JPH0350808A - Preparation of superstructural nitriding alloy film - Google Patents

Preparation of superstructural nitriding alloy film

Info

Publication number
JPH0350808A
JPH0350808A JP18648389A JP18648389A JPH0350808A JP H0350808 A JPH0350808 A JP H0350808A JP 18648389 A JP18648389 A JP 18648389A JP 18648389 A JP18648389 A JP 18648389A JP H0350808 A JPH0350808 A JP H0350808A
Authority
JP
Japan
Prior art keywords
alloy film
superstructured
nitride alloy
substrate
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18648389A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakakima
博 榊間
Koichi Osano
浩一 小佐野
Keita Ihara
井原 慶太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18648389A priority Critical patent/JPH0350808A/en
Publication of JPH0350808A publication Critical patent/JPH0350808A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film

Abstract

PURPOSE:To prepare a superstructural nitriding alloy film showing stable and excellent soft magnetism by a method wherein a prescribed waiting time is provided until a nitrogen gas in a vacuum tank is exhausted sufficiently, evaporation of an element on a substrate is stopped during this time and there-after the evaporation of the element is reopened so that a non-nitriding layer be formed. CONSTITUTION:A shutter in front of a substrate is closed during a waiting time (t) so that an alloy film may not be evaporated on the substrate, and a superstructural nitriding alloy film TaMbXcMd constituted of definite nitriding and non-nitriding layers is prepared. In the film, mark T is at least one kind of metal selected from a group comprising Fe, Co and Ni, M being at least one kind of metal selected from a group comprising Nb, Zr, Ti, Ta, Hf, Cr, Mo, W and Mn, X being at least one kind of semimetal-semiconductor selected from a group of B, C, Si and Ge, and N being nitrogen. Marks (a), (b), (c) and (d) denote atom percents and 65<=a<=95, 0<=b <=20, 0<=c<=20, 2<=d<=20, 3<=b+c, and a+b+c+d=100.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はVTR等の磁気ヘッドに適した軟磁性超構造窒
化合金膜の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a soft magnetic superstructure nitride alloy film suitable for magnetic heads such as VTRs.

従来の技術 従来より、第2図に示すように 窒素ガスlを電磁バル
ブ等によりAr等のスパッタガス2中に周期的に混合し
て、反応スパッタ法を用いて窒化層と非窒化層より成る
超構造窒化合金膜を作製する方法が知られている(特願
昭61−54054.62−89402等)。
Conventional technology Conventionally, as shown in Fig. 2, nitrogen gas 1 is periodically mixed into sputtering gas 2 such as Ar using an electromagnetic valve, etc., and a nitrided layer and a non-nitrided layer are formed using a reactive sputtering method. A method for producing a superstructured nitride alloy film is known (Japanese Patent Application No. 61-54054.62-89402, etc.).

発明が解決しようとする課題 この方法ではスパッタ装置もしくは蒸着装置の真空槽が
小さくかつ高速真空排気系を用いる場合は比較的問題が
ない力<、景産装置のように上記の真空槽が大きくなる
と、明確な積層構造を有する超構造窒化合金膜が得られ
ず良好な軟磁性を示しにくくなるといった問題があっt
う 本発明(瓜 このような従来技術の課題を解決すること
を目的とする。
Problems to be Solved by the Invention In this method, if the vacuum chamber of the sputtering device or vapor deposition device is small and a high-speed vacuum evacuation system is used, there is relatively no problem. However, there is a problem that a superstructured nitride alloy film with a clear layered structure cannot be obtained and it becomes difficult to exhibit good soft magnetic properties.
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art.

課題を解決するための手段 本発明では上記の超構造窒化合金膜の作製において、窒
化層形成後に非窒化層を形成する胤 真空槽内の窒素ガ
スが十分排気されるまで所定の待ち時間を設けて、この
間は基板への元素の蒸着を正塩 しかる後に元素の基板
への蒸着を再開して非窒化層を形成し これを繰り返す
ことにより明確な窒化層と非窒化層より成る下記の平均
膜組成の超構造窒化合金膜 T=MbX、Nd−−−(1) を作製するものである(ただしTはFe、 Co、 N
iより成る群から選択された少なくとも1種の金尻Mは
Nb、 Zr、 Ti、 Ta、 Hf、 Cr、 M
o、 W、 Mnより成る群から選択された少なくとも
1種の金KXはB、 C,Si、 Geより成る群より
選択された少なくとも1種の半金属・半導ENはN(窒
素)であって、a、 b、 c、 dは原子パーセント
を表わし それぞれ65≦a≦95 0≦b≦20 0≦c≦20 2≦d≦20 3≦b十c a十す十c十d=100 である)。
Means for Solving the Problems In the present invention, in the production of the above-mentioned superstructured nitride alloy film, a predetermined waiting time is provided until the nitrogen gas in the vacuum chamber is sufficiently exhausted after the formation of the nitrided layer. During this time, the element is deposited on the substrate using a normal salt. After that, the element is deposited on the substrate again to form a non-nitrided layer. By repeating this process, the following average film consisting of a clear nitrided layer and a non-nitrided layer is formed. A superstructured nitride alloy film with the composition T=MbX, Nd---(1) is prepared (where T is Fe, Co, Nd).
At least one type of metal shim M selected from the group consisting of i is Nb, Zr, Ti, Ta, Hf, Cr, M
At least one type of gold KX selected from the group consisting of o, W, and Mn is at least one metalloid/semiconductor EN selected from the group consisting of B, C, Si, and Ge. So, a, b, c, and d represent atomic percentages, respectively: 65≦a≦95 0≦b≦20 0≦c≦20 2≦d≦20 3≦b0c a10s10c0d=100 be).

作用 本発明の膜作製法を用いて上記のような組成の超構造窒
化合金膜を作製すれば どのような真空槽の蒸着(スパ
ッタ)装置を用いても安定して優れた軟磁性を示す超構
造窒化合金膜を作製することが可能である。
Function: If a superstructured nitride alloy film with the above composition is produced using the film production method of the present invention, it will be possible to produce a superstructured nitride alloy film that stably exhibits excellent soft magnetism no matter what type of vacuum chamber vapor deposition (sputtering) equipment is used. It is possible to produce structural nitride alloy films.

実施例 以下ム 本発明の実施例について図面を参照しながら説
明する。
EXAMPLES Below, examples of the present invention will be described with reference to the drawings.

(1)式において合金膜が軟磁性を示すにはa≦95.
3≦b+ c、       −−−(2)である事が
必要であり、合金膜が高飽和磁化を有するには 65≦a、  b≦20.0≦20    −−−(3
)である事が必要である。合金膜の内部応力を抑えて膜
が基板より剥離しないためには d≦20                 −−−(
4)である事が望まし0゜更に熱的に安定な磁気特性を
得るには 2≦d             −−−(5)である
ことが必要である。以上(2)−(5)式より(1)式
の組成式かえられる。
In equation (1), for the alloy film to exhibit soft magnetism, a≦95.
It is necessary that 3≦b+c, ---(2), and for the alloy film to have high saturation magnetization, 65≦a, b≦20.0≦20 ---(3
). In order to suppress the internal stress of the alloy film and prevent the film from peeling off from the substrate, d≦20 ---(
4) and 0°.In order to obtain more thermally stable magnetic properties, it is necessary that 2≦d---(5). The compositional formula of formula (1) can be changed from formulas (2) to (5) above.

又この窒化合金膜が優れた軟磁気特性を示すに(よ 少
なくとも作製時において膜厚方向即ち成膜方向に窒素元
素等の組成が変調された(広い意味で積層構造膜も含む
)超構造膜となっているこ七が必要であり、良好な軟磁
性を得るためにはこの組成変調波長は100OA以下で
あることが望ましい。
In addition, this nitride alloy film exhibits excellent soft magnetic properties (at least during fabrication, the composition of nitrogen elements, etc. is modulated in the film thickness direction, that is, in the film formation direction). This compositional modulation wavelength is preferably 100 OA or less in order to obtain good soft magnetism.

ところが第3図に示したような単に窒素ガスを周期的に
真空槽内に導入して反応蒸着により窒化層と非窒化層よ
りなる超構造窒化合金膜を作製しても必ずしも膜は優れ
た軟磁性を示さない。これは真空槽が大きい場合、真空
槽内の窒素ガスが十分に排気されるにはある程度時間が
かかり、単に窒素ガス導入用の電磁弁の0N10FFた
けでは界面の明確な窒化層と非窒化層より成る超構造窒
化合金膜が形成されないからである。
However, even if a superstructured nitride alloy film consisting of a nitride layer and a non-nitride layer is fabricated by reactive vapor deposition by simply introducing nitrogen gas into a vacuum chamber periodically as shown in Figure 3, the film does not necessarily have excellent softness. Does not exhibit magnetism. This is because when the vacuum chamber is large, it takes some time for the nitrogen gas in the vacuum chamber to be sufficiently exhausted, and if the solenoid valve for nitrogen gas introduction is simply 0N10FF, the interface between the nitrided layer and the non-nitrided layer is This is because a superstructured nitride alloy film consisting of the above structure is not formed.

従って第1図でtで示したような待ち時間を設け、この
間は基板の前のシャッターを閉よ 基板上に合金膜が蒸
着されないようにする本発明の膜作製法を用いれば界面
の明確な超構造窒化膜を形成することができ、得られた
膜は優れた軟磁性を示す。
Therefore, provide a waiting time as indicated by t in Figure 1, and close the shutter in front of the substrate during this time.If the film fabrication method of the present invention, which prevents the alloy film from being deposited on the substrate, is used, the interface will be clearly defined. A superstructured nitride film can be formed, and the resulting film exhibits excellent soft magnetism.

この待ち時間は非窒化層の形成の前に必ず設ける必要が
あるバ 更に同図にt′で示したように窒化層の形成の
前にもこれを設けてこの間は基板上に合金膜が蒸着され
ないようにすれば膜の特性の装置によるバラツキをより
小さくすることができム又作製時において得られた超構
造窒化合金膜は必ずしも良好な軟磁性を示さない。この
場合は通常300℃以上800℃以下の磁界中もしくは
無磁界中熱処理によりその軟磁性を改善することが可能
である。
This waiting time must be provided before the formation of the non-nitrided layer.Furthermore, as shown at t' in the figure, this waiting time is also provided before the formation of the nitrided layer, during which time the alloy film is deposited on the substrate. If this is avoided, it is possible to further reduce variations in film properties depending on the equipment.Furthermore, the superstructured nitride alloy film obtained at the time of fabrication does not necessarily exhibit good soft magnetism. In this case, it is possible to improve the soft magnetism by heat treatment in a magnetic field or in the absence of a magnetic field, usually at a temperature of 300° C. or more and 800° C. or less.

以下さら(ミ 具体的実施例の説明を行なう。Hereinafter, specific examples will be explained.

〈実施例1〉 ターゲットに5x15” (インチ)のCo−Nb−Z
r及びF e −N b −8合金板を用1.k  ス
パッタArガス中にN2ガスを周期的に混合することに
より、層厚100Aの非窒化層と窒化層より成る[Co
−Nb−Zr/Co−Nb−Zr−N]及び[Fe−N
b−B/Fe−Nb−B−Nコなる平均膜組成がCo?
 e Nba zrs N+ 1!及びFe7aNbe
B+sN+sなる超構造窒化合金膜を反応スパッタ法に
より水冷したガラス基板上に作製し九 なお成膜時のス
パッタガス圧は1xlO−2Torrとし窒素混合時の
窒素分圧はIOXとじへ この時第2図に示したような
従来の窒素混合方法と第1図に示したような本発明方法
を用いて膜作製を行い作製時及び熱処理後の膜の磁気特
性の比較を行なっ九 結果を表−1及び表−2に示す。表に示した結果より本
発明の超構造窒化合金膜作製法が優れた軟磁性を示す膜
を得るのに有効なことがわかる。
<Example 1> 5x15” (inch) Co-Nb-Z on target
r and Fe-Nb-8 alloy plate 1. k By periodically mixing N2 gas in the sputtered Ar gas, a [Co
-Nb-Zr/Co-Nb-Zr-N] and [Fe-N
The average film composition of b-B/Fe-Nb-B-N is Co?
e Nba zrs N+ 1! and Fe7aNbe
A superstructured nitride alloy film of B+sN+s was fabricated on a water-cooled glass substrate by reactive sputtering.The sputtering gas pressure during film formation was 1xlO-2Torr, and the nitrogen partial pressure when nitrogen was mixed was set to IOX. Films were fabricated using the conventional nitrogen mixing method as shown in Figure 1 and the method of the present invention as shown in Figure 1, and the magnetic properties of the films during fabrication and after heat treatment were compared.The results are shown in Tables 1 and 1. It is shown in Table-2. From the results shown in the table, it can be seen that the method for producing a superstructured nitride alloy film of the present invention is effective in obtaining a film exhibiting excellent soft magnetism.

なおこの待ち時間(t、 tl )は装置の大きさや真
空排気系の能力に応じてきめればよくこの実施例はあく
まで一例である。又スパッタ法に限らず反応蒸着法を用
いたこのような超構造窒化合金膜の作製に本発明法が適
用できることはその原理からして明かである。
Note that this waiting time (t, tl) may be determined depending on the size of the apparatus and the capacity of the evacuation system, and this embodiment is merely an example. Furthermore, it is clear from its principle that the method of the present invention can be applied to the production of such a superstructured nitride alloy film using not only the sputtering method but also the reactive vapor deposition method.

表−1 表−2 発明の効果 以上述べたように 本発明は優れた軟磁性を示す超構造
窒化合金膜を装置の大きさの如何にかかわらず安定に作
製することを可能にするものである。
Table 1 Table 2 Effects of the Invention As stated above, the present invention makes it possible to stably produce a superstructured nitride alloy film exhibiting excellent soft magnetism, regardless of the size of the device. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超構造窒化合金膜作製時の窒素ガス混
合法を示すタイミング医 第2図は従来法の超構造窒化
合金膜作製時の窒素ガスの混合方法を示すタイミング医
 第3図(よ 超構造窒化合金膜作製時の窒素ガス混合
装置の略示断面図である。 t、 tl・・・非窒化層を形成する前と窒化層を形成
する前にシャッターを閉じて基板への合金膜形成を中断
する待ち時肌
Fig. 1 is a timing diagram showing the method of mixing nitrogen gas when producing a superstructured nitride alloy film according to the present invention. Fig. 2 is a timing diagram showing a method of mixing nitrogen gas when producing a superstructured nitride alloy film using the conventional method. (This is a schematic cross-sectional view of a nitrogen gas mixing apparatus during the production of a superstructured nitride alloy film. t, tl... Before forming a non-nitrided layer and before forming a nitrided layer, the shutter is closed and the air is heated to the substrate. Waiting time to interrupt alloy film formation

Claims (4)

【特許請求の範囲】[Claims] (1)窒素ガスを周期的に混合して蒸着元素と反応させ
、窒化層と非窒化層よりなる超構造窒化合金膜を基板上
に形成する超構造窒化合金膜の作成方法において、窒化
層形成後に非窒化層を形成する際、真空槽内の窒素ガス
が十分排気されるまで所定の待ち時間を設けて基板への
元素の蒸着を止め、しかる後に元素の基板への蒸着を再
開して非窒化層を形成し、これを繰り返すことにより下
記の平均膜組成の超構造窒化合金膜 T_aM_bX_cN_d を作製することを特徴とする超構造窒化合金膜の作製方
法(ただしTはFe,Co,Niより成る群から選択さ
れた少なくとも1種の金属、MはNb,Zr,Ti,T
a,Hf,Cr,Mo,W,Mnより成る群から選択さ
れた少なくとも1種の金属、XはB,C,Si,Geよ
り成る群より選択された少なくとも1種の半金属・半導
体、NはN(窒素)であってa,b,c,dは原子パー
セントを表わし、それぞれ 65≦a≦93 0≦b≦20 0≦c≦20 2≦d≦20 3≦b+c a+b+c+d=100 である)。
(1) Nitrogen layer formation in a method for creating a superstructured nitride alloy film in which a superstructured nitride alloy film consisting of a nitrided layer and a non-nitrided layer is formed on a substrate by periodically mixing nitrogen gas and reacting with the deposited elements. When forming a non-nitrided layer later, the vapor deposition of elements onto the substrate is stopped after a predetermined waiting time until the nitrogen gas in the vacuum chamber is sufficiently exhausted, and then the vapor deposition of elements onto the substrate is resumed to form a non-nitrided layer. A method for producing a superstructured nitride alloy film, characterized by forming a nitride layer and repeating this process to produce a superstructured nitride alloy film T_aM_bX_cN_d having the following average film composition (where T is composed of Fe, Co, and Ni). at least one metal selected from the group M is Nb, Zr, Ti, T
a, Hf, Cr, Mo, W, at least one metal selected from the group consisting of Mn, X at least one metalloid/semiconductor selected from the group consisting of B, C, Si, Ge, N is N (nitrogen), and a, b, c, and d represent atomic percent, respectively: 65≦a≦93 0≦b≦20 0≦c≦20 2≦d≦20 3≦b+c a+b+c+d=100 ).
(2)窒化層を形成する際も所定の待ち時間を設けるこ
とを特徴とする請求項1記載の超構造窒化合金膜の作製
方法。
(2) The method for producing a superstructured nitride alloy film according to claim 1, characterized in that a predetermined waiting time is provided also when forming the nitride layer.
(3)薄膜形成法としてスパッタ法を用いることを特徴
とする請求項1または2記載の超構造窒化合金膜の作製
方法。
(3) The method for producing a superstructured nitride alloy film according to claim 1 or 2, characterized in that a sputtering method is used as the thin film forming method.
(4)請求項1,2又は3項で作製した該超構造窒化合
金膜を300℃以上800℃以下で熱処理して軟磁気特
性を改善することを特徴とする超構造窒化合金膜の作製
方法。
(4) A method for producing a superstructured nitride alloy film, characterized in that the superstructured nitride alloy film produced according to claim 1, 2, or 3 is heat-treated at a temperature of 300°C or more and 800°C or less to improve soft magnetic properties. .
JP18648389A 1989-07-19 1989-07-19 Preparation of superstructural nitriding alloy film Pending JPH0350808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18648389A JPH0350808A (en) 1989-07-19 1989-07-19 Preparation of superstructural nitriding alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18648389A JPH0350808A (en) 1989-07-19 1989-07-19 Preparation of superstructural nitriding alloy film

Publications (1)

Publication Number Publication Date
JPH0350808A true JPH0350808A (en) 1991-03-05

Family

ID=16189277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18648389A Pending JPH0350808A (en) 1989-07-19 1989-07-19 Preparation of superstructural nitriding alloy film

Country Status (1)

Country Link
JP (1) JPH0350808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503025A (en) * 1993-09-24 1997-03-25 イノベイティブ スパッタリング テクノロジー エヌ.ヴイ.(アイ.エス.ティー.) Stacked metal structures
JP2008536541A (en) * 2005-03-15 2008-09-11 セブ ソシエテ アノニム Easy-to-clean cooking surfaces and household appliances including such surfaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09503025A (en) * 1993-09-24 1997-03-25 イノベイティブ スパッタリング テクノロジー エヌ.ヴイ.(アイ.エス.ティー.) Stacked metal structures
JP2008536541A (en) * 2005-03-15 2008-09-11 セブ ソシエテ アノニム Easy-to-clean cooking surfaces and household appliances including such surfaces

Similar Documents

Publication Publication Date Title
US5176806A (en) Soft magnetic alloy film
US5429731A (en) Method for forming a soft magnetic nitride layer on a magnetic head
JPH0350808A (en) Preparation of superstructural nitriding alloy film
JPH06267722A (en) Magnetic material and manufacture thereof
US5756201A (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head
JPH03124005A (en) Superstructure nitride alloy film
US5506063A (en) Soft magnetic film of iron and process of formation thereof
JPH02263416A (en) Manufacture of soft magnetic alloy film
JPH0456110B2 (en)
JPH03265104A (en) Soft magnetic alloy film
JPH03263306A (en) Magnetic film and magnetic head
JPH04361512A (en) Manufacture of nitride alloy film and composition-modulated nitride alloy film
US20060021871A1 (en) Method for fabricating L10 phase alloy film
JPH089769B2 (en) Preparation method of composition-modulated nitrided alloy film
EP0485729A1 (en) Soft magnetic film of iron and process of formation thereof
JPH02290004A (en) Soft magnetic alloy film and its manufacture
JPH0547551A (en) Soft magnetic thin film
JPH0821502B2 (en) Thin film permanent magnet
JPH01118238A (en) Production of magneto-optical recording medium
JPH09306736A (en) Perpendicular magnetization film, manufacture thereof, and magneto-optical recording medium
JPS6347908A (en) Nickel ferrite-system spinel thin film
JPH04105309A (en) Manufacture of metallic magnetic substance film
KR100390391B1 (en) Alloy Compositions for Base Layer of High Density Longitudinal Magnetic Recording Media
JP2551008B2 (en) Soft magnetic thin film
JPS62274607A (en) Superlattice magnetic material