferably 0.0050% or less. Although not particularly specified in the present invention, N is an element that is inevitably mixed in during the steel manufacturing stage, and can be contained in an amount of 0.0050 to 0.05%, which is the same as that contained in ordinary ferritic stainless steel. . Merely limiting the upper and lower limits of each element above is insufficient for secondary processability, and as already mentioned, it is necessary to It is necessary to satisfy the relationship shown in FIG. In the relationship shown in Figure 1, if B is not contained within the analytical accuracy, the index on the vertical axis in Figure 1 (C+10×B+Sol.Al) is
= 0, that is, (C+Sol.Al). As described above, an inexpensive ferritic stainless steel that has excellent formability and secondary workability and can be applied to applications involving strong forming processing is provided. The characteristics of the steel of the present invention will be explained in more detail with reference to Examples below. Each steel having the chemical composition shown in Table 2 was melted, and cold rolled annealed sheets with a thickness of 0.7 mm were manufactured under normal hot rolling, cold rolling and annealing conditions. Table 3 shows the values and secondary workability test results for each steel plate. The value is relative to the rolling direction of the plate,
It was calculated from the values of γ 0 , γ 45 , and γ 90 obtained in the 0°, 45°, and 90° directions, as follows: =(γ 0 +2γ 4590 )/4. Regarding secondary workability, the tube expansion test described in FIG. 4 above was conducted at 0°, and the form of fracture was evaluated in the same manner as described in FIG. 4.

【表】【table】

【表】【table】

【表】 第2表および第3表の結果から次の事実が明ら
かである。 本発明鋼No.1〜No.7は、いずれも値が高くて
深絞り性が優れている。そして同時に、いずれも
拡管試験において全く脆性破壊を示さず、二次加
工性も良好である。 比較鋼No.8は、Pが本発明範囲を越えており、
また(Cr+50P)が23.84と第1図に示した本発
明の範囲の外にある。この結果、は比較的良好
ではあるものの、二次加工性に劣つている。 比較鋼No.9は、Pが低い。このために、値が
低くなつている。このように、Pが低いと深絞り
性が劣る。換言すれば、Pは深絞り性を向上させ
る。 比較鋼No.10は、Cが0.0028%と本発明で規定す
る範囲より低い。このため、二次加工性が十分で
はない。 比較鋼No.11は、各成分を単独で見れば各々その
含有量は本発明範囲内にあるものの、(Cr+50P)
が本発明範囲外であり、このために二次加工性が
劣つている。 比較鋼No.12は、Sol.Alが0.003%と本発明範囲
より低いうえ、(Cr+50P)=20.59の値に対する
(C+10B+Sol.Al)が本発明外である。その結
果、二次加工性に劣つている。 比較鋼No.13は、Crおよび(Cr+50P)が本発明
の範囲を越えており、やはり、二次加工性に劣つ
ている。
[Table] The following facts are clear from the results in Tables 2 and 3. Inventive steels No. 1 to No. 7 all have high values and are excellent in deep drawability. At the same time, none of them showed any brittle fracture in the tube expansion test and had good secondary workability. Comparative steel No. 8 has P exceeding the range of the present invention,
Furthermore, (Cr+50P) is 23.84, which is outside the scope of the present invention shown in FIG. As a result, although it is relatively good, it is inferior in secondary workability. Comparative steel No. 9 has low P. This is why the value is low. Thus, when P is low, deep drawability is poor. In other words, P improves deep drawability. Comparative steel No. 10 has a C content of 0.0028%, which is lower than the range defined by the present invention. Therefore, secondary workability is not sufficient. Comparative steel No. 11 has (Cr+50P), although the content of each component is within the range of the present invention when viewed individually.
is outside the scope of the present invention, and therefore the secondary processability is poor. Comparative steel No. 12 has Sol.Al of 0.003%, which is lower than the range of the present invention, and (C+10B+Sol.Al) for the value of (Cr+50P)=20.59 is outside the present invention. As a result, the secondary processability is poor. Comparative steel No. 13 has Cr and (Cr+50P) exceeding the range of the present invention, and is also inferior in secondary workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼のC、Cr、P、Sol.Al、B
の含有量の相互の関係を示す図、第2図は13%
Cr−0.03%Cのフエライト系ステンレス鋼にPを
添加したときのP含有量と値との関係図、第3
図は13%Cr−0.03%C−0.10%PのP添加フエラ
イト系ステンレス鋼におけるSol.Al含有量とシヤ
ルピー衝撃値との関係図、第4図は本発明合金の
C、Cr、P、Sol.Al、Bの含有量の相互の関係
を導く基礎となつた二次加工性試験(拡管試験)
の結果を示す図である。
Figure 1 shows C, Cr, P, Sol.Al, and B of the steel of the present invention.
Figure 2 shows the relationship between the contents of 13% and 13%.
Relationship diagram between P content and value when P is added to Cr-0.03%C ferritic stainless steel, Part 3
The figure shows the relationship between Sol.Al content and Charpy impact value in P-added ferritic stainless steel of 13%Cr-0.03%C-0.10%P. Figure 4 shows the relationship between C, Cr, P, Sol. .Secondary workability test (tube expansion test) that served as the basis for deriving the mutual relationship between Al and B contents
FIG.

Claims (1)

【特許請求の範囲】 1 重量%において、 C;0.0050〜0.0500%、 Cr;10.00〜18.00%、 Si;0.50%以下、 Mn;0.50%以下、 P;0.040%を越え〜0.200%、 S;0.030%以下、 Ni;0.60%以下、 Sol.Al;0.005〜0.200%、 B;tr(痕跡程度)〜0.0050%、 であつて、且つ、 (Cr+50×P)の式に従う含有量を横軸とし、
(C+10×B+Sol.Al)の式に従う含有量を縦軸
としたときに、第1図に示されるように4つの座
標点、A(12.0、0.30)、B(12.0、0.005)、C
(22.0、0.020)およびD(22.0、0.30)を直線で結
んで形成される四辺形の領域内となる関係を満足
し、 残部がFeおよび不可避的不純物からなる成形
性および二次加工性にすぐれたP添加フエライト
系ステンレス鋼。 2 Bが0.0005〜0.0050%である特許請求の範囲
第1項記載の成形性および二次加工性にすぐれた
P添加フエライト系ステンレス鋼。
[Claims] In 1% by weight, C: 0.0050 to 0.0500%, Cr: 10.00 to 18.00%, Si: 0.50% or less, Mn: 0.50% or less, P: more than 0.040% to 0.200%, S: 0.030 % or less, Ni: 0.60% or less, Sol.Al: 0.005 to 0.200%, B: tr (trace level) to 0.0050%, and the content according to the formula (Cr + 50 × P) is taken as the horizontal axis,
When the content according to the formula (C+10×B+Sol.Al) is taken as the vertical axis, there are four coordinate points, A (12.0, 0.30), B (12.0, 0.005), and C, as shown in Figure 1.
(22.0, 0.020) and D (22.0, 0.30) with straight lines, and satisfies the relationship of being within the quadrilateral region formed by connecting straight lines, and has excellent formability and secondary workability, with the remainder being Fe and unavoidable impurities. P-added ferritic stainless steel. 2. The P-added ferritic stainless steel having excellent formability and secondary workability according to claim 1, wherein B is 0.0005 to 0.0050%.
JP59104312A 1984-05-13 1984-05-23 P-added ferritic stainless steel having excellent formability and fabrication property Granted JPS60248868A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP59104312A JPS60248868A (en) 1984-05-23 1984-05-23 P-added ferritic stainless steel having excellent formability and fabrication property
KR1019850003290A KR920009990B1 (en) 1984-05-13 1985-05-14 P-added ferritic stainless steel having excellent formability and secondary workability
IT67451/85A IT1187823B (en) 1984-05-23 1985-05-16 FERRITIC STAINLESS STEEL ENRICHED IN P WITH EXCELLENT WEARABILITY AND SECONDARY WORKABILITY
GB08512667A GB2159177B (en) 1984-05-23 1985-05-20 P-added ferritic stainless steel
ES543398A ES8706847A1 (en) 1984-05-23 1985-05-22 P-added ferritic stainless steel
BR8502419A BR8502419A (en) 1984-05-23 1985-05-22 FERRITIC STAINLESS STEEL WITH ADDITION OF P WITH EXCELLENT PLASTICITY AND SECONDARY WORKABILITIES
SE8502523A SE459663B (en) 1984-05-23 1985-05-22 PHOSPHORETIC FERRITIC STAINLESS STEEL
FR858507710A FR2564864B1 (en) 1984-05-23 1985-05-22 FERRITIC STAINLESS STEEL ADDED WITH PHOSPHORUS HAVING EXCELLENT FITNESS SKILLS AND SECONDARY WORKABILITY.
DE19853518618 DE3518618A1 (en) 1984-05-23 1985-05-23 A P-ADDITION OF FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND SECONDARY WORKABILITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104312A JPS60248868A (en) 1984-05-23 1984-05-23 P-added ferritic stainless steel having excellent formability and fabrication property

Publications (2)

Publication Number Publication Date
JPS60248868A JPS60248868A (en) 1985-12-09
JPH0350827B2 true JPH0350827B2 (en) 1991-08-02

Family

ID=14377406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104312A Granted JPS60248868A (en) 1984-05-13 1984-05-23 P-added ferritic stainless steel having excellent formability and fabrication property

Country Status (9)

Country Link
JP (1) JPS60248868A (en)
KR (1) KR920009990B1 (en)
BR (1) BR8502419A (en)
DE (1) DE3518618A1 (en)
ES (1) ES8706847A1 (en)
FR (1) FR2564864B1 (en)
GB (1) GB2159177B (en)
IT (1) IT1187823B (en)
SE (1) SE459663B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2123470C (en) * 1993-05-19 2001-07-03 Yoshihiro Yazawa Ferritic stainless steel exhibiting excellent atmospheric corrosion resistance and crevice corrosion resistance
CN115044826B (en) * 2022-05-07 2023-09-15 广西柳州钢铁集团有限公司 410 ferrite stainless steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB398680A (en) * 1932-11-25 1933-09-21 Hermann Josef Schiffler A new or improved heat resisting steel alloy
FR746957A (en) * 1932-12-05 1933-06-09 Heat resistant alloy steel
US2402424A (en) * 1945-01-20 1946-06-18 Roy B Mccauley Hard alloys
GB760926A (en) * 1953-08-21 1956-11-07 Armco Int Corp Stainless steels and their manufacture
FR1087022A (en) * 1953-09-08 1955-02-18 Armco Int Corp Manufacturing process of alloys and resulting products
JPS56123356A (en) * 1980-03-01 1981-09-28 Nippon Steel Corp Ferritic stainless steel with superior formability
MX156648A (en) * 1980-10-21 1988-09-22 Nippon Steel Corp IMPROVED METHOD FOR PRODUCING STAINLESS STEEL SHEETS OR STRIPS
JPS59123745A (en) * 1982-12-29 1984-07-17 Nisshin Steel Co Ltd Corrosion resistant alloy

Also Published As

Publication number Publication date
SE8502523L (en) 1985-11-24
ES543398A0 (en) 1987-07-01
GB2159177A (en) 1985-11-27
GB2159177B (en) 1988-05-11
FR2564864A1 (en) 1985-11-29
GB8512667D0 (en) 1985-06-26
KR850008191A (en) 1985-12-13
SE8502523D0 (en) 1985-05-22
BR8502419A (en) 1986-01-21
IT1187823B (en) 1987-12-23
JPS60248868A (en) 1985-12-09
SE459663B (en) 1989-07-24
ES8706847A1 (en) 1987-07-01
IT8567451A0 (en) 1985-05-16
FR2564864B1 (en) 1990-03-16
DE3518618A1 (en) 1985-11-28
KR920009990B1 (en) 1992-11-10

Similar Documents

Publication Publication Date Title
US10745774B2 (en) Ferrite-martensite dual-phase stainless steel and method of manufacturing the same
JP6807690B2 (en) Square steel pipe
WO1999007909A1 (en) Ferritic stainless steel plate of high deep drawability and ridging resistance and method of manufacturing the same
TW202037734A (en) High-Mn steel and method for manufacturing same
CN111304543B (en) Low-temperature-resistant hot-dip galvanized steel plate with excellent welding performance and production method thereof
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP3275783B2 (en) Method for producing Ti-added hot-rolled high-strength steel sheet excellent in formability
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JPH0350827B2 (en)
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
US20200149127A1 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
JP3132728B2 (en) Ferritic stainless steel with excellent formability
JP3101411B2 (en) Ferritic stainless steel excellent in workability and manufacturing method
JP2001003144A (en) High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3003495B2 (en) Steel material excellent in workability and method for producing the same
JP2518795B2 (en) Soft austenitic stainless steel with excellent hot workability
JPH0121849B2 (en)
JP3062275B2 (en) Steel for high strength shaft parts
JPH0621321B2 (en) Welding steel with excellent low temperature toughness and its manufacturing method
RU2627080C1 (en) Plated high-strength corrosion-resistant steel
JP3420372B2 (en) Chromium steel sheet with excellent formability and weld ductility
JPH02190416A (en) Production of precipitation hardening type high tensile stainless steel excellent in welding strength and toughness