JPH0350720A - Polycrystal silicon recrystallization - Google Patents

Polycrystal silicon recrystallization

Info

Publication number
JPH0350720A
JPH0350720A JP18537389A JP18537389A JPH0350720A JP H0350720 A JPH0350720 A JP H0350720A JP 18537389 A JP18537389 A JP 18537389A JP 18537389 A JP18537389 A JP 18537389A JP H0350720 A JPH0350720 A JP H0350720A
Authority
JP
Japan
Prior art keywords
layer
thermal conductivity
polycrystalline silicon
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18537389A
Other languages
Japanese (ja)
Inventor
Tsutomu Hashizume
勉 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18537389A priority Critical patent/JPH0350720A/en
Publication of JPH0350720A publication Critical patent/JPH0350720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To recrystallize efficiently single crystal silicon that is almost free from each grain boundary by providing an insulating film which has low thermal conductivity and a heat sink layer in which patterning having high thermal conductivity is performed. CONSTITUTION:The 2nd insulating film 102 having low thermal conductivity and a high thermal conductivity layer 103 consisting of a high melting metal are formed on a glass substrate 101. The high thermal conductivity layer 103 is patterned into a beltlike shape and further, an insulating film 104 having high thermal conductivity is formed on the beltlike high thermal conductivity layer 103 and the insulating film 102 and patterning is performed so that it may cover the high thermal conductivity layer 103. Further, a polycrystal silicon layer 105 is formed into an insular shape on the insulating film 104. Then, the above layer 105 is covered with a cap layer 106 consisting of a silicon dioxide film and a silicon nitride film or these multilayer films. A high grade single crystal film is obtained by irradiating downward the cap layer with a laser beam.

Description

【発明の詳細な説明】 本発明は、平面表示装置の駆動用トランジスタを構成す
る基本要素であるN膜の多結晶シリコンの再結晶化方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recrystallizing polycrystalline silicon of an N film, which is a basic element constituting a driving transistor of a flat panel display device.

〔従来の技術〕[Conventional technology]

近年、ELD、LCD等の表示装置が大容量化するにつ
れて、各セルを、TPTで駆動するアクティブマトリッ
クス駆動方式が検討されるようになってきた。この方式
では、各セル毎に設けられたTPTの他に、X、  Y
の電極線を駆動するためのドライバが必要であるが、こ
れらはTPTと共にガラス基板の上にIC化されるのが
価格的に望ましい。このドライバとしては相互コンダク
タンスgmが大きく、高速に動作するほど、表示装置の
性能が向上し、大容量化が可能になる。
In recent years, as the capacity of display devices such as ELDs and LCDs has increased, active matrix drive systems in which each cell is driven by TPT have been studied. In this method, in addition to the TPT provided for each cell,
Drivers are required to drive the electrode lines, but it is desirable from a cost standpoint that these are integrated into an IC on a glass substrate together with the TPT. The larger the mutual conductance gm of this driver is and the faster it operates, the better the performance of the display device and the larger the capacity.

通常よく用いられる低圧CVD法で成膜された多結晶シ
リコンの移動度は非常に低く数c+*’/Vsec程度
であり、単結晶シリコンと比べて2桁も小さい、低圧C
VD法で成膜された多結晶シリコンの移動度が単結晶シ
リコンに比べて2桁も低い原因1+IイI↓ I〜+/
/ I+ −、)fゼζ1v講ヂ々ノ 仕日ハ會^界が
多くのトラップ準位を持つために、この電気的に活性な
トラップにキャリアが捕らえられ、周辺領域を空乏化し
、電位障壁が形成されるからと考えられている。このよ
うな問題を解決するために、水素イオンでダングリング
ボンドをターミネイトすることにより電位障壁をなくす
水素プラズマ処理法も検討されているが、高々10cm
27Vsec程度の移動度しか得られていない、  こ
れに対し、多結晶シリコンimに電子ビームやレーザー
ビームを照射することにより溶融再結晶化して、結晶粒
度の大きい、若しくは粒界のほとんどない単結晶膜を得
る方法も検討されている。
The mobility of polycrystalline silicon deposited by the commonly used low-pressure CVD method is extremely low, on the order of several c+*'/Vsec, which is two orders of magnitude lower than that of single-crystal silicon.
The reason why the mobility of polycrystalline silicon deposited by the VD method is two orders of magnitude lower than that of single crystal silicon 1+IiI↓ I~+/
/ I + -, ) It is thought that this is due to the formation of In order to solve these problems, a hydrogen plasma treatment method is being considered that eliminates the potential barrier by terminating dangling bonds with hydrogen ions, but
A mobility of only about 27Vsec was obtained.On the other hand, polycrystalline silicon im is melted and recrystallized by irradiating it with an electron beam or a laser beam to create a single crystal film with large crystal grain size or almost no grain boundaries. Methods to obtain this are also being considered.

次に、第2図を用いて、従来の多結晶シリコンの再結晶
化法の例を説明する。
Next, an example of a conventional method for recrystallizing polycrystalline silicon will be explained using FIG.

ガラス基板201上に島状に設けた多結晶シリコン層2
05を二酸化珪素や窒化珪素等の絶縁膜からなるキャッ
プJ!f206で覆い、その上から0wArレーザーや
パルスモードのYAGレーザーでスポット上のビームを
走査照射する。この場合、キャップ層206は溶融した
シリコンが蒸発するのを防止するために設けられている
ものである。
Polycrystalline silicon layer 2 provided in an island shape on a glass substrate 201
05 is a cap J made of an insulating film such as silicon dioxide or silicon nitride! It is covered with f206, and a beam on the spot is scanned and irradiated with a 0wAr laser or a pulse mode YAG laser from above. In this case, the cap layer 206 is provided to prevent evaporation of molten silicon.

高エネルギーのビームで照射すると、多結晶シリコンが
溶融するために、ガラス基板201との界面付近の温度
はシリコンの溶融点(〜1400°C)近くになる。こ
のためガラス基板201としては石英ガラスのごとき高
融点ガラスに制限される。
When irradiated with a high-energy beam, the polycrystalline silicon melts, so the temperature near the interface with the glass substrate 201 becomes close to the melting point of silicon (~1400° C.). Therefore, the glass substrate 201 is limited to high melting point glasses such as quartz glass.

また石英ガラスは熱伝導率が低いので、多結晶シリコン
層205の結晶粒子の成長に不適当な(エツジ部より中
央部の温度が高い)熱分布ができ、結晶性のよい膜が形
成されにくい。
Furthermore, since silica glass has low thermal conductivity, there is an inappropriate heat distribution for the growth of crystal grains in the polycrystalline silicon layer 205 (temperature is higher at the center than at the edges), making it difficult to form a film with good crystallinity. .

第3図は、従来の多結晶シリコン再結晶化法の第2例を
説明するための図である。
FIG. 3 is a diagram for explaining a second example of the conventional polycrystalline silicon recrystallization method.

この第2例は、第1の例よりも簡便な手法であり、石英
基板301上の多結晶シリコン層305に直接ビームを
照射して溶融再結晶化する方法を用いている。この場合
も、ガラス基板301の界面付近の温度は第1の例と同
じように高温に達するので、ガラス基板301としては
石英ガラスに制限される。
This second example is a simpler method than the first example, and uses a method of directly irradiating the polycrystalline silicon layer 305 on the quartz substrate 301 with a beam to melt and recrystallize it. In this case as well, since the temperature near the interface of the glass substrate 301 reaches a high temperature as in the first example, the glass substrate 301 is limited to quartz glass.

第4図は、従来の多結晶シリコン再結晶化法の第3の例
を説明するための図である。
FIG. 4 is a diagram for explaining a third example of the conventional polycrystalline silicon recrystallization method.

この第3例は公開特許公報(A)1112−18141
9のものであり、減圧CVDで形成された多結晶シリコ
ン層の結晶粒度を大きくすることを特徴としている。こ
の第3例の多結晶シリコンの再結晶化法は、ガラス基板
上に402の絶縁膜と403の高熱伝導層膜を積層し、
さらに該高熱伝導層上に絶縁層404と多結晶シリコン
層405と該多結晶シリコン層を覆う絶縁層406から
なるキャップ層とを島状に連続して積み重ね、前記キャ
ップ層上から高エネルギービームを照射している。
This third example is published in the published patent publication (A) 1112-18141.
9, and is characterized by increasing the crystal grain size of the polycrystalline silicon layer formed by low pressure CVD. In this third example of the polycrystalline silicon recrystallization method, an insulating film 402 and a high thermal conductive layer film 403 are laminated on a glass substrate.
Furthermore, a cap layer consisting of an insulating layer 404, a polycrystalline silicon layer 405, and an insulating layer 406 covering the polycrystalline silicon layer is successively stacked on the high thermal conductivity layer in an island shape, and a high-energy beam is emitted from above the cap layer. It is irradiating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この方法では減圧CVDで形成された多結晶層よりも結
晶粒度の大きい多結晶層膜を得るものの、ヒートシンク
材403が多結晶シリコン層405より広い範囲にわた
って形成されていることにより、高エネルギービームを
照射したときに発生する高上多結晶シリコン層405の
周辺部と中央部の熱は− はぼ−様に高熱(云導請縁〃
404を通じてヒートシンク材403に伝導する。この
ため多結晶ジルコン層の中心部が低くなるエツジヒート
シンク効果が効率よく行なわれないので、高精細高階調
の平面表示装置の駆動TFT用の粒界のほとんどない単
結晶シリコンは容易に得られ難かった。
Although this method obtains a polycrystalline layer film with a larger crystal grain size than a polycrystalline layer formed by low-pressure CVD, the heat sink material 403 is formed over a wider area than the polycrystalline silicon layer 405, so that high-energy beams cannot be used. The heat generated at the periphery and center of the high polycrystalline silicon layer 405 during irradiation is as high as a heat wave.
It conducts to the heat sink material 403 through 404 . For this reason, the edge heat sink effect in which the center of the polycrystalline zircon layer is lowered is not performed efficiently, making it difficult to easily obtain single-crystal silicon with almost no grain boundaries for driving TFTs in high-definition, high-gradation flat panel display devices. Ta.

本発明はかかる欠点を除きシリコン層から熱が高熱伝導
層を伝導しシリコン層から効率よく熱が放散することが
できるヒートシンク層を設けて、基板への熱的影響の少
ない多結晶シリコンの再結晶化及する方法を、提供する
ものである。
The present invention eliminates such drawbacks by providing a heat sink layer that conducts heat from the silicon layer through a high thermal conductivity layer and efficiently dissipates heat from the silicon layer, thereby recrystallizing polycrystalline silicon with less thermal influence on the substrate. The aim is to provide a method for promoting

ところで、石英ガラス基板上に形成されたドライバをE
LDやLCD等の表示装置と一体化すると、表示装置の
価格は高くなる。更に表示価格が大きくなるほど、基板
の価格が大きな割合を占めるようにる。従来の方法では
、高温処理にともなう熱歪により安価な(例えばコーニ
ング社製7059)ガラスを使うことが不可能だったの
で表示装置が高くならざるを得なかった。また島状に設
けた多結晶シリコンを再結晶する際の温度分布が結晶粒
子の成長には不適当になるため(中央部が高温)、結晶
性のよい膜を容易に形成し難かった。
By the way, a driver formed on a quartz glass substrate is
When integrated with a display device such as an LD or LCD, the price of the display device increases. Furthermore, as the displayed price increases, the price of the board will take up a larger proportion. In the conventional method, it was impossible to use inexpensive glass (for example, Corning 7059) due to thermal distortion caused by high-temperature processing, so the display device had to be expensive. Furthermore, since the temperature distribution when recrystallizing the polycrystalline silicon provided in an island shape is inappropriate for the growth of crystal grains (high temperature in the center), it is difficult to easily form a film with good crystallinity.

更に従来技術である公開特許公報昭62−181419
の方法では減圧CVDの多結晶シリコンよりは結晶粒度
の大きな多結晶シリコンが得られるものの高速駆動TP
Tに必要な粒界のほとんどない単結晶シリコンは得られ
難かった。
Furthermore, the prior art, Japanese Patent Publication No. 181419/1986
Although the method yields polycrystalline silicon with a larger grain size than low-pressure CVD polycrystalline silicon, the high-speed drive TP
It has been difficult to obtain single crystal silicon with almost no grain boundaries, which is necessary for T.

本発明の目的はかかる従来の欠点を取り除き、低熱伝導
度の絶縁層と高熱伝導度のパターニングされたヒートシ
ンク層を設けて、基板への熱的影響のないの粒界のほと
んどない単結晶シリコンを効率よく再結晶化する方法を
提供することにある。
The object of the present invention is to eliminate such conventional drawbacks, and to provide a low thermal conductivity insulating layer and a high thermal conductivity patterned heat sink layer to produce monocrystalline silicon with almost no grain boundaries and no thermal influence on the substrate. The object of the present invention is to provide an efficient method for recrystallization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の多結晶シリコン再結晶化法は、ガラス基板上に
第1の絶縁膜を形成しさらに第1の絶縁層上に高熱伝導
層を形成し該高熱伝導層をパターニングし、さらに該高
熱伝導層に第2の絶縁層で覆い、さらに多結晶シリコン
層で該第2の絶縁層を覆い、さらに第3の絶縁膜からな
るキャップ層で該多結晶シリコン層を覆い、前記キャッ
プ層上から高エネルギービームを照射して前記多結晶シ
リコン層を単結晶化することを特徴とする。
The polycrystalline silicon recrystallization method of the present invention includes forming a first insulating film on a glass substrate, further forming a highly thermally conductive layer on the first insulating layer, patterning the highly thermally conductive layer, and further forming the highly thermally conductive layer on the first insulating layer. a second insulating layer, a polycrystalline silicon layer covers the second insulating layer, a third insulating cap layer covers the polycrystalline silicon layer, and a third insulating film is formed on the polycrystalline silicon layer. The method is characterized in that the polycrystalline silicon layer is made into a single crystal by irradiating the polycrystalline silicon layer with an energy beam.

〔作用〕[Effect]

ガラス基板上に適当な膜厚の二酸化珪素のごとき絶縁層
とタングステンの様な高融点金属からなる高熱伝導層と
を形成し、更に該高熱伝導層を、効率よく熱伝導し熱放
散できるよう所望の形状にパターニングし、更にAIN
のような高熱伝導絶縁膜を該高熱伝導層上に形成しパタ
ーニングする。
It is desired that an insulating layer such as silicon dioxide with an appropriate thickness and a high heat conductive layer made of a high melting point metal such as tungsten be formed on a glass substrate, and that the high heat conductive layer can conduct heat efficiently and dissipate heat. patterned in the shape of and further AIN
A highly thermally conductive insulating film such as the following is formed on the highly thermally conductive layer and patterned.

さらに多結晶シリコン層を島状に形成する。さらに窒化
珪素のような絶縁層からなるキャップ層でこれら高熱伝
導層縁膜と多結晶シリコン層を覆う。
Furthermore, a polycrystalline silicon layer is formed into an island shape. Furthermore, a cap layer consisting of an insulating layer such as silicon nitride covers the high thermal conductivity layer edge film and the polycrystalline silicon layer.

この上から、cwArレーザーやパルスモードのYAG
レーザーを用いてビームを照射すると、多結晶シリコン
は溶融再結晶化され高熱伝導絶縁膜上の多結晶は単結晶
化される。
From above, cwAr laser and pulsed mode YAG
When a beam is irradiated using a laser, the polycrystalline silicon is melted and recrystallized, and the polycrystalline on the highly thermally conductive insulating film is turned into a single crystal.

この場合、多結晶シリコン層の下に、熱伝導度の高い絶
縁層及び7A融点金属を設けであるので、熱はこの高熱
伝導層5ijllを通して金g、1!へと伝導し、熱伝
導車の著しく小さい二酸化珪素膜で阻止され、島状の多
結晶シリコン層の領域外に延びて設けられている高融点
金属膜からほとんどの熱が外部へ放散されることになる
。従って、多結晶シリコン層に高エネルギービームを照
射している時の多結晶シリコン層の温度は融点近傍にな
るが、二酸化珪素膜下のガラス基板の温度は二酸化珪素
の膜厚を適当に選べば充分低く設定できることになり、
熱歪点が約600 ’Cの(例えばコーニング社m70
59 )ガラスを基板として用いることができるように
なる。さらに、高熱伝導膜及び高熱伝導層縁膜を基板全
面にではなく島状の多結晶層よりも範囲の狭い中央部に
設けたことにより、レーザービームを照射したときに多
結晶シリコン腹の中心部の温度が周辺部より低くなり、
単結晶シリコンが成長する。
In this case, since an insulating layer with high thermal conductivity and a metal with a melting point of 7A are provided under the polycrystalline silicon layer, heat passes through this high thermal conductivity layer 5ijll of gold g, 1! most of the heat is dissipated to the outside from the refractory metal film that extends outside the area of the island-shaped polycrystalline silicon layer, and is blocked by the extremely small silicon dioxide film of the heat transfer wheel. become. Therefore, the temperature of the polycrystalline silicon layer when it is irradiated with a high-energy beam is near its melting point, but the temperature of the glass substrate under the silicon dioxide film can be adjusted by appropriately selecting the thickness of the silicon dioxide film. This means that it can be set sufficiently low,
With a thermal strain point of about 600'C (for example, Corning M70
59) Glass can now be used as a substrate. Furthermore, by providing the high thermal conductive film and the high thermal conductive layer edge film not on the entire surface of the substrate but in the center area, which is narrower than the island-shaped polycrystalline layer, when irradiated with a laser beam, the central part of the polycrystalline silicon belly temperature becomes lower than the surrounding area,
Single crystal silicon grows.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しながら詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の1実施例となる多結晶シワコまずガラ
ス基板101上に二酸化珪素のような低熱伝導度を持つ
第1の絶縁膜102とWやM。
FIG. 1 shows a wrinkled polycrystalline film according to an embodiment of the present invention. First, a first insulating film 102 having low thermal conductivity such as silicon dioxide and W or M are formed on a glass substrate 101.

の様な高融点金属からなる高熱伝導M103を形成する
。高熱伝導層として103としては、必ずしも高融点金
属にのみこだわるわけでなく、ほかの高熱伝導度を有す
る不純物を導入した多結晶シリコンのような腹であって
もよい。
A high thermal conductivity M103 made of a high melting point metal is formed. The high thermal conductivity layer 103 is not necessarily limited to high melting point metals, but may also be a material such as polycrystalline silicon into which other impurities having high thermal conductivity are introduced.

この高熱伝導層103を図2のように帯状にパターニン
グする。更に該帯状の高熱伝導N103と該絶縁膜10
1上に、窒化アルミ等の高熱伝導度を有する絶縁膜10
4を形成し該高熱伝導層103を覆うようパターニング
する。さら番こ該1色縁膜104上に多結晶シラコン1
05を島状に形成する。なお絶縁I!l 04は、多結
晶シリコン105を加熱したときに高熱伝導[103と
多結晶シリコン層105との化学反応が生じ、多結晶シ
リコン層中に不純物が混入して膜質が部分的に劣化する
のを防止するために設けている。VA縁膜104として
は熱をよく伝導する薄い膜厚かうなる二次に島状の多結
晶シリコンJ’il 05を二酸化珪素膜や窒化珪素膜
あるいはこれらの多層膜からなるキャップ層106で覆
い、その上からcwArレーザーやパルスモードのYA
Gレーザ−ビームを照射する。すると、多結晶シリコン
層105は溶融され、加えられた熱エネルギーは、まず
絶縁膜104を通り次に高熱伝導層103を通る。この
とき高熱伝導層は島状のシリコン層の中心部にあるため
、周辺部よりも中心のシリコンの熱がまず放散するため
多結晶シリコン層の周辺部よりも中心部の温度が低い、
いわゆるプツシヒーティング効果が効率よく起こること
により高品質の単結晶化膜が得られる。
This highly thermally conductive layer 103 is patterned into a band shape as shown in FIG. Furthermore, the band-shaped high thermal conductivity N103 and the insulating film 10
1, an insulating film 10 having high thermal conductivity such as aluminum nitride.
4 is formed and patterned to cover the highly thermally conductive layer 103. Polycrystalline silicon 1 on the one-color frame film 104
05 is formed into an island shape. Insulation I! 104 is a high thermal conductor when the polycrystalline silicon 105 is heated, a chemical reaction occurs between the polycrystalline silicon layer 103 and the polycrystalline silicon layer 105, and impurities are mixed into the polycrystalline silicon layer, resulting in partial deterioration of the film quality. It is provided to prevent this. As the VA edge film 104, a thin film that conducts heat well or a curved secondary island-shaped polycrystalline silicon J'il 05 is covered with a cap layer 106 made of a silicon dioxide film, a silicon nitride film, or a multilayer film thereof. From above, cwAr laser and pulsed mode YA
Irradiate with G laser beam. Then, the polycrystalline silicon layer 105 is melted, and the applied thermal energy first passes through the insulating film 104 and then through the high thermal conductivity layer 103. At this time, since the high thermal conductivity layer is located in the center of the island-shaped silicon layer, the heat of the silicon in the center is dissipated first than in the periphery, so the temperature of the center is lower than that of the periphery of the polycrystalline silicon layer.
A high-quality single-crystalline film can be obtained because the so-called push heating effect occurs efficiently.

一方、ヒートシンク材としての高熱伝導層103の下に
設けである絶1i1[102の熱伝導度は、例えば二酸
化珪素の場合は珪素に比べても3桁以上も小さいので、
下のガラス基板101への熱伝導は大部分阻止される。
On the other hand, the thermal conductivity of the material provided under the high thermal conductivity layer 103 as a heat sink material is, for example, in the case of silicon dioxide, which is more than three orders of magnitude lower than that of silicon.
Heat conduction to the underlying glass substrate 101 is largely blocked.

従って、熱伝導を阻止する絶縁膜の102の膜厚を適切
に選べば、ガラス基板101としては高価な石英基鈑で
なく、安価な(例えばコーニング社fi7059)ガラ
スを使うこともできる。
Therefore, if the thickness of the insulating film 102 that blocks heat conduction is appropriately selected, inexpensive glass (for example, Corning FI7059) can be used as the glass substrate 101 instead of an expensive quartz-based plate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、多結晶シリコン層
の下にヒートシンク用の高熱伝導層を、熱が効果的に多
結晶シリコン層の中心部から周辺部へ伝導し外部へ放散
するようにパターニングしているので、エツジヒーティ
ング効果が、従来の技術よりもよりよく作用するため、
はとんど粒界のない単結晶シリコン層が得られる。
As explained above, according to the present invention, a high thermal conductivity layer for a heat sink is provided under the polycrystalline silicon layer so that heat is effectively conducted from the center of the polycrystalline silicon layer to the periphery and dissipated to the outside. Because it is patterned, the edge heating effect works better than with conventional technology.
A single crystal silicon layer with almost no grain boundaries can be obtained.

また基板に対する発熱効果を小さくすることができるの
で、石英よりも低い歪点を持つ(例えばコーニング社製
7059)ガラス基板上にも単結晶シリコン膜を形成す
る効果がある。この結果、平面表示装置の駆動用のTP
Tの基板コストは石英等の高価なガラスを用いる必要が
ないので、安価になる。
Furthermore, since the heating effect on the substrate can be reduced, a single crystal silicon film can also be formed on a glass substrate having a lower strain point than quartz (for example, Corning 7059). As a result, the TP for driving the flat display device
The cost of the T substrate is low because there is no need to use expensive glass such as quartz.

さらにほとんど粒界のないJK結晶シリコンによって高
速動作の駆動用TPTが形成されるため、高精細、高階
FJri表示の平面表示装置が得られる。
Furthermore, since the high-speed driving TPT is formed of JK crystal silicon with almost no grain boundaries, a flat display device with high definition and high-order FJri display can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)と第1図(b)は、それぞれ本発明の第1
の実旌例を説明するための断面図と平面図、第2図、第
3図、及び第4図は従来の多結晶シリコンの再結晶化法
を説明するための図である。 101.201.301.401・・・ガラス基板10
2.402・・・絶縁膜 103.403・・・高温伝導層 104.404・・・絶縁膜 105.205.305.405・・・多結晶シリコン
層 106.206.406・・・キャップ層以上
FIG. 1(a) and FIG. 1(b) respectively show the first embodiment of the present invention.
2, 3, and 4 are diagrams for explaining the conventional recrystallization method of polycrystalline silicon. 101.201.301.401...Glass substrate 10
2.402...Insulating film 103.403...High temperature conductive layer 104.404...Insulating film 105.205.305.405...Polycrystalline silicon layer 106.206.406...Cap layer or higher

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス基板上に第1の絶縁膜を形成し、さらに第
1の絶縁膜上に高熱伝導層を形成し該高熱伝導層をパタ
ーニングし、さらに該高熱伝導層に第2の絶縁膜で覆い
、さらに多結晶シリコン層で該第2の絶縁膜を覆い、さ
らに第3の絶縁膜からなるキャップ層で該多結晶シリコ
ン層を覆い、前記キャップ層上から高エネルギービーム
を照射して前記多結晶シリコン層を単結晶化することを
特徴とする多結晶シリコン再結晶化法。
(1) Forming a first insulating film on a glass substrate, further forming a highly thermally conductive layer on the first insulating film, patterning the highly thermally conductive layer, and then forming a second insulating film on the highly thermally conductive layer. cover the second insulating film with a polycrystalline silicon layer, further cover the polycrystalline silicon layer with a cap layer made of a third insulating film, and irradiate the polycrystalline silicon layer with a high-energy beam from above the cap layer. A polycrystalline silicon recrystallization method characterized by making a crystalline silicon layer into a single crystal.
JP18537389A 1989-07-18 1989-07-18 Polycrystal silicon recrystallization Pending JPH0350720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18537389A JPH0350720A (en) 1989-07-18 1989-07-18 Polycrystal silicon recrystallization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18537389A JPH0350720A (en) 1989-07-18 1989-07-18 Polycrystal silicon recrystallization

Publications (1)

Publication Number Publication Date
JPH0350720A true JPH0350720A (en) 1991-03-05

Family

ID=16169668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18537389A Pending JPH0350720A (en) 1989-07-18 1989-07-18 Polycrystal silicon recrystallization

Country Status (1)

Country Link
JP (1) JPH0350720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053285A (en) * 1999-05-15 2001-02-23 Semiconductor Energy Lab Co Ltd Semiconductor and manufacture thereof
JP2001320055A (en) * 2000-05-10 2001-11-16 Sony Corp Thin-film semiconductor device and manufacturing method thereof
WO2003046965A1 (en) * 2001-11-28 2003-06-05 The Trustees Of Columbia University In The City Of New York Specialized substrates for use in sequential lateral solidification processing
WO2007144937A1 (en) 2006-06-13 2007-12-21 Ogk Kabuto Co., Ltd. Wake stabilizer for helmet and helmet
US7574754B2 (en) 2005-04-20 2009-08-18 Michio Arai Helmet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053285A (en) * 1999-05-15 2001-02-23 Semiconductor Energy Lab Co Ltd Semiconductor and manufacture thereof
JP2001320055A (en) * 2000-05-10 2001-11-16 Sony Corp Thin-film semiconductor device and manufacturing method thereof
WO2003046965A1 (en) * 2001-11-28 2003-06-05 The Trustees Of Columbia University In The City Of New York Specialized substrates for use in sequential lateral solidification processing
US7574754B2 (en) 2005-04-20 2009-08-18 Michio Arai Helmet
WO2007144937A1 (en) 2006-06-13 2007-12-21 Ogk Kabuto Co., Ltd. Wake stabilizer for helmet and helmet

Similar Documents

Publication Publication Date Title
US6020224A (en) Method for making thin film transistor
JPS62104117A (en) Manufacture of semiconductor thin film
JPS62181419A (en) Recrystallization method of polycrystalline silicon
JPH07249779A (en) Fabrication of semiconductor device
JP2002110544A (en) Thin film crystal growth by laser annealing
JP2003059831A (en) Method for manufacturing semiconductor device
JPH0823105A (en) Manufacture of semiconductor chip for display
JP2001044120A (en) Laser heat treatment method and laser heat treatment apparatus
CN100356509C (en) Method for forming polycrystalline silicon film
US6025217A (en) Method of forming polycrystalline semiconductor thin film
US6025218A (en) Method of manufacturing a thin-film electronic device with a laminated conductor
JP2507464B2 (en) Method for manufacturing semiconductor device
JPH0350720A (en) Polycrystal silicon recrystallization
JPH0793258B2 (en) Recrystallization method for conductor film
JPH0362971A (en) Thin-film transistor
JPH02297923A (en) Recrystallizing method for polycrystalline silicon
JPH09260676A (en) Manufacture of thin-film transistor
KR100510438B1 (en) Method of crystallizing amorphous silicon
JP2004039660A (en) Method for manufacturing polycrystalline semiconductor film, method for manufacturing thin film transistor, display device, and pulse laser annealing apparatus
JP2004063478A (en) Thin film transistor and its manufacturing method
JP2001051301A (en) Production of liquid crystal display panel
JPH0883766A (en) Method for crystallizing amorphous silicon and manufacture of thin film transistor
JP2001320056A (en) Manufacturing method for thin-film transistor and thin- film semiconductor device
JP2000111950A (en) Manufacture of polycrystalline silicon
JPH02257615A (en) Recrystallization of polycrystalline silicon