JPH0350141A - Method for bonding silicon and glass - Google Patents

Method for bonding silicon and glass

Info

Publication number
JPH0350141A
JPH0350141A JP18524289A JP18524289A JPH0350141A JP H0350141 A JPH0350141 A JP H0350141A JP 18524289 A JP18524289 A JP 18524289A JP 18524289 A JP18524289 A JP 18524289A JP H0350141 A JPH0350141 A JP H0350141A
Authority
JP
Japan
Prior art keywords
glass
substrate
silicon
wafer
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18524289A
Other languages
Japanese (ja)
Other versions
JP2870822B2 (en
Inventor
Tetsuo Fukada
深田 哲生
Katsuhiro Ono
克弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18524289A priority Critical patent/JP2870822B2/en
Publication of JPH0350141A publication Critical patent/JPH0350141A/en
Application granted granted Critical
Publication of JP2870822B2 publication Critical patent/JP2870822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the deformation and cracking of a bonded body at the time of bonding silicon and a glass having a higher thermal expansion coefficient than silica below the softening temp. of the glass by applying a current to the contact part of both materials with a uniform electric field. CONSTITUTION:A silicon wafer 1 is brought into contact with a glass substrate 2, electrodes 3 and 4 are fixed to the assembly, and the wafer 1 and substrate 2 are bonded below the softening point of the glass 2 by a heater 5. A DC voltage is applied between the positive electrode 3 and the negative electrode 4, and the wafer 1 and the substrate 2 are bonded with the uniform electric field. Since the thermal expansion coefficient of the substrate 2 is slightly higher than that of the wafer 1, the volumetric shrinkage amt. of the substrate 2 is made larger than that of the wafer 1 when the temp. lowers to ordinary temp. after bonding. As a result, tensile stress is generated at the interface of the substrate 2 at the bonding part, alkali metal ion is concentrated close to the electrode 4 when an anode is bonded to offset the compressive stress generated at the interface of the substrate 2 at the bonding part, and the residual stress in the substrate 2 is decreased to zero.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 シリコンとガラスとをガラスの軟化温度以下で接合する
シリコンとガラスとの接合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of joining silicon and glass, which joins silicon and glass at a temperature below the softening temperature of the glass.

〔従来の技術〕[Conventional technology]

例えば半導体デバイスの製造工程において、シリコンウ
ェハとガラス基板とを接合する場合、接合体に残る応力
歪みを少なくするために、ガラスの軟化温度以下で接合
することが望ましい。例えば特公昭53−2874’i
’号公報に示された陽極接合方法が一般に行われている
For example, in the process of manufacturing semiconductor devices, when bonding a silicon wafer and a glass substrate, it is desirable to bond at a temperature below the softening temperature of the glass in order to reduce stress strain remaining in the bonded body. For example, Tokuko Sho 53-2874'i
The anodic bonding method shown in the ' publication is generally used.

713図は従来のシリコンとガラスとの陽極接合を説明
するための断面図である0図において、(1)はシリコ
ンウェハ、(2)はシリコンウェハ(1)に重ネたガラ
ス基板で、一般にパイレックスガラスが用いられる。(
3)はシリコンウェハに付けた第1の電極、(4)はガ
ラス基板(2)に付けた第2の電極、(5)はシリコン
ウェハ(1)とガラス基板(2)とを加熱するためのヒ
ータである。
Figure 713 is a cross-sectional view for explaining the conventional anodic bonding of silicon and glass. Pyrex glass is used. (
3) is the first electrode attached to the silicon wafer, (4) is the second electrode attached to the glass substrate (2), and (5) is for heating the silicon wafer (1) and the glass substrate (2). This is a heater.

次に、接合方法について説明する。先ず、ガラス基板(
2)の電気伝導度を上げるために、ヒータ(5)でシリ
コンウェハ(1)とガラス基板(2)とをガラス基板(
2)の軟化温度以下の適当な温度まで加熱する。
Next, the joining method will be explained. First, the glass substrate (
In order to increase the electrical conductivity of the silicon wafer (1) and the glass substrate (2), the heater (5) is used to connect the silicon wafer (1) and the glass substrate (2).
2) Heat to an appropriate temperature below the softening temperature.

次に、第1の電FM (3)を正にM2の電極(4)を
負にして、電流を流してシリコンウェハ(1)とガラス
基板(2)とを接合する。例えばガラス基板(2)がパ
イレックスガラスの場合、400℃に加熱し、ユ0IJ
A/正2の電流を1分間通じて接合を行う。
Next, the first electrode FM (3) is made positive and the electrode (4) of M2 is made negative, and a current is applied to bond the silicon wafer (1) and the glass substrate (2). For example, if the glass substrate (2) is Pyrex glass, heat it to 400°C and
Bonding is performed by passing a current of A/positive 2 for 1 minute.

パイレックスガラスから成るガラス基板(2)の熱膨張
係数は、シリコンウェー・(1)よシ僅かに小さいので
、接合後温度が常温に戻った時、シリコンウェハ(1)
の方がガラス基板(2)よシ体積の収縮量が少し大きい
。従って、シリコンウェハ(1)とガラス基板(2)と
の接合体には、捩合部のガラス基板(2)界面に僅かに
圧縮応力が残留する。
The thermal expansion coefficient of the glass substrate (2) made of Pyrex glass is slightly smaller than that of the silicon wafer (1), so when the temperature returns to room temperature after bonding, the silicon wafer (1)
The volume shrinkage of the glass substrate (2) is slightly larger than that of the glass substrate (2). Therefore, in the bonded body of the silicon wafer (1) and the glass substrate (2), a slight compressive stress remains at the interface of the glass substrate (2) at the twisted portion.

また、シリコンウェハ(1)からガラス基板(2)へ電
流が流れると、ガラス中のアルカリ金属イオンが負極で
ある第2の電極(4)の方へ移動するので、ガラス基板
(2)表面の第2の電極(4)近傍にアルカリ金属が集
中する。アルカリ金属はガラス構造中の空隙(自由体積
)に入シ込むので、温度が下がってもガラス基板(2〕
表面の第2の電極(4)近傍は、他の部分よシ体積の収
縮量が小さい。従って、接合体の接合部には第2の電極
(4)直下のガラス基板(2)界面に圧縮応力が集中し
て残留する。
Furthermore, when a current flows from the silicon wafer (1) to the glass substrate (2), the alkali metal ions in the glass move toward the second electrode (4), which is the negative electrode, so that the surface of the glass substrate (2) Alkali metal concentrates near the second electrode (4). Alkali metals enter the voids (free volume) in the glass structure, so even if the temperature drops, the glass substrate (2)
The amount of volume shrinkage near the second electrode (4) on the surface is smaller than that in other parts. Therefore, compressive stress concentrates and remains at the interface of the glass substrate (2) directly under the second electrode (4) at the joint of the joined body.

上記で説明した2種類の圧縮応力が本なって、接合体の
接合部のパイレックスから成るカラス基板(2)表面に
は第4図に示すような分布の圧縮応力が残留する。この
残留応力により、シリコンウェハ(1)とパイレックス
ガラス基板(2)との接合体は第5図のように変形する
As a result of the two types of compressive stress explained above, a compressive stress with a distribution as shown in FIG. 4 remains on the surface of the glass substrate (2) made of Pyrex at the joint part of the joined body. Due to this residual stress, the bonded body of the silicon wafer (1) and the Pyrex glass substrate (2) is deformed as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のシリコンとガラスの接合は以上のように行われて
いるので、シリコンとガラスの接合体に応力が残留して
、接合体に変形や亀裂が発生する等の問題点があった。
Since the conventional bonding of silicon and glass is carried out as described above, there have been problems such as stress remaining in the bonded body of silicon and glass, causing deformation and cracks in the bonded body.

この発明は上記のような問題点を解決するためになされ
たもので、シリコンとガラスとの接合体に変形や亀裂が
発生しないシリコンとガラスとの接合方法を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a method for joining silicon and glass that does not cause deformation or cracks in the joined body of silicon and glass.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るシリコンとガラスとの接合方法は、シリ
コンとシリコンよシ少なくとも大きい熱膨張係数を有す
るガラスとを接触させる工程と、上記シリコンとガラス
とを上記ガラスの軟化温度以下の温度に加熱する工程と
、上記シリコンとガラスとの接触部を通じてシリコンか
らガラスへ平等電界により正の電流を流して上記シリコ
ンとガラスとを接合する工程とを備えるようにしたもの
である。
The method for bonding silicon and glass according to the present invention includes the steps of bringing silicon into contact with glass having a coefficient of thermal expansion at least larger than that of silicon, and heating the silicon and glass to a temperature below the softening temperature of the glass. and a step of bonding the silicon and glass by flowing a positive current from the silicon to the glass using a uniform electric field through the contact portion between the silicon and the glass.

〔作用〕[Effect]

この発明におけるシリコンとガラスとの接合方法は、シ
リコンとシリコンよシ少なくとも大きい熱膨張係数を有
するガラスを接合して、接合部のガラス界面に発生する
圧縮応力と引つ張シ応力とを相殺する。
The method of joining silicon and glass in the present invention involves joining silicon and glass having a coefficient of thermal expansion at least as large as that of silicon, and canceling out the compressive stress and tensile stress generated at the glass interface at the joint. .

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図について説明する。 An embodiment of the present invention will be described below with reference to FIG.

図において、(1)は直径100mm、厚み0.4mm
In the figure, (1) has a diameter of 100 mm and a thickness of 0.4 mm.
.

熱膨張係& 34,5 XユO−7/℃のシリコンウェ
ハ、(2)は直径100mm s R−み3mm 、熱
#張係数38.5 X No−77’Cのガラス基板、
(3)及び(4)はそれぞれ表面を平滑にしたシリコン
板を用いた第1及び第2の電極、(5)はヒータでろる
A silicon wafer with a thermal expansion coefficient of 34.5 x 0-7/℃, (2) a glass substrate with a diameter of 100 mm and a diameter of 3 mm and a thermal tensile coefficient of 38.5 x No-77'C;
(3) and (4) are first and second electrodes each using a silicon plate with a smooth surface, and (5) is heated by a heater.

次に接合方法について説明する。先ず、ヒータ(5)で
シリコンクエバ(1)とカラス基板(21(i−420
”Cに加熱する。次にシリコンクエバ(1)側の第1の
電極(3)を正に、ガラス基板(2)側の第2の電極(
4)を負にして、直流電圧フOOVを15分間加えて、
シリコンクエバ(1)とガラス基板(2)とを接合する
。この接合体のガラス基板(2)に残留する応力は、第
2図に示すようにゼロになった。これは、ガラス基板(
2)の熱膨張係数がシリコンクエバ(1)よシ僅かに大
きいので、接合後温度が常温に戻った時、ガラス基板(
2)の方がシリコンクエバ(1)よシ体積の収縮量が大
きくなる。その接合体の接合部においてガラス基板(2
)の界面に引つ5Mシ応力が発生して、陽Wi接合時に
アルカリ金属イオンが第2の電極(4)付近へ集中する
ことにより接合部のガラス基板(2)界面に発生する圧
縮応力を相殺するので、接合体のガラス基板(2)に残
留する応力がゼロになったのである。
Next, the joining method will be explained. First, heat the silicon cube (1) and the glass substrate (21 (i-420) using the heater (5).
Next, the first electrode (3) on the silicon substrate (1) side is directly connected to the second electrode (2) on the glass substrate (2) side.
4) Make it negative and apply DC voltage FOV for 15 minutes,
A silicon cube (1) and a glass substrate (2) are bonded. The stress remaining in the glass substrate (2) of this bonded body became zero as shown in FIG. This is a glass substrate (
The coefficient of thermal expansion of 2) is slightly larger than that of silicon Cueva (1), so when the temperature returns to room temperature after bonding, the glass substrate (
2) has a larger shrinkage amount than silicon cube (1). The glass substrate (2
), and alkali metal ions concentrate near the second electrode (4) during positive Wi bonding, thereby reducing the compressive stress generated at the interface of the glass substrate (2) at the bonding part. Since they cancel each other out, the stress remaining in the glass substrate (2) of the bonded body becomes zero.

また、上記一実施例と同じで、ただガラス基板(2)の
厚みが1mm、熱膨張係数が3(5,5X 10イ/℃
であることのみ異なる場合も、接合体の残留応力はゼロ
であった。
Also, it is the same as the above example, except that the thickness of the glass substrate (2) is 1 mm, and the coefficient of thermal expansion is 3 (5.5X 10 I/℃).
Even when the only difference was that , the residual stress in the bonded body was zero.

ここで、シリコンウェハ(1)とガラス基板(2)の加
熱症度は、ガラスの軟化点以下でめればよいが、あま夛
加熱湿度が低いとガラスの電気伝尋度が小さくなシ捩合
時間が長くな9、あま)加#!温度が高いと少しの外部
応力で変形し易くなるので、400℃〜450℃が好適
である。
Here, the heating degree of the silicon wafer (1) and the glass substrate (2) should be equal to or lower than the softening point of the glass, but if the heating humidity is low, the electrical conductivity of the glass will be low. The meeting time is long 9, Ama) Add #! If the temperature is high, it becomes easy to deform due to a small amount of external stress, so a temperature of 400°C to 450°C is suitable.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、シリコンとシリコン
より少なくとも大きい熱膨張係数を有するガラスとを接
触させる工程と、上記シリコンとガラスとの接触部を通
じてシリコンからガラスへ平等電界によ)正の電流を流
して上記シリコンとガラスとを接合する工程とを備える
ようにしたので、接合体に変形や亀裂が発生しないシリ
コンとガラスとの嵌合方法が得られる効果がある。
As described above, according to the present invention, the step of bringing silicon into contact with glass having a coefficient of thermal expansion at least larger than that of silicon, and the step of bringing silicon into contact with glass having a coefficient of thermal expansion at least larger than that of silicon, and applying a positive electric field from silicon to glass through the contact portion between silicon and glass. Since the present invention includes the step of joining the silicon and glass by applying an electric current, it is possible to obtain a method of fitting silicon and glass that does not cause deformation or cracks in the joined body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による接合方法を示す断面
図、第2図はこの発明の一実施例による接合体のガラス
基板に残留する応力の分布を示す図、第3図は従来の方
法による接合方法を示す断面図、第4図は従来の接合方
法による欲合体の接合部のガラス基板界面に残留する応
力の分布を示す図、第5図は従来の接合方法による接合
体の変形の一例を示す断面図である。 図において、(1)はシリコンクエバ、(2Hdガラス
基板、(3)及び(4)はそれぞれ第1及び第2の電極
、(5)はヒータである。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a bonding method according to an embodiment of the present invention, FIG. 2 is a diagram showing the distribution of stress remaining in the glass substrate of a bonded body according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing a bonding method according to an embodiment of the present invention. Fig. 4 is a cross-sectional view showing the bonding method using the conventional bonding method. Fig. 4 is a diagram showing the distribution of stress remaining at the glass substrate interface at the bonded portion of the lustrous body formed by the conventional bonding method. Fig. 5 is a diagram showing the deformation of the bonded body by the conventional bonding method. It is a sectional view showing an example. In the figure, (1) is a silicon cube, (2Hd glass substrate), (3) and (4) are the first and second electrodes, respectively, and (5) is a heater. In the figure, the same reference numerals are the same or A considerable portion is shown.

Claims (1)

【特許請求の範囲】[Claims] シリコンとシリコンより少なくとも大きい熱膨張係数を
有するガラスとを接触させる工程と、上記シリコンとガ
ラスとを上記ガラスの軟化温度以下の温度に加熱する工
程と、上記シリコンとガラスとの接触部を通じてシリコ
ンからガラスへ平等電界により正の電流を流して上記シ
リコンとガラスとを接合する工程とを備えたことを特徴
とするシリコンとガラスとの接合方法。
contacting silicon with glass having a coefficient of thermal expansion at least larger than silicon; heating the silicon and glass to a temperature below the softening temperature of the glass; A method for bonding silicon and glass, comprising the step of bonding the silicon and glass by flowing a positive current through the glass using a uniform electric field.
JP18524289A 1989-07-17 1989-07-17 Bonding method between silicon and glass Expired - Lifetime JP2870822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18524289A JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18524289A JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Publications (2)

Publication Number Publication Date
JPH0350141A true JPH0350141A (en) 1991-03-04
JP2870822B2 JP2870822B2 (en) 1999-03-17

Family

ID=16167377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18524289A Expired - Lifetime JP2870822B2 (en) 1989-07-17 1989-07-17 Bonding method between silicon and glass

Country Status (1)

Country Link
JP (1) JP2870822B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011806A1 (en) * 1994-10-13 1996-04-25 Michael Harz Process for changing the bend of anodically bonded flat composite bodies made of glass and metal or semiconductor materials
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating
DE19525388B4 (en) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Electronic component with anodically bonded lead frame
DE19549750B4 (en) * 1994-07-12 2005-07-14 Mitsubishi Denki K.K. Electronic component with anodisch gebontetem lead frame
DE112011104798T5 (en) 2011-01-31 2013-12-19 Suzuki Motor Corporation Drive control device for hybrid vehicle
CN110246769A (en) * 2019-05-10 2019-09-17 太原理工大学 Based on cationic electroconductive metal and glass surface original position metallization eutectic bonding method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181009B1 (en) 1994-07-12 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with a lead frame and insulating coating
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating
US6087201A (en) * 1994-07-12 2000-07-11 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing ball grid array electronic component
US6133069A (en) * 1994-07-12 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing the electronic using the anode junction method
US6268647B1 (en) 1994-07-12 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Electronic component with an insulating coating
US6310395B1 (en) 1994-07-12 2001-10-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with anodically bonded contact
DE19525388B4 (en) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Electronic component with anodically bonded lead frame
DE19549750B4 (en) * 1994-07-12 2005-07-14 Mitsubishi Denki K.K. Electronic component with anodisch gebontetem lead frame
JPH10507415A (en) * 1994-10-13 1998-07-21 ハルツ,ミカエル Method of changing the curvature of anodically bonded two-dimensional composite of glass and metal or semiconductor material
US5827343A (en) * 1994-10-13 1998-10-27 Engelke; Heinrich Process for changing the bend of anodically bonded flat composite bodies made of glass and metal or semiconductor materials
WO1996011806A1 (en) * 1994-10-13 1996-04-25 Michael Harz Process for changing the bend of anodically bonded flat composite bodies made of glass and metal or semiconductor materials
DE112011104798T5 (en) 2011-01-31 2013-12-19 Suzuki Motor Corporation Drive control device for hybrid vehicle
CN110246769A (en) * 2019-05-10 2019-09-17 太原理工大学 Based on cationic electroconductive metal and glass surface original position metallization eutectic bonding method

Also Published As

Publication number Publication date
JP2870822B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JPH05509445A (en) Direct board bonding method
US4452624A (en) Method for bonding insulator to insulator
JP2527834B2 (en) Anodic bonding method
JPH0350141A (en) Method for bonding silicon and glass
JP6259781B2 (en) Three-layer substrate bonding method
JP3353102B2 (en) Method for manufacturing sodium-sulfur battery
WO2007102210A1 (en) Heat focusing jig for anodic bonding, method of anodic bonding and apparatus therefor
JPH02141442A (en) Method for anodically bonding silicon wafer and glass substrate
JPS6213005A (en) Manufacture of magnetic substance
US3803706A (en) Method of making a transducer
JPS62205676A (en) Laser device
JPS63229865A (en) Method of joining anode
JPS63229863A (en) Method of joining anode
JP2002145676A (en) Anodic jointing method
JP3303940B2 (en) Electrostatic bonding method
JPH11217276A (en) Joining method of rough surface body and joined body at rough surface
JPS63110670A (en) Electrostatic junction and semiconductor pressure sensor
JPS6338265A (en) Method for bonding anode
JPS62287648A (en) Si bonding method
JPH02206125A (en) Formation of bump and connection of semiconductor element
JPH06256068A (en) Method for joining ceramic
JPS6256604B2 (en)
JP2003221284A (en) Method for bonding silicon wafer to glass
JPH0276237A (en) Anode junction of silicon wafer and glass substrate
JPH0581167B2 (en)