JPH0350004B2 - - Google Patents
Info
- Publication number
- JPH0350004B2 JPH0350004B2 JP10417682A JP10417682A JPH0350004B2 JP H0350004 B2 JPH0350004 B2 JP H0350004B2 JP 10417682 A JP10417682 A JP 10417682A JP 10417682 A JP10417682 A JP 10417682A JP H0350004 B2 JPH0350004 B2 JP H0350004B2
- Authority
- JP
- Japan
- Prior art keywords
- shrinkage stress
- stress
- fiber
- heat shrinkage
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229920000728 polyester Polymers 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000004744 fabric Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 210000003518 stress fiber Anatomy 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Description
本発明は定長下で熱収縮による応力が著しく高
い繊維(以下高収縮応力繊維という)に関する。
熱収縮応力を利用した被覆締付け材として、従
来よりポリエステル繊維が使用されているが、特
開昭56−9443号公報等に開示されているごとく熱
収縮応力が低いため、充分な締付け力を付与する
場合には多量の繊維を必要とし、特にモーターの
絶縁被覆締付け材として使用する場合軽量化でき
ないし、コスト高となるほか、原子炉の炉心締付
け材等に使用する場合にも繊維使用量が多くな
り、コスト高となる。
本発明者らは、上記欠点を解決するため、より
締付け応力の大きい高収縮応力糸を得るべく鋭意
検討の結果、配向結晶化せしめた糸条を結晶化温
度付近で高倍率延伸することにより、熱収縮応力
が高くなることを知見し、本発明に到達した。
すなわち本発明はΔnが0.08以上の配向結晶化
した160℃における乾熱収縮率が20%以下の未延
伸ポリエステル繊維を延伸した固有粘度0.7以上
のポリエステル繊維であつて20℃/分の昇温速度
で加熱昇温する過程における乾熱100℃以上溶断
するまでの温度領域での熱収縮応力が0.8g/デ
ニール以上、溶断温度が255℃以上であることを
特徴とする高収縮応力ポリエステル繊維。
本発明にいう熱収縮応力とは、繊維を0.05g/
デニールの張力下一定長で把持し、これを加熱昇
温していくと、繊維は熱収縮しようとするが、そ
の両端が固定されているため実際の収縮は起こら
ず、そのかわり繊維に収縮せんとする内部応力が
生じる。この応力を熱収縮応力という。熱収縮応
力の測定は、市販の非接着型金属抵抗線歪計を用
い、これを増輻させ連動した自動X−Y記録計で
時間に対する応力の変化を記録測定する。試料は
一定長のループとし、一端を歪計に直結したフツ
クに、他端もフツクに掛け、20℃において初期張
力0.05g/デニールになるように試料−フツク間
長さを調整固定する。(このときタルミのないよ
うに注意して張力を与える。)こうして固定され
た試料を内径φ8mmの円筒形石英ガラス管で外側
にニクロム線を巻いたヒーターで更にヒーター線
外側を内径φ25mmの石英管で囲つた二重管式ヒー
ター(長さ20cm)の中心に試料が位置するように
ヒーター中に試料を設置して、試料と3mm離れた
中心に設置した検出端とヒーターをプログラム付
き積分回路を有する温調器と直結させ、20℃/分
の昇温速度でヒーターを加熱して雰囲気を連続し
て昇温せしめ溶断するまで加熱して測定した熱収
縮による収縮力を繊維のデニールで除した値を熱
収縮応力とする。
従来知られている特公昭48−17212号公報、特
開昭56−9443号公報等に開示されているごとき未
配向結晶化未延伸糸を多段延伸したものでは雰囲
気温度が100℃以上溶断するまでの温度域で0.7
g/dを超える熱収縮応力を示すものは得られて
いないが、配向結晶化した未延伸糸を多段延伸し
て得た本発明繊維は、雰囲気温度が100℃以上溶
断するまでの温度域で0.8g/デニール以上の熱
収縮応力を示す高収縮応力糸である。好ましい本
発明の繊維は昇温過程において前記温度域で1.0
g/デニール以上の熱収縮応力を示し、このよう
な公収縮応力糸は、従来全く予期されていない。
なお昇温過程で前記温度域で最大を示す熱収縮応
力値(ピーク値)が0.8g/dを超えるものも本
発明に包含される。本発明繊維を構成する成分
は、ポリエステルが好ましく中でもポリエチレン
テレフタレートが特に好ましい。
本発明繊維の固有粘度(フエノール/テトラク
ロルエタン6/4混合溶媒中30℃中で測定する。)
は、0.7以上であるとき熱収縮応力が高くなるの
で好ましく、0.9以上では1.0g/デニールを超え
るので特に好ましい。
本発明の繊維は、通常の結晶性熱可塑性ポリマ
ーの溶融紡糸により引取られた配向結晶化した未
延伸糸の乾熱160℃での収縮率(JIS−L−1073−
6−12に示される方法による。以下SHDと略
す。)が20%以下、ことに10%以下となる引取り
速度で得られるものが好ましい。SHDが40%以
上の未延伸糸を用いたものは、熱収縮応力が0.8
g/デニール未満となるので好ましくない。次い
で該未延伸糸は延伸し本発明繊維が得られるが、
延伸条件は2段延伸が好ましい。なお延伸温度
は、望む最大を示す熱収縮応力温度によつて適温
を選択すればよい。特に好ましくはDSCで測定
した昇温過程(昇温速度20℃/分)での結晶化に
よる発熱ピーク温度付近である。たとえばポリエ
チレンテレフタレート(〔η〕:0.7以上)から
3000〜4000m/分を紡速で得られた未延伸糸で
は、延伸速度によつて多少異なるが、通常110〜
115℃である。
このようにして得た本発明の繊維が示す熱収縮
応力発現挙動は第1図のに示すごとく、昇温過
程において100℃以上の温度域で0.8g/デニール
以上の高い熱収縮応力を示す新規な高収縮応力繊
維である。
この理由は今だ充分解明されてはいないが、高
度に伸長歪が付与された配向したアモルフアス領
域の分子鎖が、配向結晶化により生じた結晶でつ
ながれた網目構造状態で凍結された構造となつて
いるのではないかと想像され、この構造が熱エネ
ルギーを吸収して、分子運動を生じると著しく高
い収縮応力となつて発現するのではないかと推測
される。
本発明の繊維は、用途に応じマルチフイラメン
ト又はステープルとして締付け材として直接用い
てもよく、紐状として用いてもよく、更に他の有
用な繊維と複合化した紐、テープ、布帛等として
用いてもよい。特に本発明の公収縮応力繊維から
なる糸を経糸とし低収縮性糸または自発伸長糸を
緯糸とした布帛として用いるのが好ましい。この
ような公収縮応力繊維は、締付け材として多様な
方面に利用され軽量化や省コスト化を可能にする
ことから工業的意義は著しく大きいものである。
以下に本発明を実施例をもつて具体的に説明す
る。なお実施例中で用いた熱収縮応力値は、前述
した測定法中歪計は、東洋ボールドウイン社製
T.I−550−360型、前置増巾器は東洋ボールドウ
イン社製、PRE−AMPLIFIER SS−PR型、自
動X−Y記録計は横河電気工業社製、TYPE
PRO−11A型。温調器は真空理工社製AGNE
HPC−1500及びAGNE SCR−BOXを用いて測
定した。
実施例
固有粘度1.0のポリエチレンテレフタレートを
310℃にてφ0.3のオリフイス孔を16個有するノズ
ルより、単孔当り1.5g/分の吐出量で紡出し、
引取速度4000m/分にて巻き取つた未延伸糸の特
性を表−1に示す。
得られた未延伸糸を次いで延伸速度100m/分
にて、1段目25℃、2段目110℃の温度条件で延
伸した延伸糸の特性を表−1に示す。
配向結晶化した未延伸糸を用いて得た本発明の
繊維は、第1図−1に示すごとき高収縮応力糸で
あつた。
比較例
引取速度1300m/分とし、延伸倍率を変更した
以外実施例と同一の条件で得た未延伸糸及び延伸
糸の特性を表−1に示す。配向結晶化していない
未延伸糸を用いて得た繊維は、第1図−2に示す
ごとく、熱収縮応力の低いものしか得られなかつ
た。
The present invention relates to fibers that exhibit significantly high stress due to heat shrinkage under constant length (hereinafter referred to as high shrinkage stress fibers). Polyester fiber has traditionally been used as a covering tightening material that utilizes heat shrinkage stress, but as disclosed in JP-A-56-9443, etc., the heat shrinkage stress is low, so it provides sufficient tightening force. In this case, a large amount of fiber is required, especially when used as a fastening material for the insulation coating of a motor, making it impossible to reduce the weight and increasing the cost. This increases the cost. In order to solve the above-mentioned drawbacks, the present inventors have conducted intensive studies to obtain a high shrinkage stress yarn with higher tightening stress, and as a result, by drawing an oriented crystallized yarn at a high magnification near the crystallization temperature, The present invention was achieved based on the finding that thermal shrinkage stress increases. That is, the present invention is a polyester fiber with an intrinsic viscosity of 0.7 or more, which is obtained by drawing an undrawn polyester fiber with an oriented crystallization of Δn of 0.08 or more and a dry heat shrinkage rate of 20% or less at 160°C, and a heating rate of 20°C/min. A high shrinkage stress polyester fiber characterized by having a heat shrinkage stress of 0.8 g/denier or more and a melting temperature of 255°C or more in a temperature range of 100°C or more until melting in the dry heat process during heating. The heat shrinkage stress referred to in the present invention is 0.05g/
When a denier is held at a certain length under tension and the temperature is increased, the fiber tries to shrink due to heat, but since both ends are fixed, no actual shrinkage occurs; instead, the fiber does not shrink. An internal stress is generated. This stress is called heat shrinkage stress. Thermal shrinkage stress is measured using a commercially available non-adhesive metal resistance wire strain meter, which is increased in intensity and linked to an automatic X-Y recorder to record and measure changes in stress over time. The sample is made into a loop of a certain length, one end of which is hooked to a hook directly connected to the strain meter, and the other end of the loop is hooked, and the length between the sample and the hook is adjusted and fixed so that the initial tension is 0.05 g/denier at 20°C. (At this time, apply tension while being careful not to sag.) The thus fixed sample is placed in a cylindrical quartz glass tube with an inner diameter of 8 mm and a heater with a nichrome wire wrapped around the outside. Place the sample in the heater so that the sample is located in the center of a double-tube heater (length 20 cm) surrounded by a double-tube heater (length 20 cm). The shrinkage force due to thermal shrinkage was measured by directly connecting the fiber to a temperature controller and heating the heater at a heating rate of 20℃/min to continuously raise the temperature of the atmosphere until it melted. Let the value be the heat shrinkage stress. In conventionally known JP-B No. 48-17212, JP-A-56-9443, etc., unoriented crystallized undrawn yarns are drawn in multiple stages until the atmospheric temperature reaches 100°C or higher and the fibers are fused. 0.7 in the temperature range of
Although no fibers have been obtained that exhibit a heat shrinkage stress exceeding g/d, the fibers of the present invention obtained by multi-stage drawing of oriented crystallized undrawn yarns exhibit high thermal contraction stress in the temperature range of 100°C or higher before melting. It is a high shrinkage stress yarn that exhibits a heat shrinkage stress of 0.8 g/denier or more. The preferred fiber of the present invention has a temperature of 1.0 in the temperature range during the heating process.
The yarn exhibits a heat shrinkage stress of more than g/denier, and such a publicly shrinkable stress yarn has never been expected.
Note that the present invention also includes those whose heat shrinkage stress value (peak value) showing a maximum in the above temperature range during the heating process exceeds 0.8 g/d. The component constituting the fiber of the present invention is preferably polyester, and polyethylene terephthalate is particularly preferred. Intrinsic viscosity of the fiber of the present invention (measured in a 6/4 mixed solvent of phenol/tetrachloroethane at 30°C)
When it is 0.7 or more, the heat shrinkage stress becomes high, so it is preferable, and when it is 0.9 or more, it exceeds 1.0 g/denier, so it is particularly preferable. The fiber of the present invention has a shrinkage rate (JIS-L-1073-
According to the method shown in 6-12. Hereinafter abbreviated as SHD. ) is preferably 20% or less, especially 10% or less. For those using undrawn yarn with SHD of 40% or more, the heat shrinkage stress is 0.8
g/denier, which is not preferable. The undrawn yarn is then drawn to obtain the fiber of the present invention,
Two-step stretching is preferred as the stretching condition. Note that an appropriate stretching temperature may be selected depending on the desired maximum heat shrinkage stress temperature. Particularly preferably, the temperature is near the exothermic peak temperature due to crystallization during the temperature increase process (temperature increase rate 20° C./min) measured by DSC. For example, from polyethylene terephthalate ([η]: 0.7 or more)
For undrawn yarn obtained at a spinning speed of 3000 to 4000 m/min, the spinning speed is usually 110 to
The temperature is 115℃. As shown in Figure 1, the fiber of the present invention thus obtained exhibits a high thermal shrinkage stress of 0.8 g/denier or more in the temperature range of 100°C or higher. It is a high shrinkage stress fiber. The reason for this is still not fully understood, but the molecular chains of the oriented amorphous region, which is highly elongated and strained, are frozen in a network structure connected by crystals produced by oriented crystallization. It is assumed that this structure absorbs thermal energy and causes molecular movement, which results in extremely high contraction stress. Depending on the application, the fibers of the present invention may be used directly as a tightening material in the form of multifilaments or staples, or may be used in the form of strings, or may be used as strings, tapes, fabrics, etc. composited with other useful fibers. Good too. In particular, it is preferable to use a fabric in which the warp is a yarn made of the high shrinkage stress fiber of the present invention and a low shrinkage yarn or a naturally elongated yarn is a weft. Such publicly shrinkable stress fibers are of great industrial significance because they are used in a variety of applications as tightening materials and enable weight and cost savings. The present invention will be specifically explained below with reference to Examples. The heat shrinkage stress values used in the examples were measured using the strain meter manufactured by Toyo Baldwin Co., Ltd.
TI-550-360 type, preamplifier manufactured by Toyo Baldwin, PRE-AMPLIFIER SS-PR type, automatic X-Y recorder manufactured by Yokogawa Electric Industries, TYPE
PRO-11A type. The temperature controller is AGNE manufactured by Shinku Riko Co., Ltd.
Measured using HPC-1500 and AGNE SCR-BOX. Example Polyethylene terephthalate with an intrinsic viscosity of 1.0
Spun at 310℃ from a nozzle with 16 φ0.3 orifice holes at a rate of 1.5g/min per single hole.
Table 1 shows the properties of the undrawn yarn taken up at a take-up speed of 4000 m/min. The obtained undrawn yarn was then drawn at a drawing speed of 100 m/min at a temperature of 25° C. in the first stage and 110° C. in the second stage. The properties of the drawn yarn are shown in Table 1. The fiber of the present invention obtained using the oriented crystallized undrawn yarn was a high shrinkage stress yarn as shown in FIG. 1-1. Comparative Example Table 1 shows the properties of undrawn yarn and drawn yarn obtained under the same conditions as in Example except that the take-up speed was 1300 m/min and the stretching ratio was changed. Fibers obtained using undrawn yarns that were not oriented and crystallized had only low heat shrinkage stress, as shown in Figure 1-2.
【表】
実施例 2
実施例1で得たフイラメントを撚数300T/m
に2本合糸した糸を、タテ280本/ヨコ120本の平
織布帛に織成した後、130℃沸水30分の収縮処理
を施した。沸水処理後の布帛は
タテ352本/ヨコ148本
であつた。次いでこの布帛を撥水加工した。該撥
水処理布の機能性を表−2に示す。
同様にして比較例のフイラメントを用いてタテ
280本/ヨコ120本の平織布帛を沸水処理した。沸
水処理後の布帛は
タテ310本/ヨコ132本
であつた。この布帛に同様の撥水加工を施した。
撥水加工後の特性を表−2に示した。[Table] Example 2 The filament obtained in Example 1 was twisted at 300T/m.
The two yarns were woven into a plain weave fabric with 280 vertical yarns and 120 horizontal yarns, and then subjected to shrinkage treatment in boiling water at 130° C. for 30 minutes. The number of fabrics after boiling water treatment was 352 vertically and 148 horizontally. This fabric was then treated to be water repellent. Table 2 shows the functionality of the water-repellent treated fabric. In the same way, using the filament of the comparative example,
280 pieces/120 pieces of plain woven fabric were treated with boiling water. The number of fabrics after boiling water treatment was 310 vertically and 132 horizontally. A similar water-repellent finish was applied to this fabric.
Table 2 shows the properties after water repellent finishing.
【表】
本発明の繊維を用いると収縮処理による高密度
化か可能でかつモジユラスの保持性が良好なため
収縮処理後も良好な“こし”が保たれている。本
発明をはずれた繊維では高密度化が不十分で収縮
処理によるモジユラスの低下大きく、“こし”が
なくなる。[Table] When the fiber of the present invention is used, it is possible to achieve high density through shrinkage treatment, and the fiber retains good modulus, so it maintains good "stiffness" even after shrinkage treatment. Fibers outside the scope of the present invention are not sufficiently densified, have a large decrease in modulus due to shrinkage treatment, and lack "stiffness."
第1図は、昇温過程における熱収縮応力の変化
を示す。
1は本発明の繊維が示す熱収縮応力の変化、2
は比較例の繊維が示す熱収縮応力の変化である。
FIG. 1 shows the change in thermal shrinkage stress during the temperature rising process. 1 is the change in heat shrinkage stress exhibited by the fiber of the present invention, 2
is the change in heat shrinkage stress exhibited by the fiber of the comparative example.
Claims (1)
る乾熱収縮率が20%以下の未延伸ポリエステル繊
維を延伸した固有粘度0.7以上のポリエステル繊
維であつて20℃/分の昇温速度で加熱昇温する過
程における乾熱100℃以上溶断するまでの温度領
域での熱収縮応力が0.8g/デニール以上、溶断
温度が255℃以上であることを特徴とする高収縮
応力ポリエステル繊維。1 Polyester fibers with an intrinsic viscosity of 0.7 or more drawn from oriented crystallized polyester fibers with a dry heat shrinkage rate of 20% or less at 160°C with a Δn of 0.08 or more, heated at a heating rate of 20°C/min. A high shrinkage stress polyester fiber characterized by having a heat shrinkage stress of 0.8 g/denier or more and a melting temperature of 255°C or more in the dry heat temperature range of 100°C or more until melting in the heating process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10417682A JPS58220815A (en) | 1982-06-16 | 1982-06-16 | Fiber having high shrinkage stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10417682A JPS58220815A (en) | 1982-06-16 | 1982-06-16 | Fiber having high shrinkage stress |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58220815A JPS58220815A (en) | 1983-12-22 |
JPH0350004B2 true JPH0350004B2 (en) | 1991-07-31 |
Family
ID=14373705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10417682A Granted JPS58220815A (en) | 1982-06-16 | 1982-06-16 | Fiber having high shrinkage stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58220815A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4835053A (en) * | 1987-11-24 | 1989-05-30 | Basf Corporation | Dark dyeing yarn containing polyester fibers and method of preparation |
JPH01306611A (en) * | 1988-05-27 | 1989-12-11 | Toray Ind Inc | Polyester fiber and woven and knitted fabric made of said fiber suitable for fashioning |
-
1982
- 1982-06-16 JP JP10417682A patent/JPS58220815A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58220815A (en) | 1983-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3529934A (en) | Process for the preparation of carbon fibers | |
US5061561A (en) | Yarn article comprising a tetrafluoroethylene polymer and a process for producing the same | |
EP0205960B1 (en) | Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber | |
US4126499A (en) | Method of manufacture of a rigid, perforated cloth | |
EP0159365B1 (en) | Carbon fibers with high strength and high modulus, and process for their production | |
US4073869A (en) | Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity | |
US3818082A (en) | Process for the production of carbonaceous tapes | |
US4973657A (en) | High-strength polyester yarn and process for its preparation | |
US4374114A (en) | Process for the surface modification of carbon fibers | |
JPH0350004B2 (en) | ||
US4112059A (en) | Process for the production of carbon filaments utilizing an acrylic precursor | |
US5281477A (en) | Carbon fibers having high tenacity and high modulus of elasticity and process for producing the same | |
US3954950A (en) | Production of high tenacity graphitic fibrous materials | |
JPH0478737B2 (en) | ||
JP3105000B2 (en) | Polyamide-6,6 monofilament for screen printing fabric | |
US4237109A (en) | Process for producing carbon fabric | |
US4001479A (en) | Novel naphthalate polyester fibers, and their end uses | |
JPS5976917A (en) | Production of yarn having high heat shrinkage stress | |
JPH06257013A (en) | Polycarbonate multifilament | |
US3926228A (en) | Carbonaceous tapes | |
JPS60119241A (en) | Highly shrinkable stress core yarn | |
JPS60110939A (en) | Highly shrinkable stress core yarn | |
JP2624402B2 (en) | Wire coating material | |
KR930000249B1 (en) | Manufacturing process of polyester filament yarn | |
JP2951079B2 (en) | Method for producing coiled carbon fiber bundle |