JPS62205676A - Laser device - Google Patents

Laser device

Info

Publication number
JPS62205676A
JPS62205676A JP61044319A JP4431986A JPS62205676A JP S62205676 A JPS62205676 A JP S62205676A JP 61044319 A JP61044319 A JP 61044319A JP 4431986 A JP4431986 A JP 4431986A JP S62205676 A JPS62205676 A JP S62205676A
Authority
JP
Japan
Prior art keywords
laser
electrode
substrate
laser device
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61044319A
Other languages
Japanese (ja)
Inventor
ゴードン スペンサー ノーヴエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Litton Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litton Systems Inc filed Critical Litton Systems Inc
Publication of JPS62205676A publication Critical patent/JPS62205676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0388Compositions, materials or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0381Anodes or particular adaptations thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0382Cathodes or particular adaptations thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • H01S3/0835Gas ring lasers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技術分野 本発明はレーザ技術の改良に係る。特に本発明は改良さ
れた電極を含むレーザ及びそのレーザ基体への取付は法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to improvements in laser technology. More particularly, the present invention relates to lasers including improved electrodes and methods for attaching the same to laser substrates.

背景技術 レーザプロセスにおいて、レーザ′N、極であるアノー
ド(陽極)とカソード(陰極)はレーザガス中に電流の
流れをつくるために相互作用する。この電流はレーザ動
作に要求される高いエネルギー状態にガスを励起させる
BACKGROUND OF THE INVENTION In a laser process, a laser 'N, an anode and a cathode, interact to create a current flow in the laser gas. This current excites the gas to the high energy state required for laser operation.

これらの成極は、例えばヘリウム及びネオンを含むよう
な適当なガスを収容しているレーザ基体内のチャネルの
端付近に位置している。
These polarizations are located near the ends of channels within the laser body containing suitable gases, including, for example, helium and neon.

カソード(陰極)は通常ドーム状の金属構造であるが、
金属アノード(陽極)はドーム又はデスク状の種々の形
状をとることができる。その動作においてカソードより
も形状に対し影響されることが少ない。動作上、カソー
ドは負の電位に維持され絨子エミッタとして、そしてア
ノードは正に帯電されたヘリウム−ネオンイオンに維持
され′ル子コレクタとしての役割をする。
The cathode is usually a dome-shaped metal structure,
The metal anode can take various shapes, such as a dome or a disk. Its operation is less sensitive to shape than the cathode. In operation, the cathode is maintained at a negative potential and acts as a gas emitter, and the anode is maintained at a positively charged helium-neon ion potential and acts as a gas collector.

例えばリングレーザジャイロスコープのようなレーザ応
用装置では良く磨扛たミラーがレーザ基体の両端部に配
置されている。そのようなレーザが装置の1素子として
用いられていると、ミラー間の距離の比較的/JSさな
変動のみが許容される。それはこの距離かレーザ出力に
対し重要だからである。許容値以内での所与の距離の維
持は、レーザが比較的極限的な温度環境で動作されると
きに困難な技術的問題を課す。この問題を克服するため
に、レーザ基体は通常例えば商標Zer、odur又は
Cer−Vitとして昶られているような種々のガラス
セラミックを含む極めて低い熱係数の材質でつくられて
いる。一方、カソードとアノードはレーザガス中に電流
を流すために金属導体からなる。
For example, in a laser-applied device such as a ring laser gyroscope, well-polished mirrors are placed at both ends of the laser body. When such a laser is used as one element of the device, only relatively small variations in the distance between the mirrors are tolerated. This is because this distance is important for the laser output. Maintaining a given distance within tolerances poses difficult technical problems when lasers are operated in relatively extreme temperature environments. To overcome this problem, laser bodies are commonly made of very low thermal coefficient materials, including various glass ceramics, such as those sold under the trademarks Zer, odur, or Cer-Vit. On the other hand, the cathode and anode are made of metal conductors to allow current to flow through the laser gas.

現在、金属又は金属合金レーザ電極は打抜き及び機械加
工のような多くの方法でつくられている。そのような方
法は大賀な内部表面の洗浄及びプリバレージョンを必要
とする。
Currently, metal or metal alloy laser electrodes are made in many ways, such as stamping and machining. Such methods require extensive internal surface cleaning and preparation.

更に、幾つかの応用では電極はレーザ基体にシールされ
なければならない。従って、ガラス−金属シールは通常
レーザ基体と′t!L極の異なる組成に従って行なわれ
る。インジウムは通常シール剤として用いられている。
Furthermore, in some applications the electrode must be sealed to the laser body. Therefore, a glass-to-metal seal is usually attached to the laser substrate. This is done according to different compositions of the L poles. Indium is commonly used as a sealant.

そのようなインジウムシールは米国特許4,273,2
82号(Novell、et al )  ”ガラス又
はセラミックー金属シール′″に開示されている。
Such an indium seal is described in U.S. Patent 4,273,2
No. 82 (Novell, et al.) "Glass or Ceramic-Metal Seals".

余情又は金属合金の電極はレーザの外部から内部への電
気接点即ちレーザ動作のための電流を通過させる手段を
提供しているが、熱応力で受ける膨張の程度はレーザ動
作が短時間の場合にはそれ種間;1ないが長時間にわた
る装置としての完全性には影響を及ぼす。金属電極とガ
ラスセラミックレーザ基体の間の熱膨張係数の大きな不
一致性がかなりの応力を装置にもたらす。例えば、アル
ミニウムとZerodurO熱膨張係数の不整合は、例
えば−55℃と125℃の間でのサイクルが与えられた
ときに電極とレーザ基体との間のシールの平均寿命を制
限する。そして、通常インジウムを含むアルミニウムー
ガラスシールは156℃のインジウム融点によって制限
をうける。
The metal alloy electrode provides an electrical contact from the outside of the laser to the inside, and thus a means for passing the current for laser operation, but the degree of expansion it undergoes due to thermal stress is limited when the laser operation is short-term. However, it does affect the integrity of the device over a long period of time. The large mismatch in thermal expansion coefficients between the metal electrodes and the glass-ceramic laser substrate introduces significant stress into the device. For example, the mismatch in thermal expansion coefficients of aluminum and ZerodurO limits the average life of the seal between the electrode and the laser body, given cycling between, for example, -55°C and 125°C. And aluminum-glass seals that typically contain indium are limited by the indium melting point of 156°C.

金属電極に結合されたガラスセラミックレーザ基体を含
む熱応力を受ける系(装置)にもたらされる応力はわず
かの量のレーザ基体の歪を生じさせる。この歪又は曲シ
は例えばリングレーザジャイロスコープのような応用に
おいてレーザの性能特性の劣化に強く影響する。物理的
歪に加えて、レーザ基体−電極境界でのインジウムシー
ル剤の相対的移動及び電流はシール故障に究極的には至
るでろろう。“′硬質″ガラスシールは存在するけれど
、それらは応力に原因する差分的熱膨張の観点で不適当
である。そのような応力が現実にガラスレーザ基体を、
破裂させることもある。
Stresses introduced into a thermally stressed system containing a glass-ceramic laser substrate coupled to a metal electrode cause a small amount of laser substrate distortion. This distortion or bending strongly affects the performance characteristics of the laser in applications such as ring laser gyroscopes. In addition to physical strain, relative movement of the indium sealant and current at the laser body-electrode interface will ultimately lead to seal failure. Although "hard" glass seals exist, they are inadequate due to stress-induced differential thermal expansion. Such stress actually affects the glass laser substrate,
It can also cause it to explode.

上述の問題は、適正な製造品質及び装置性能のために汚
染がないことが重要であるような例えばリングレーザジ
ャイロスコープのような応用に関しレーザの有効性及び
適当な製造法を制限してしまうよう相互作用する。その
ような精密な装置の製造において、加熱が例えば水、ア
ルコール及びプラスチックのような揮発性物質の放散の
ために通常用いられている。
The above-mentioned problems may limit the effectiveness of lasers and suitable manufacturing methods for applications such as ring laser gyroscopes, where the absence of contamination is important for proper manufacturing quality and device performance. interact. In the manufacture of such precision devices, heating is commonly used to dissipate volatile materials such as water, alcohol and plastics.

レーザ基体、ミラー及び電極を含むリングレーザジャイ
ロ装置の組立て時、装置は台に置かれ望ましくない汚染
物の放散のためベークされる。このベーキング工程及び
その結果によるレーザの清浄度はインジウムシールの1
56℃の融点によシ制限される。(さもなければ、組立
体は組立体のミラーの許容度で制限される約100℃程
より高い温度でベークされ得るだろう。)従って、熱応
用の不歪合の有害な作用に加えて、インジウムシールに
より結合されている不整合熱膨張係数の金属電極とセラ
ミック誘電体レーザ基体を含む従来のレーザ組立体は動
作上の性能及び製造の容易性に制限がある。
During assembly of the ring laser gyro device, including the laser body, mirrors and electrodes, the device is placed on a stand and baked to dissipate unwanted contaminants. This baking process and the resulting laser cleanliness level is 1.
Limited by a melting point of 56°C. (Otherwise, the assembly could be baked at temperatures as high as about 100°C, limited by the tolerances of the mirrors in the assembly.) Therefore, in addition to the detrimental effects of thermal application undistortion, Conventional laser assemblies that include metal electrodes with mismatched coefficients of thermal expansion and ceramic dielectric laser bodies joined by indium seals have limited operational performance and ease of manufacture.

発明の概要 本発明は所与の熱膨張特性の材質の誘電体又は絶縁体基
体とそれに固定された少なくとも1つの電極が含まれて
いるタイプのレーザに改良を′与えて従来技術の前述し
た欠点を克服するもので、その改良はレーザ基体に密に
整合した熱膨張特性を有する銹成材又は絶縁材からなる
電極を含み、との電極は誘電体又は絶縁体レーザ基体に
電界支援(フィールド。
SUMMARY OF THE INVENTION The present invention provides improvements to lasers of the type that include a dielectric or insulating substrate of material of given thermal expansion properties and at least one electrode affixed thereto, thereby overcoming the aforementioned deficiencies of the prior art. The improvement includes an electrode made of a cemented material or an insulating material with thermal expansion properties closely matched to the laser substrate, and the electrode is a dielectric or an insulator that provides an electric field support (field) to the laser substrate.

アシスト)法で接着されている。assisted) method.

又本発明はリングレーザジャイロスコープを製造する改
良された方法を提供する。改良された方法はレーザ基体
に密に整合した熱膨張特性を有する誘電材又は絶縁材を
部分とするレーザ電極を組み立てる工程を含む。その後
電極はレーザ基体に電界支援(フィールドアシスト法)
で接層される。最後に基体はそこに固定された電極と共
に156℃以上の温度でベークされる。
The present invention also provides an improved method of manufacturing a ring laser gyroscope. The improved method includes assembling a laser electrode that is part of a dielectric or insulating material that has thermal expansion properties that closely match the laser substrate. The electrode is then attached to the laser body with electric field assistance (field assist method).
It is layered with Finally, the substrate is baked at a temperature above 156° C. with the electrodes fixed thereto.

実施例の説明 本発明に従うレーザ10の側断面が図に示されている。Description of examples A side cross-section of a laser 10 according to the invention is shown in the figure.

レーザ10は好ましくはCer−Vit又はZerod
urのようなセラミックガラスから形成されたレーザ基
体12を含む。レーザキャビティ14は両端に良く磨れ
たミラー16.18を有するレーザ基体12内にある。
Laser 10 is preferably Cer-Vit or Zerod.
It includes a laser body 12 formed from a ceramic glass such as UR. The laser cavity 14 is located within the laser body 12 with highly polished mirrors 16,18 at each end.

アノード20とカソード22はレーザキャビティ14に
至る上向きの穴24と26とによって通じている。
Anode 20 and cathode 22 communicate by upwardly directed holes 24 and 26 leading to laser cavity 14 .

カソード22は略半円球であシ、ガラス、浴融シリカ又
はガラスセラミックの外側シェル28からなり、それは
内面にアルミニウム又はアルミニウム合金の薄膜層30
を有している。シェル28は、ガラス吹き及びモールド
技術のような幾つかの公知のガラス又は水晶成形技術に
よりつくられ得る。又、シェル28は例えばZerod
ur 、 Car−Vit又は商標ULEで知られるド
ープガラスのようなガラスセラミックから機械加工され
得る。層30をつくるだめシェル28の内面を被覆する
適当な技術として、アルミニウム又はアルミニウム合金
の直空蒸着、スパッタリング又はイオンブレーティング
があげられる。アノード20のヂ面社殆んど同じ構造を
している。アノードの例において、銅又は銅合金が薄膜
層を形成し得る。多くの他の金属、ニッケル、クロム、
鉄、チタン、タングステン、アルミニウム及び金などが
適用し得る。
The cathode 22 is generally hemispherical and consists of an outer shell 28 of glass, bath-fused silica, or glass ceramic, which has a thin film layer 3 of aluminum or aluminum alloy on its inner surface.
have. Shell 28 may be made by several known glass or crystal forming techniques, such as glass blowing and molding techniques. Further, the shell 28 is made of, for example, Zerod.
It can be machined from a glass-ceramic, such as doped glass known under the trademark ULE, Car-Vit or ULE. Suitable techniques for coating the inner surface of shell 28 to form layer 30 include direct air deposition, sputtering, or ion blating of aluminum or aluminum alloys. The two sides of the anode 20 have almost the same structure. In the example of the anode, copper or a copper alloy may form the thin film layer. many other metals, nickel, chromium,
Iron, titanium, tungsten, aluminum, gold, etc. are applicable.

本願の発明者は、レーザ基体12の熱膨張係数に密に整
合した熱膨張係数を有するシェルを含む電極を採用する
ことにより、レーザ基体に成極を固着させるシール上に
作用する応力が著しく減ぜられ、レーザの性能と寿命の
両方がその結果向上されることを見出した。
The inventors have discovered that by employing an electrode that includes a shell with a coefficient of thermal expansion that closely matches that of the laser body 12, the stresses acting on the seal that secures the polarization to the laser body are significantly reduced. It has been found that both the performance and lifetime of the laser are improved as a result.

更に、適当な金属薄膜きはシール上に著しい応力を課す
ような質量を有せず、従って金属層は電極に均一な導電
性を与えるに十分な厚さである限り、電極の性能は金属
又は金属合金のみからなる電極のそれと十分等価である
ことを見出した。
Additionally, a suitable metal film does not have a mass that would impose significant stress on the seal, so as long as the metal layer is thick enough to provide uniform conductivity to the electrode, the performance of the electrode will be similar to that of the metal or It has been found that the electrode is sufficiently equivalent to that of an electrode made only of a metal alloy.

シール32は、この実施例ではマロリー(Mallor
y )法として知られている電界支援接着法でつくられ
る。そのような方法では、ガラス′4を極とレーザ基体
は電圧を電極とレーザ基体間に印加しながら300〜4
00℃の温度に加熱される。組立体が加熱されるにつれ
て、その電気的導電率は増加し、電極−レーザ基体境界
を介して′it流が流れるよ、うになる。電流は薄膜層
からガラスへの金属の波数を生じさせる。その結果、強
い恒久的な接着が形成され、それは例えばインジウムの
融点温度に由来するような従来のガラス−金#i接着を
特徴づけているある欠陥モードをこうむらないものであ
る。
Seal 32 is, in this example, a Mallor
It is made using an electric field assisted adhesion method known as the y) method. In such a method, the glass '4 pole and the laser body are connected to a
It is heated to a temperature of 00°C. As the assembly is heated, its electrical conductivity increases, allowing 'it current to flow through the electrode-laser body interface. The electric current causes a wavenumber of metal to pass from the thin film layer to the glass. As a result, a strong permanent bond is formed that is not subject to certain failure modes that characterize conventional glass-gold #i bonds, such as those resulting from the melting temperature of indium.

レーザ基体12.アノード20及びカソード22の密に
整合された熱特性が電界支援接着プロセスを可能にして
いる。そのプロセスは著しく向上された接着強度(数百
p、 s、 i、であるインジウムシールに対して数千
p、 s、 i、 )をもたらす。先に述べたように、
そのような接着の高い強度は異なる熱特性のレーザ基体
と電極との間の破壊的熱応力の伝達を許容することがで
きIる。
Laser base 12. The closely matched thermal properties of the anode 20 and cathode 22 enable the electric field assisted bonding process. The process results in significantly improved bond strength (several thousand p,s,i, vs. hundreds of p,s,i, for indium seals). As mentioned earlier,
The high strength of such bonds can allow the transfer of destructive thermal stresses between laser substrates and electrodes of different thermal properties.

密に整合されたレーザ基体と電極とが電界支援接着法で
結合されるとき、リングレーザジャイロスコープの例で
の組立体はそれの装置の品質と性能を著しく改良する非
常に有利な製造法によっているといえる。熱的膨張不廠
合及び比較的低いインジウムシールの融点に因る制約の
除去はインジウムの融点温度より約100℃高い温度で
低い圧力環境において溶着された電極を含む組立体がベ
ークさnることを許容する。(リングレーザジャイロス
コープの例では、装置のベーキングは組立体のミラーに
より約250℃に制限されるだろうが、それは約150
℃のインジウム融点に対して100c程高い。) この高められたベーク温度の非常に望ましい結果は直空
環境時の効果である。ベーク温度での100℃の上昇は
20以上、即ち100倍以上の金属蒸発圧を増加させる
。組立体の清浄度は蒸発圧と周囲環境圧との間の差の関
数であるから、所与のレベルの清浄を得るためにXOO
+の1の吸引時間が要求されるだけということになる。
When closely aligned laser substrates and electrodes are joined by field-assisted adhesion, the assembly in the example of a ring laser gyroscope is produced by a very advantageous manufacturing method that significantly improves the quality and performance of the device. It can be said that there are. Removal of the constraints due to thermal expansion discontinuity and the relatively low melting point of the indium seal requires that the assembly containing the welded electrodes be baked in a low pressure environment at a temperature approximately 100° C. above the melting point temperature of indium. is allowed. (In the example of a ring laser gyroscope, the baking of the device would be limited to about 250°C by the mirrors in the assembly, but it would be about 150°C.
It is about 100c higher than the melting point of indium at °C. ) A very desirable result of this increased bake temperature is its effectiveness in an open air environment. A 100° C. increase in bake temperature increases the metal vaporization pressure by more than 20, ie, more than 100 times. Since the cleanliness of an assembly is a function of the difference between the evaporation pressure and the ambient environmental pressure, to obtain a given level of cleanliness
This means that only +1 suction time is required.

結果として、本発明に従うレーザの製造コストは安くな
り、その性能、品質及び有効寿命は増加される。
As a result, the manufacturing cost of the laser according to the invention is lower and its performance, quality and useful life are increased.

従って、改良された方法と装置が本発明によりレーザ製
造技術にもたらされたことになる。本発明の教示を採用
することにより、装置性能を劣化させる熱環境における
使用に関し高められた耐久性を有するレーザ装置をつく
ることができる。更に、本発明の教示に従うと従来技術
に適用できない有利な接着端を用いることができる。
Accordingly, an improved method and apparatus is provided to the laser manufacturing art by the present invention. By employing the teachings of the present invention, laser devices can be made that have increased durability for use in thermal environments that degrade device performance. Furthermore, advantageous adhesive edges not applicable in the prior art may be used in accordance with the teachings of the present invention.

レーザ電極の構造との組合せにおいて、そのような接着
法は製造コストの安い高い品質のレーザ組立体を提供す
る。
In combination with the structure of the laser electrode, such a bonding method provides a high quality laser assembly with low manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に従うレーザ装置の断面図である。 〔主要部分の符号の説明〕 12・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・基体20・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・アノード22・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・カンードP続ネ市1[ミ、!シ(方式) 11/(和61年6JJ 11 )、1特訂庁長官 宇
賀道部 殿 ■ ・1¥件の表小 昭和61年特許願第44319号 2 発明の名称 レーザ装置 3  ?!lj +Eをする者 ・1tヂ1との関係:特許出願人 名称 リドン システムズ、インコーポレーテソド4代
理人 氏名     (6444)  弁理士   岡 部 
IIミ 夫〆′ (1)別紙の如く、委任状及び翻訳文各1通を提出致し
ます。 (2)別紙の如く9代表者を正確に記載した訂正願書1
通を提出致します。 (3)別紙の如く、印書せる明細書1通を提出致します
。 (4)別紙の如く、正式図面1通を提出致します。
The drawing is a cross-sectional view of a laser device according to the invention. [Explanation of symbols of main parts] 12・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Base 20・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・Anode 22...
・・・・・・・・・・・・・・・・・・・・・・・・
... Cando P Zokune City 1 [Mi,! (Method) 11/(6JJ 11 of 1961), 1 Mr. Michibu Uga, Commissioner of the Office of Special Correction■ ・Table of 1 ¥ Small Patent Application No. 44319 of 1988 2 Name of Invention Laser Device 3? ! Relationship with 1tdi1: Patent applicant name: Lydon Systems, Inc. Name of attorney (6444): Patent attorney Okabe
II Mi Husband' (1) Please submit one copy of the power of attorney and one copy of the translation as shown in the attached sheet. (2) Correction application form 1 that accurately describes the 9 representatives as shown in the attached sheet
I will submit the notification. (3) Please submit one printable statement as shown in the attached sheet. (4) We will submit one official drawing as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、所与の熱膨張特性材の誘電体又は絶縁体基体と該基
体に取付けられた少なくとも1 つの電極とを含むレーザ装置において、 a)該少なくとも1つの電極は該基体に密 に整合した熱膨張特性を有する誘電体又 は絶縁体材からなり、そして b)該少なくとも1つの電極は該誘電体又 は絶縁体基体に電界支援で接着されてい るレーザ装置。 2、特許請求の範囲第1項に記載のレーザ装置において
、該電極は更に金属被覆を含む レーザ装置。 3、特許請求の範囲第2項記載のレーザ装置において、 a)該電極は中空の略半円球形状からなり、そして b)該金属被覆は該略半円球形状の内面に 設けられているレーザ装置。 4、特許請求の範囲第3項に記載のレーザ装置において
、該少なくとも1つの電極はカ ソードからなるレーザ装置。 5、特許請求の範囲第4項に記載のレーザ装置において
、該少なくとも1つの電極は付 加的に少なくとも1つのアノードを含むレ ーザ装置。 6、所与の熱膨張特性材のレーザ基体を用意しそして該
基体に少なくとも1つの電極を 取付ける工程を含むリングレーザジヤイロ スコープを製造する方法において/ a)該基体に密に整合した熱膨張特性を有 する誘電体又は絶縁体材で部分的に該電 極をつくり、 b)該電極を該基体に電界支援で接着し、 そして c)156℃以上の温度で該基体を該基体 に取付けられた電極と共にベークする工 程とからなる方法。 7、特許請求の範囲第6項に記載の方法において、該電
極を金属で被覆する工程を含む 方法。
[Claims] 1. A laser device comprising a dielectric or insulating substrate of a material with given thermal expansion properties and at least one electrode attached to the substrate, comprising: a) the at least one electrode is attached to the substrate; and b) the at least one electrode is field-assisted bonded to the dielectric or insulator substrate. 2. The laser device according to claim 1, wherein the electrode further includes a metal coating. 3. In the laser device according to claim 2, a) the electrode has a hollow substantially semicircular shape, and b) the metal coating is provided on the inner surface of the substantially semispherical shape. laser equipment. 4. A laser device according to claim 3, wherein the at least one electrode is a cathode. 5. A laser device according to claim 4, wherein the at least one electrode additionally comprises at least one anode. 6. A method of manufacturing a ring laser gyroscope comprising the steps of: providing a laser substrate of a material with given thermal expansion properties and attaching at least one electrode to the substrate; a) thermal expansion closely matched to the substrate; b) field-assisted bonding of the electrode to the substrate; and c) attachment of the substrate to the substrate at a temperature of 156° C. or higher. A method consisting of a step of baking together with the electrode. 7. The method according to claim 6, comprising the step of coating the electrode with a metal.
JP61044319A 1982-12-27 1986-03-03 Laser device Pending JPS62205676A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US45378082A 1982-12-27 1982-12-27

Publications (1)

Publication Number Publication Date
JPS62205676A true JPS62205676A (en) 1987-09-10

Family

ID=23802036

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58252353A Pending JPS59132692A (en) 1982-12-27 1983-12-27 Improved laser cathode
JP61044319A Pending JPS62205676A (en) 1982-12-27 1986-03-03 Laser device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP58252353A Pending JPS59132692A (en) 1982-12-27 1983-12-27 Improved laser cathode

Country Status (7)

Country Link
JP (2) JPS59132692A (en)
CA (1) CA1255380A (en)
DE (2) DE3346232A1 (en)
FR (2) FR2538610B1 (en)
GB (2) GB2132407B (en)
IL (1) IL70499A (en)
IT (1) IT1197763B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL70499A (en) * 1982-12-27 1988-06-30 Litton Systems Inc Laser cathode
US4825446A (en) * 1986-06-14 1989-04-25 English Electric Valve Company Limited Laser apparatus having cathode bore directing electron beam onto anode
EP0267304A1 (en) * 1986-11-10 1988-05-18 LITEF GmbH Process for manufacturing laser cathodes
DE3937529A1 (en) * 1989-11-08 1991-05-16 Siemens Ag METHOD FOR CONNECTING A SILICON PART TO A GLASS PART

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511115A (en) * 1937-11-11 1939-08-14 Stabilovolt Gmbh Improvements in glow discharge tubes for voltage regulation
US3904986A (en) * 1974-04-19 1975-09-09 Rca Corp Gas laser tube
CA1085031A (en) * 1976-11-08 1980-09-02 Litton Systems, Inc. Laser gyro with phased dithered mirrors
DE7719239U1 (en) * 1977-06-20 1978-01-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen GAS LASER WITH A CYLINDER-SHAPED DISCHARGE PISTON
IL57936A (en) * 1978-10-02 1982-07-30 Litton Systems Inc Ring laser with adjustable mirrors
US4273282A (en) * 1979-12-20 1981-06-16 Litton Systems, Inc. Glass-or ceramic-to-metal seals
JPS56140684A (en) * 1980-04-02 1981-11-04 Nec Corp Gas laser tube
GB2091481A (en) * 1981-01-17 1982-07-28 Sperry Ltd Getter for Glow Discharge Devices
IL70499A (en) * 1982-12-27 1988-06-30 Litton Systems Inc Laser cathode
US4595377A (en) * 1984-12-10 1986-06-17 Rockwell International Corporation Cold cathode fabrication for ring laser gyroscope

Also Published As

Publication number Publication date
GB2132407A (en) 1984-07-04
FR2595877A1 (en) 1987-09-18
GB2132407B (en) 1987-08-26
GB2189341A (en) 1987-10-21
CA1255380A (en) 1989-06-06
IT8349566A0 (en) 1983-12-22
DE3346232A1 (en) 1984-07-05
GB8609664D0 (en) 1986-05-29
IL70499A0 (en) 1984-03-30
IT1197763B (en) 1988-12-06
IL70499A (en) 1988-06-30
JPS59132692A (en) 1984-07-30
FR2538610A1 (en) 1984-06-29
GB8334345D0 (en) 1984-02-01
GB2189341B (en) 1990-07-04
FR2538610B1 (en) 1988-11-25
DE3607388A1 (en) 1986-11-06

Similar Documents

Publication Publication Date Title
US4612647A (en) High performance laser and method of making same
JP4891235B2 (en) Circuit board, manufacturing method thereof, and electronic component using the same
JP2003512731A (en) Gas laser device seal and method of manufacturing the same
KR100279053B1 (en) Electrostatic Thermal Bonding Method of Glass Substrate Pair Using Silicon Thin Film
US4452624A (en) Method for bonding insulator to insulator
US4595377A (en) Cold cathode fabrication for ring laser gyroscope
JPS62205676A (en) Laser device
US4896816A (en) Method for producing a fluidtight and heat curable seal between metal objects and a body of vitroceramic material
JPS59155976A (en) Gas laser and method of producing same
JPH08138845A (en) Quartz glass heater and its manufacture
US4153317A (en) Indium seal for gas laser
JPH05199056A (en) Manufacture of piezoelectric vibrator
WO2003065445A1 (en) Method for preparing gas-tight terminal
JPH11135084A (en) Battery sealing aluminum lid
CA1255381A (en) High performance laser and method of making same
US5197653A (en) Method of sealing two articles together with an indium preform seal
JPH0350141A (en) Method for bonding silicon and glass
JPH0656544A (en) Method for joining zro2 ceramics
JPH06131934A (en) Insulator
JPH0631730Y2 (en) Gas laser tube
JP2528941B2 (en) Fiber-introduced package and its airtight sealing method
JPH11126586A (en) Aluminum sealing lid for battery
JPS62154449A (en) Double end sealing flash discharge tube and manufacture thereof
JP2005251935A (en) Airtight component and manufacturing method thereof
JPH0337536A (en) Manufacture of semiconductor pressure transducer