JPH0350709A - Capacitor - Google Patents

Capacitor

Info

Publication number
JPH0350709A
JPH0350709A JP18556089A JP18556089A JPH0350709A JP H0350709 A JPH0350709 A JP H0350709A JP 18556089 A JP18556089 A JP 18556089A JP 18556089 A JP18556089 A JP 18556089A JP H0350709 A JPH0350709 A JP H0350709A
Authority
JP
Japan
Prior art keywords
dielectric
vapor deposition
monomers
thin film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18556089A
Other languages
Japanese (ja)
Other versions
JP2834198B2 (en
Inventor
Mikio Haga
羽賀 幹夫
Yukio Kinuta
絹田 幸生
Yoshikazu Takahashi
善和 高橋
Masayuki Iijima
正行 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Panasonic Holdings Corp
Original Assignee
Ulvac Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16172947&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0350709(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ulvac Inc, Matsushita Electric Industrial Co Ltd filed Critical Ulvac Inc
Priority to JP18556089A priority Critical patent/JP2834198B2/en
Publication of JPH0350709A publication Critical patent/JPH0350709A/en
Application granted granted Critical
Publication of JP2834198B2 publication Critical patent/JP2834198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To make a capacitor compact, light and contrive a reduction in its manufacturing cost by using either or both of fluorinated or fluoroalkylation monomers out of two kinds of the monomers having benzene rings as skeletons and using a thin film which is formed with a vapor deposition polymerization process as a dielectric substance. CONSTITUTION:Internal electrode layers 2 consisting of aluminum alloy are formed on a cleaned alumina substrate 1 and dielectric layers 3 consisting of phloroalkylation aromatic polyurea are formed with a vapor deposition polymerization process by using 2,2-bis[4-(4- aminophenoxyphenyl)]hexaphloropropane and diphenylmethanediisocyanate as monomers. Then, after laminating alternately in the same way, a protecting film layer 4 consisting of silicon nitride is formed and further, an external electrode layer 5 consisting of nickel-boron alloy is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、混成集積回路や電子機器、情報機器等の電子
回路などに使用するコンデンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a capacitor used in hybrid integrated circuits, electronic circuits such as electronic equipment, information equipment, and the like.

従来の技術 機器の小形・軽量化志向、高機能・高性能化、高集積回
路の採用による電子回路の高密度化あるいは、自動挿入
の普及などに伴い、電子部品に対する小形化・高性能化
の要請がますます強くなってきている。その中にあって
、コンデンサも同様に小形化・高性能化へと種々の開発
が試みられている。コンデンサの単位体積当たりの静電
容量は、誘電体の誘電率に比例し、誘電体の厚さの自乗
に反比例する。
Due to the trend toward smaller and lighter weight conventional technological equipment, higher functionality and higher performance, higher density of electronic circuits due to the adoption of highly integrated circuits, and the spread of automatic insertion, electronic components are becoming smaller and higher performance. The demands are becoming stronger and stronger. Under these circumstances, various attempts are being made to develop capacitors to make them smaller and to improve their performance. The capacitance per unit volume of a capacitor is proportional to the permittivity of the dielectric and inversely proportional to the square of the thickness of the dielectric.

従って、従来のコンデンサの小形化を図るためには、誘
電体の誘電率を大きくするか、または誘電体の厚さを薄
くすることが必要である。また、コンデンサの電気特性
、例えば電気容量や誘電損失の温度依存性、周波数依存
性などは誘電体として用いられる材料の持つ固有の特性
により殆ど決定されるため、種々の材料が検討に供され
ている。
Therefore, in order to downsize conventional capacitors, it is necessary to increase the dielectric constant of the dielectric or reduce the thickness of the dielectric. In addition, since the electrical properties of a capacitor, such as the temperature dependence and frequency dependence of capacitance and dielectric loss, are mostly determined by the inherent characteristics of the material used as the dielectric, various materials have been studied. There is.

ここで、誘電体の厚さを薄くすることによる大幅な小形
化は、積層薄膜コンデンサにおいて、既に多くの検討が
行われており、積層薄膜コンデンサの薄膜積層方法およ
び積層構造は公知である。
Here, many studies have already been conducted on multilayer thin film capacitors to significantly reduce the size of the capacitor by reducing the thickness of the dielectric, and the thin film lamination method and laminated structure of multilayer thin film capacitors are well known.

(たとえば、特開昭55−91112号、特開昭56−
144523号参照。) 即ち、真空蒸着法、スパッタリング法などの物理気相成
長法(PVD法)により形成される酸化アルミニウム、
酸化けい素、酸化チタン、チタン酸ストロンチウムなど
からなる誘電体層とパラジウム、銀、ニッケルなどから
なる内部電極層とを交互に積層した後、内部電極層から
の引き出し端子となる外部電極を導電ペーストを焼き付
けて形成した積層薄膜コンデンサが一般に知られている
(For example, JP-A-55-91112, JP-A-56-
See No. 144523. ) That is, aluminum oxide formed by a physical vapor deposition method (PVD method) such as a vacuum evaporation method or a sputtering method,
After alternately laminating dielectric layers made of silicon oxide, titanium oxide, strontium titanate, etc. and internal electrode layers made of palladium, silver, nickel, etc., the external electrodes, which will become lead terminals from the internal electrode layers, are made with conductive paste. Multilayer thin film capacitors formed by baking are generally known.

一方、無機の誘電体を用いた高性能のコンデンサも開発
されているが、これに用いられる高性能の誘電体の誘電
率は、性能の向上に伴って低下するため、小形で、高性
能のコンデンサを得ることは困難であった。
On the other hand, high-performance capacitors using inorganic dielectrics have also been developed, but the permittivity of the high-performance dielectrics used in these capacitors decreases as performance improves. Capacitors were difficult to obtain.

発明が解決しようとする課題 従来、積層薄膜コンデンサは、真空蒸着法、スパッタリ
ング法などの物理気相成長法(PVD法)を用いること
により、極めて薄く誘電体層および内部電極層を形成す
ることが可能となり、これによりコンデンサの小形化が
図られてきた。
Problems to be Solved by the Invention Conventionally, in multilayer thin film capacitors, it has been difficult to form extremely thin dielectric layers and internal electrode layers by using physical vapor deposition (PVD) methods such as vacuum evaporation and sputtering. This has led to the miniaturization of capacitors.

しかしながら、酸化アルミニウム、酸化けい素、酸化チ
タン、チタン酸ストロンチウムなどの無機材料をスパッ
タリング法で形成して誘電体層とする場合、コンデンサ
として必要な耐電圧を得るためには10.000人程鹿
の厚みが必要であり、より一層の小形化を進める上で、
課題となっていた。また、コンデンサの高性能化を図る
ためには上記の無機系の誘電体材料を用いた場合、その
誘電率が大幅に低下するため、小形化を進める上で大き
な課題となっていた。
However, when forming a dielectric layer by sputtering an inorganic material such as aluminum oxide, silicon oxide, titanium oxide, or strontium titanate, it takes about 10,000 people to obtain the dielectric strength required for a capacitor. thickness is required, and in order to further reduce the size,
This had become an issue. Furthermore, when the above-mentioned inorganic dielectric materials are used to improve the performance of capacitors, the dielectric constant of the materials decreases significantly, which has been a major problem in miniaturization.

本発明は、上記の課題を解決するものであり、耐電圧特
性の良好な蒸着重合法で形成された薄膜を誘電体とする
ことにより、コンデンサの大幅な小形化を図るとともに
、ベンゼン環を骨格とする2種のモノマーのうち、いず
れか一方または両方とも弗化またはフルオロアルキル化
されたモノマーを用いて蒸着重合法で形成された薄膜を
誘電体として用いることにより、コンデンサの大幅な高
性能化を図らんとするものである。
The present invention solves the above-mentioned problems, and by using a thin film formed by a vapor deposition polymerization method with good withstand voltage characteristics as a dielectric material, a capacitor can be significantly downsized, and a benzene ring is used as a skeleton. By using a thin film formed by vapor deposition polymerization using one or both of the two monomers that are fluorinated or fluoroalkylated as the dielectric material, the performance of the capacitor can be significantly improved. The aim is to

課題を解決するための手段 本発明は、上記課題を解決するために、ベンゼン環を骨
格とする2種のモノマーのうち、いずれか一方または両
方とも弗化またはフルオロアルキル化されたモノマーを
用いて蒸着重合法で形成された薄膜を誘電体とし、上記
薄膜誘電体と内部電極とを交互に積層した構成を有して
いる。
Means for Solving the Problems In order to solve the above problems, the present invention uses a monomer in which one or both of two types of monomers having a benzene ring as a skeleton are fluorinated or fluoroalkylated. It has a structure in which a thin film formed by vapor deposition polymerization is used as a dielectric, and the thin film dielectric and internal electrodes are alternately laminated.

作   用 従来の積層薄膜コンデンサにおいて誘電体は、真空蒸着
法、スパッタリング法などの物理気相成長法(PVD法
)により形成されており、たとえば、スパッタリング法
にて酸化アルミニウム、酸化けい素、酸化チタン、チタ
ン酸ストロンチウムなどの酸化物誘電体を形成させる際
には、それぞれの組成が全くそのまま形成されるのでは
なく、酸素の欠陥部を含んだまま形成される。この酸素
の欠陥部を含んだ誘電体の耐電圧は低く、そのためコン
デンサとして必要な耐電圧を得るためには10.000
人程鹿の膜厚が必要となる。
Function In conventional multilayer thin film capacitors, dielectrics are formed by physical vapor deposition (PVD) methods such as vacuum evaporation and sputtering. For example, aluminum oxide, silicon oxide, titanium oxide, etc. When forming oxide dielectrics such as strontium titanate and strontium titanate, the respective compositions are not formed as they are, but are formed while containing oxygen defects. The withstand voltage of a dielectric material containing this oxygen defect is low, so in order to obtain the withstand voltage necessary for a capacitor, it is necessary to
The membrane thickness required is as thick as that of a deer.

これに対し、本発明の蒸着重合法により形成される薄膜
誘電体は、芳香族ポリ尿素などの有機化合物からなって
おり、上記のような耐電圧を低下させる酸化物誘電体中
の酸素の欠陥部は存在せず、欠陥の少ない、極めて均一
な薄膜が得られる。そのため、1,500人程鹿の膜厚
で十分コンデンサとして必要な耐電圧を得ることができ
、耐電圧を低下させることなく、誘電体を薄くすること
ができる。
On the other hand, the thin film dielectric formed by the vapor deposition polymerization method of the present invention is made of an organic compound such as aromatic polyurea, and contains oxygen defects in the oxide dielectric that reduce the withstand voltage as described above. An extremely uniform thin film with few defects is obtained. Therefore, it is possible to obtain sufficient withstand voltage necessary for a capacitor with a film thickness of about 1,500 people, and the dielectric material can be made thinner without reducing the withstand voltage.

実  施  例 以下、本発明の実施例について、図面を用いて具体的に
説明する。
Embodiments Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

実施例1 予め洗浄を施したアルミナ基板上にアルミニウム合金か
らなる内部電極層を形成し、次いでモノマーとして、2
,2−ビス[4−(4−アミノフェノキシフェニル)]
ヘキサフロロプロパンおよびジフェニルメタンジイソシ
アネートを用いて、フロロアルキル化芳香族ポリ尿素か
らなる誘電体層を蒸着重合法にて形成する。以後、同様
に交互に積層した後、窒化けい素からなる保護膜層を形
成し、さらに、ニッケルーボロン合金からなる外部電極
層を無電解めっき法にて形成する。
Example 1 An internal electrode layer made of an aluminum alloy was formed on a previously cleaned alumina substrate, and then 2 was added as a monomer.
,2-bis[4-(4-aminophenoxyphenyl)]
A dielectric layer made of fluoroalkylated aromatic polyurea is formed by vapor deposition polymerization using hexafluoropropane and diphenylmethane diisocyanate. Thereafter, after alternately laminating layers in the same manner, a protective film layer made of silicon nitride is formed, and an external electrode layer made of a nickel-boron alloy is further formed by electroless plating.

実施例2 予め洗浄を施したアルミナ基板上にアルミニウム合金か
らなる内部電極層を形成し、次いでモノマーとして、2
.2−ビス(4−アミノフェニル)へキサフロロプロパ
ンおよびテレフタル酸クロリドを用いて、フロロアルキ
ル化芳香族ポリアミドからなる誘電体層を蒸着重合法に
て形成する。以後、同様に交互に積層した後、窒化けい
素からなる保護膜層を形成し、さらに、ニッケルーボロ
ン合金からなる外部電極層を無電解めっき法にて形成す
る。
Example 2 An internal electrode layer made of an aluminum alloy was formed on an alumina substrate that had been cleaned in advance, and then 2 was added as a monomer.
.. A dielectric layer made of fluoroalkylated aromatic polyamide is formed by vapor deposition polymerization using 2-bis(4-aminophenyl)hexafluoropropane and terephthalic acid chloride. Thereafter, after alternately laminating layers in the same manner, a protective film layer made of silicon nitride is formed, and an external electrode layer made of a nickel-boron alloy is further formed by electroless plating.

実施例3 予め洗浄を施したアルミナ基板上にアルミニウム合金か
らなる内部電極層を形成し、次いでモノマーとして、2
.2−ビス(4−アミノフェニル)へキサフロロプロパ
ンおよびピロメリット酸二無水物を用いて、フロロアル
キル化芳香族ポリアミック酸を蒸着重合法にて形成した
のち、これを加熱、脱水して、フロロアルキル化芳香族
ポリイミドからなる誘電体層を得る。以後、同様に交互
に積層した後、窒化けい素からなる保護膜層を形成し、
さらに、ニッケルーボロン合金からなる外部電極層を無
電解めっき法にて形成する。
Example 3 An internal electrode layer made of an aluminum alloy was formed on an alumina substrate that had been cleaned in advance, and then 2 was added as a monomer.
.. A fluoroalkylated aromatic polyamic acid is formed by vapor deposition polymerization using 2-bis(4-aminophenyl)hexafluoropropane and pyromellitic dianhydride, and then heated and dehydrated to form a fluoroalkylated aromatic polyamic acid. A dielectric layer made of alkylated aromatic polyimide is obtained. After that, after laminating the layers alternately in the same way, a protective film layer made of silicon nitride is formed.
Furthermore, an external electrode layer made of a nickel-boron alloy is formed by electroless plating.

比較例1 予め洗浄を施したアルミナ基板上にアルミニウム合金か
らなる内部電極層を形成し、次いでモノマーとして、パ
ラ−フェニレンジアミンおよびジフェニルメタンジイソ
シアネートを用いて、芳香族ポリ尿素からなる誘電体層
を蒸着重合法にて形成する。以後、同様に交互に積層し
た後、窒化けい素からなる保護膜層を形成し、さらに、
ニッケルーボロン合金からなる外部電極層を無電解めっ
き法にて形成する。
Comparative Example 1 An internal electrode layer made of an aluminum alloy was formed on a previously cleaned alumina substrate, and then a dielectric layer made of an aromatic polyurea was deposited using para-phenylene diamine and diphenylmethane diisocyanate as monomers. Formed legally. Thereafter, after laminating layers alternately in the same manner, a protective film layer made of silicon nitride is formed, and further,
An external electrode layer made of a nickel-boron alloy is formed by electroless plating.

比較例2 予め洗浄を施したアルミナ基板上にアルミニウム合金か
らなる内部電極層を形成し、次いでチタン酸ストロンチ
ウムからなる誘電体層をスパッタリング法にて形成する
。以後、同様に交互に積層した後、窒化けい素からなる
保護膜層を形成し、さらに、ニッケルーボロン合金から
なる外部電極層を無電解めっき法にて形成する。
Comparative Example 2 An internal electrode layer made of an aluminum alloy is formed on an alumina substrate that has been cleaned in advance, and then a dielectric layer made of strontium titanate is formed by a sputtering method. Thereafter, after alternately laminating layers in the same manner, a protective film layer made of silicon nitride is formed, and an external electrode layer made of a nickel-boron alloy is further formed by electroless plating.

第1図は本発明の一実施例におけるコンデンサの構成を
示した素子断面図である。
FIG. 1 is an element cross-sectional view showing the structure of a capacitor in an embodiment of the present invention.

絶縁基板1の上に、内部電極層2と、誘電体層3とを交
互に積層し、さらにその上に保護膜層4を、内部電極層
2の非対向部の両端部に近い一部分を除く薄膜積層部と
その周辺の絶縁基板1を覆うように形成したのち、内部
電極層2の保護膜層4によって覆われていない部分を含
む絶縁基板1の両端部に外部電極層5を形成している。
Internal electrode layers 2 and dielectric layers 3 are alternately laminated on an insulating substrate 1, and a protective film layer 4 is further applied thereon, excluding a portion near both ends of the non-opposed portions of the internal electrode layer 2. After forming the thin film layer 5 so as to cover the insulating substrate 1 in the vicinity thereof, the external electrode layer 5 is formed on both ends of the insulating substrate 1 including the portions of the internal electrode layer 2 that are not covered by the protective film layer 4. There is.

第2図は、第1図と同様の構成からなるコンデンサにお
ける誘電体の膜厚と耐電圧との関係を示したものである
。(内部電極の対向部面積は15mm2一定) 第2図において、直線Aは実施例1の、直線Bは実施例
2の、直線Cは実施例3の、直線りは比較例1の、直線
Eは比較例2のコンデンサでの誘電体の膜厚と耐電圧と
の関係を示したものである。
FIG. 2 shows the relationship between the dielectric film thickness and withstand voltage in a capacitor having the same configuration as FIG. 1. (The area of the opposing parts of the internal electrodes is constant at 15 mm2) In Fig. 2, straight line A is of Example 1, straight line B is of Example 2, straight line C is of Example 3, and straight line is of Comparative Example 1, straight line E. shows the relationship between the dielectric film thickness and withstand voltage in the capacitor of Comparative Example 2.

第2図に示した結果より明らかなように、従来より多く
の研究が行われている無機の酸化物誘電体であるチタン
酸ストロンチウム薄膜と、蒸着重合法にて形成される有
機の誘電体薄膜との耐電圧における差は歴然としている
。すなわち、コンデンサとして必要な耐電圧を得るため
には、比較例2のコンデンサでは、チタン酸ストロンチ
ウムからなる誘電体の膜厚がs、ooo人程度必要であ
るのに対し、実施例1、実施例2および実施例3のコン
デンサでは誘電体の膜厚は、1.500人程鹿島れば同
レベルの耐電圧を得ることができる。
As is clear from the results shown in Figure 2, strontium titanate thin films, which are inorganic oxide dielectrics that have been extensively studied, and organic dielectric thin films formed by vapor deposition polymerization. The difference in withstand voltage is obvious. In other words, in order to obtain the withstand voltage necessary for a capacitor, the capacitor of Comparative Example 2 requires a dielectric film thickness of about s, ooo people, whereas the capacitor of Example 1 and Example In the capacitors of Example 2 and Example 3, the same level of withstand voltage can be obtained if the dielectric film thickness is approximately 1.500.

第3図は、第1図と同様の構成からなるコンデンサの誘
電率および誘電損失の温度依存性を示したものである。
FIG. 3 shows the temperature dependence of the dielectric constant and dielectric loss of a capacitor having the same configuration as FIG. 1.

第3図において、曲線Aは実施例1の、曲線Bは実施例
2の、曲線Cは実施例3の、曲線りは比較例1のコンデ
ンサの誘電率および誘電損失の温度依存性を示したもの
である。
In FIG. 3, curve A shows the temperature dependence of the dielectric constant and dielectric loss of the capacitor of Example 1, curve B of Example 2, curve C of Example 3, and curved line of Comparative Example 1. It is something.

第3図に示した結果より明らかなように、本発明の実施
例のコンデンサは、誘電率および誘電損失の温度依存性
において、極めて良好な特性を示している。
As is clear from the results shown in FIG. 3, the capacitor of the example of the present invention exhibits extremely good characteristics in terms of temperature dependence of dielectric constant and dielectric loss.

なお、蒸着重合法にて形成することが可能な材料として
は、ポリイミド、ポリアミド、ポリ尿素などがあるが、
付加重合であることから、重合による副生成物が生ぜず
、後処理が不要で、しかも耐熱性に優れた特性を有する
芳香族ポリ尿素が最も好ましい。
Note that materials that can be formed by vapor deposition polymerization include polyimide, polyamide, polyurea, etc.
Since it is an addition polymerization, an aromatic polyurea is most preferable because it does not produce polymerization by-products, does not require post-treatment, and has excellent heat resistance.

発明の効果 以上のように、本発明によれば誘電体の大幅な薄膜化が
可能となり、これによりコンデンサの小形、軽量、低コ
スト化を図ることができるとともに、コンデンサの大幅
な小形化をも実現することが可能となり、その産業性は
極めて大なるものである。
Effects of the Invention As described above, according to the present invention, it is possible to significantly reduce the thickness of the dielectric film, thereby making it possible to reduce the size, weight, and cost of the capacitor. It has become possible to realize this, and its industrial potential is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるコンデンサの構成を
示した断面図、第2図は、同実施例のコンデンサにおけ
る誘電体の膜厚と耐電圧との関係を示した特性図、第3
図(a)、 (b)は、同実施例のコンデンサの誘電率
および誘電損失の温度依存性を示した特性図である。 1・・・・・・絶縁基板、2、・・・・・・内部電極層
、3・・・・・・誘電体層、4・・・・・・保護膜層、
5・・・・・・外部電極層。
FIG. 1 is a cross-sectional view showing the structure of a capacitor according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the relationship between dielectric film thickness and withstand voltage in the capacitor of the same embodiment, and FIG.
Figures (a) and (b) are characteristic diagrams showing the temperature dependence of the dielectric constant and dielectric loss of the capacitor of the same example. 1... Insulating substrate, 2... Internal electrode layer, 3... Dielectric layer, 4... Protective film layer,
5...External electrode layer.

Claims (7)

【特許請求の範囲】[Claims] (1)ベンゼン環を骨格とする2種のモノマーのうち、
いずれか一方または両方とも弗化またはフルオロアルキ
ル化されたモノマーを用いて蒸着重合法で形成された薄
膜を誘電体とし、上記薄膜誘電体と内部電極とを交互に
積層してなることを特徴とするコンデンサ。
(1) Among the two types of monomers with a benzene ring as the skeleton,
The dielectric is a thin film formed by vapor deposition polymerization using a fluorinated or fluoroalkylated monomer, and the thin film dielectric and internal electrodes are alternately laminated. capacitor.
(2)蒸着重合法で形成された薄膜が、弗化またはフル
オロアルキル化された芳香族ポリ尿素である特許請求の
範囲第1項記載のコンデンサ。
(2) The capacitor according to claim 1, wherein the thin film formed by vapor deposition polymerization is a fluorinated or fluoroalkylated aromatic polyurea.
(3)蒸着重合法で形成された薄膜が、弗化またはフル
オロアルキル化された芳香族ポリアミドである特許請求
の範囲第1項記載のコンデンサ。
(3) The capacitor according to claim 1, wherein the thin film formed by vapor deposition polymerization is a fluorinated or fluoroalkylated aromatic polyamide.
(4)蒸着重合法で形成された薄膜が、弗化またはフル
オロアルキル化された芳香族ポリイミドである特許請求
の範囲第1項記載のコンデンサ。
(4) The capacitor according to claim 1, wherein the thin film formed by vapor deposition polymerization is a fluorinated or fluoroalkylated aromatic polyimide.
(5)ベンゼン環を骨格とする2種のモノマーのうちの
一方のモノマーが芳香族ジアミンであり、他方のモノマ
ーが芳香族ジイソシアネートである特許請求の範囲第1
項記載のコンデンサ。
(5) Claim 1 in which one of the two monomers having a benzene ring skeleton is an aromatic diamine and the other monomer is an aromatic diisocyanate.
Capacitors listed in section.
(6)ベンゼン環を骨格とする2種のモノマーのうちの
一方のモノマーが芳香族ジアミンであり、他方のモノマ
ーが芳香族ジカルボン酸クロライドである特許請求の範
囲第1項記載のコンデンサ。
(6) The capacitor according to claim 1, wherein one of the two monomers having a benzene ring as a skeleton is an aromatic diamine, and the other monomer is an aromatic dicarboxylic acid chloride.
(7)ベンゼン環を骨格とする2種のモノマーのうちの
一方のモノマーが芳香族ジアミンであり、他方のモノマ
ーが芳香族テトラカルボン酸である特許請求の範囲第1
項記載のコンデンサ。
(7) Claim 1 in which one of the two monomers having a benzene ring skeleton is an aromatic diamine and the other monomer is an aromatic tetracarboxylic acid.
Capacitors listed in section.
JP18556089A 1989-07-18 1989-07-18 Capacitor Expired - Lifetime JP2834198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18556089A JP2834198B2 (en) 1989-07-18 1989-07-18 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18556089A JP2834198B2 (en) 1989-07-18 1989-07-18 Capacitor

Publications (2)

Publication Number Publication Date
JPH0350709A true JPH0350709A (en) 1991-03-05
JP2834198B2 JP2834198B2 (en) 1998-12-09

Family

ID=16172947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18556089A Expired - Lifetime JP2834198B2 (en) 1989-07-18 1989-07-18 Capacitor

Country Status (1)

Country Link
JP (1) JP2834198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396514A1 (en) * 2002-09-06 2004-03-10 Ulvac, Inc. Anti-bacterial polymer and method for the preparation thereof, anti-bacterial polymer film and method for the preparation thereof, and article having such a film on the surface thereof
JP2008063594A (en) * 2006-09-05 2008-03-21 T & K:Kk Fluorine-containing thin film, and manufacturing method of base material having the same
CN102693847A (en) * 2011-03-23 2012-09-26 小岛冲压工业株式会社 Apparatus for producing laminated body
CN102737843A (en) * 2011-04-13 2012-10-17 小岛冲压工业株式会社 Film capacitor element, film capacitor, and method of producing the film capacitor element
US20160071651A1 (en) * 2014-09-05 2016-03-10 Taiyo Yuden Co., Ltd. Thin film capacitor
EP3031848A1 (en) 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396514A1 (en) * 2002-09-06 2004-03-10 Ulvac, Inc. Anti-bacterial polymer and method for the preparation thereof, anti-bacterial polymer film and method for the preparation thereof, and article having such a film on the surface thereof
US7279543B2 (en) 2002-09-06 2007-10-09 Ulvac, Inc. Anti-bacterial polymer and method for the preparation thereof, anti-bacterial polymer film and method for the preparation thereof, and article having such a film on the surface thereof
JP2008063594A (en) * 2006-09-05 2008-03-21 T & K:Kk Fluorine-containing thin film, and manufacturing method of base material having the same
CN102693847A (en) * 2011-03-23 2012-09-26 小岛冲压工业株式会社 Apparatus for producing laminated body
US9243331B2 (en) 2011-03-23 2016-01-26 Kojima Press Industry Co., Ltd. Apparatus for producing laminated body
CN102737843A (en) * 2011-04-13 2012-10-17 小岛冲压工业株式会社 Film capacitor element, film capacitor, and method of producing the film capacitor element
EP2511921A1 (en) 2011-04-13 2012-10-17 Kojima Press Industry Co., Ltd. Film capacitor element, film capacitor, and method of producing the film capacitor element
US20160071651A1 (en) * 2014-09-05 2016-03-10 Taiyo Yuden Co., Ltd. Thin film capacitor
US9824821B2 (en) * 2014-09-05 2017-11-21 Taiyo Yuden Co., Ltd. Thin film capacitor with intermediate electrodes
EP3031848A1 (en) 2014-12-09 2016-06-15 ABB Technology Ltd Dielectric material and dielectric film

Also Published As

Publication number Publication date
JP2834198B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US7567426B2 (en) Polymer-ceramic dielectric composition, embedded capacitor using the dielectric composition and printed circuit board having the capacitor embedded therein
EP1335392B1 (en) Ceramic electronic device and method of manufacturing the device
KR0184078B1 (en) Laminated capacitor and process for producing the same
JPH07335473A (en) Laminated ceramic capacitor
JPH0350709A (en) Capacitor
KR100809214B1 (en) Conductive particle, conductive paste comprising same, and electronic device prepared by using same
JPH025019B2 (en)
JP4009078B2 (en) Thin film electronic components
KR101901708B1 (en) Multilayer ceramic capacitor and method for fabricating the same
JPH01220422A (en) Laminated ceramic capacitor
JPH02121313A (en) Multilayer thin film capacitor
JPH0666218B2 (en) Multilayer thin film capacitor and manufacturing method thereof
JPH0437106A (en) Thin film capacitor
JPH02271606A (en) Capacitor
JPH08273977A (en) Stacked layer capacitor
US20240029960A1 (en) Thin-film chip resistor-capacitor and method of fabricating the same
JPH0334506A (en) Capacitor
JPS6094716A (en) Thin film condenser
JP3007676B2 (en) Manufacturing method of thin film capacitor
JP3987702B2 (en) Thin film capacitor
JPH05121262A (en) Manufacture of multilayer thin film capacitor
JP2000252153A (en) Laminated ceramic capacitor
JP2000243648A (en) Multilayer ceramic capacitor
JP3078375B2 (en) Multilayer ceramic capacitors
JPH0113206B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

EXPY Cancellation because of completion of term