JPH0350200A - Method for vanishing oxygen as thermal donor in epitaxial wafer - Google Patents

Method for vanishing oxygen as thermal donor in epitaxial wafer

Info

Publication number
JPH0350200A
JPH0350200A JP18260289A JP18260289A JPH0350200A JP H0350200 A JPH0350200 A JP H0350200A JP 18260289 A JP18260289 A JP 18260289A JP 18260289 A JP18260289 A JP 18260289A JP H0350200 A JPH0350200 A JP H0350200A
Authority
JP
Japan
Prior art keywords
wafer
cooling
oxygen
thermal donor
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18260289A
Other languages
Japanese (ja)
Inventor
Jun Maeda
潤 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18260289A priority Critical patent/JPH0350200A/en
Publication of JPH0350200A publication Critical patent/JPH0350200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily vanish oxygen as a thermal donor in a wafer formed by epitaxial growth after pulling by Czochralski method by cooling the wafer under specified conditions. CONSTITUTION:When a single crystal formed by epitaxial growth after pulling by Czochralski method is cooled, cooling is carried out at >=2 deg.C/sec cooling rate in the temp. range of at least 650-300 deg.C. The O2 remaining in a wafer and acting as a donor is vanished and the shortening of the service life of the wafer and the slip of the wafer due to contamination by heavy metals are suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、エピタキシャルウェハにおける#素す−マル
ドナー消去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method of #element-Maldner erasure in epitaxial wafers.

[従来の技術1 第3図に従来のエピタキシャルウェハ成長を行うウェハ
の加工工程を示した。チョクラルスキー法で引−F製造
された単結晶をスライシングしてサブストレートとした
ウェハは酸素がドナーとじて作用するので、これを消去
する必要がある。
[Prior Art 1] FIG. 3 shows a wafer processing process for performing conventional epitaxial wafer growth. Oxygen acts as a donor in a wafer made by slicing a single crystal produced by the Czochralski method as a substrate, so it is necessary to eliminate this oxygen.

従来、エピタキシャルウェハの酸素サーマルドナー消去
熱処理は第3図に示すようにサブストレートウェハのエ
ツチング工程3の次に行われていた。しかし、これでは
ウェハは酸素サーマルドナー消去8とエピタキシャル成
長6の2度の熱処理を受けるため、ウェハにスリップが
発生し易く、また重金属等の不純物汚染を受は易い問題
があった。
Conventionally, the oxygen thermal donor erasure heat treatment of the epitaxial wafer was performed after the substrate wafer etching step 3, as shown in FIG. However, in this case, since the wafer is subjected to two heat treatments: oxygen thermal donor erasure 8 and epitaxial growth 6, there are problems in that the wafer tends to slip and is easily contaminated by impurities such as heavy metals.

〔発明が解決しようとする課題1 本発明はこのような欠点を改善することを目的とするも
ので、従来の酸素サーマルドナー消去熱処理工程を省略
し、かつスリップを少なくし、少数キャリア寿命の長い
ウェハの製造方法を提供する。
[Problem to be Solved by the Invention 1] The purpose of the present invention is to improve the above-mentioned drawbacks, and it is possible to omit the conventional oxygen thermal donor elimination heat treatment process, reduce slip, and achieve a long minority carrier life. A method for manufacturing a wafer is provided.

[課題を解決するための手段] 本発明は、エピタキシャル成長後の少なくとも650℃
から300℃間の冷却速度を2°C/Sec以上とする
ことにより酸素サーマルドナー消去を達成することを特
徴としたエビタキシャルウエハにおける酸素サーマルド
ナー消去方法である。
[Means for Solving the Problems] The present invention provides at least 650° C. after epitaxial growth.
This is a method for eliminating oxygen thermal donors in an epitaxial wafer, which is characterized in that oxygen thermal donor elimination is achieved by setting the cooling rate between 300° C. and 300° C. to 2° C./Sec or more.

[作用1 本発明では第2図にエピタキシャル成長のヒートパター
ンの例を示すように、従来冷却工程では破線のように緩
やかに冷却していたのを、少な(とも650〜300℃
の間は2℃/sec以−Fの冷却速度で急冷することに
より、従来の酸素サーマルドナー消去を省略することが
可能となった。その理由を第4図によって説明する。第
4図はサブストレートウェハの酸素サーマルドナー消去
工程を省略し、エピタキシャルウェハ成長後の冷却を急
速に行ったウェハのデータである6第4図において、ρ
0はエピタキシャル成長前サブストレート比抵抗であり
、ρはエピタキシャル成長後サブストレート比抵抗であ
る。第4図の縦軸は両前の比ρ/ρ0を示している。横
軸は冷却速度を示している。ρ/ρ0は約1.5で飽和
しており、そこで酸素サーマルドナー消去が完了してい
ることを表わしている。このグラフより冷却速度が2.
0℃/sec以トにおいてエピタキシャルの酸素サーマ
ルドナー消去が完了していることがわかる。
[Effect 1] In the present invention, as shown in FIG. 2, which shows an example of a heat pattern for epitaxial growth, in the conventional cooling process, gradual cooling was performed as shown by the broken line.
By performing rapid cooling at a cooling rate of 2°C/sec or more -F during this time, it has become possible to omit the conventional oxygen thermal donor elimination. The reason for this will be explained with reference to FIG. Figure 4 shows data for a wafer in which the oxygen thermal donor erasing process of the substrate wafer was omitted and cooling was performed rapidly after epitaxial wafer growth.6 In Figure 4, ρ
0 is the substrate resistivity before epitaxial growth, and ρ is the substrate resistivity after epitaxial growth. The vertical axis in FIG. 4 indicates the ratio ρ/ρ0 between the two fronts. The horizontal axis shows the cooling rate. ρ/ρ0 is saturated at about 1.5, indicating that oxygen thermal donor elimination is complete. From this graph, the cooling rate is 2.
It can be seen that epitaxial oxygen thermal donor elimination is completed at 0° C./sec or lower.

次に、冷却速度を2℃/sec以上とするのは少なくと
も650℃から300℃の間と限定した理由を説明する
。第5図は冷却速度を2.0℃/secとし、冷却の開
始温度を変えたときのρ/ρ0の変化を示したものであ
る。650’Cより高ければρ/ρ0はほぼ1.5とな
っている。第6図は2℃/sec以上の冷却の終了温度
を変化したときのρ/ρ0の変化を示した。300℃未
満ではp/ρ0は飽和している。以上の結果、少な(と
も650℃から300℃の間を2℃/see以上とすれ
ば目的を達するので、このように限定した。
Next, the reason why the cooling rate is limited to 2° C./sec or more is at least between 650° C. and 300° C. will be explained. FIG. 5 shows the change in ρ/ρ0 when the cooling start temperature is changed at a cooling rate of 2.0° C./sec. If the temperature is higher than 650'C, ρ/ρ0 is approximately 1.5. FIG. 6 shows the change in ρ/ρ0 when the end temperature of cooling of 2° C./sec or more was changed. p/ρ0 is saturated below 300°C. As a result of the above, the objective was achieved if the temperature was set to 2° C./see or higher between 650° C. and 300° C., so this limitation was made.

〔実施例] 第1図に本発明の実施例の工程図を示す。第1図と第3
図との比較から従来のサブストレートウェハ酸素サーマ
ルドナー消去工程8が省略されていることが明らかであ
る。
[Example] FIG. 1 shows a process diagram of an example of the present invention. Figures 1 and 3
It is clear from a comparison with the figures that the conventional substrate wafer oxygen thermal donor erase step 8 is omitted.

第2図はエピタキシャル成長後のヒートパターンを示し
たもので、実線は冷却を急速に行った実施例のヒートパ
ターンであり、図中破線で示した冷却曲線は従来の酸素
サーマルドナー消去を行ったもので、冷却は従来通りの
ものである。本発明の実施例及び比較例のスリップの発
生看および少数キャリア寿命を第1表に示した。なお、
本発明の冷却開始温度を800℃としても650℃の場
合と結果は変らなかった。
Figure 2 shows the heat pattern after epitaxial growth.The solid line is the heat pattern of the example in which cooling was performed rapidly, and the cooling curve shown in the broken line in the figure is the one in which conventional oxygen thermal donor elimination was performed. The cooling is the same as before. Table 1 shows the slip occurrence and minority carrier life of Examples of the present invention and Comparative Examples. In addition,
Even when the cooling start temperature of the present invention was set at 800°C, the results were the same as when the cooling start temperature was set at 650°C.

少数キャリア寿命は重金属汚染による寿命短化を表すも
ので、光源として波長904nmのレーザ光を用い、比
抵抗測定法としてマイクロ波反射を用いた光電導減衰法
によって求めたものである。
Minority carrier lifetime represents shortening of lifetime due to heavy metal contamination, and was determined by a photoconductive attenuation method using a laser beam with a wavelength of 904 nm as a light source and microwave reflection as a resistivity measurement method.

〔発明の効果1 エピタキシャル製造工程中のサブストレートウェハ酸素
サーマルドナー消去工程を省略し、冷却速度を変更する
ことによりエピタキシャルウェハのスリップ及び重金属
汚染を低減した。
[Effect of the invention 1] By omitting the substrate wafer oxygen thermal donor erasing step during the epitaxial manufacturing process and changing the cooling rate, epitaxial wafer slip and heavy metal contamination were reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の工程図、第2図は実施例及び
比較例のヒートパターン、第3図は従来例の工程図、第
4図は冷却速度と抵抗比の関係を示すグラフ、第5図、
第6図はそれぞれ冷却開始温度、冷却終了温度を変化さ
せたときの抵抗比を示すグラフである。 1・・・スライシング  2・・−ラッピング3・・・
エツチング   4・・・ポリッシング5・・・洗浄 
     6・・・エピタキシャル成長7・・・急冷 8・・・酸素サーマルドナー消去
Fig. 1 is a process diagram of an example of the present invention, Fig. 2 is a heat pattern of an example and a comparative example, Fig. 3 is a process diagram of a conventional example, and Fig. 4 is a graph showing the relationship between cooling rate and resistance ratio. , Figure 5,
FIG. 6 is a graph showing the resistance ratio when the cooling start temperature and the cooling end temperature are changed, respectively. 1...Slicing 2...-Wrapping 3...
Etching 4...Polishing 5...Cleaning
6...Epitaxial growth 7...Rapid cooling 8...Oxygen thermal donor elimination

Claims (1)

【特許請求の範囲】[Claims] 1 エピタキシャル成長後の少なくとも650℃から3
00℃間の冷却速度を2℃/sec以上とすることによ
り酸素サーマルドナー消去を達成することを特徴とした
エピタキシャルウエハにおける酸素サーマルドナー消去
方法。
1 From at least 650°C after epitaxial growth 3
A method for erasing oxygen thermal donors in an epitaxial wafer, characterized in that oxygen thermal donor erasure is achieved by setting a cooling rate between 00C and 2C/sec or more.
JP18260289A 1989-07-17 1989-07-17 Method for vanishing oxygen as thermal donor in epitaxial wafer Pending JPH0350200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18260289A JPH0350200A (en) 1989-07-17 1989-07-17 Method for vanishing oxygen as thermal donor in epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18260289A JPH0350200A (en) 1989-07-17 1989-07-17 Method for vanishing oxygen as thermal donor in epitaxial wafer

Publications (1)

Publication Number Publication Date
JPH0350200A true JPH0350200A (en) 1991-03-04

Family

ID=16121158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18260289A Pending JPH0350200A (en) 1989-07-17 1989-07-17 Method for vanishing oxygen as thermal donor in epitaxial wafer

Country Status (1)

Country Link
JP (1) JPH0350200A (en)

Similar Documents

Publication Publication Date Title
US5403406A (en) Silicon wafers having controlled precipitation distribution
JP4794137B2 (en) Heat treatment method for silicon semiconductor substrate
DE60127252T2 (en) EPITAKTIC SILICON WAIST FREE FROM SELF-DOTING AND BACK HALO
US20060130736A1 (en) Methods for manufacturing silicon wafer and silicon epitaxial wafer, and silicon epitaxial wafer
JPH1167781A (en) Heat treatment of silicon semiconductor substrate
US8298926B2 (en) Silicon wafer with controlled distribution of embryos that become oxygen precipitates by succeeding annealing and its manufacturing method
US4410395A (en) Method of removing bulk impurities from semiconductor wafers
JP4233651B2 (en) Silicon single crystal wafer
KR20000006046A (en) Production method for silicon epitaxial wafer
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JPH0350200A (en) Method for vanishing oxygen as thermal donor in epitaxial wafer
JP2007073594A (en) Method of manufacturing epitaxial silicon wafer
JP2000269221A (en) Thermal treatment method of silicon substrate, thermally treated substrate, and epitaxial wafer formed by use thereof
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPS6344720B2 (en)
JP2019019030A (en) Method for evaluating silicon single crystal and method for manufacturing silicon single crystal
JPH0714755A (en) Silicon semiconductor substrate and production thereof
JP2001044206A (en) Method of heat-treating silicon wafer
JPH07187899A (en) Silicon wafer having uniform oxygen density and its prduction
JPH0745623A (en) Heat-treating method of silicon wafer
JP2612730B2 (en) Intrinsic gettering method
JPS5897835A (en) Semiconductor substrate and manufacture thereof
JP2883752B2 (en) Silicon wafer manufacturing method
JP3171451B2 (en) Heat treatment method for GaAs single crystal
JPH06291124A (en) Heat treatment for silicon wafer