JPS5976917A - Production of yarn having high heat shrinkage stress - Google Patents
Production of yarn having high heat shrinkage stressInfo
- Publication number
- JPS5976917A JPS5976917A JP18385782A JP18385782A JPS5976917A JP S5976917 A JPS5976917 A JP S5976917A JP 18385782 A JP18385782 A JP 18385782A JP 18385782 A JP18385782 A JP 18385782A JP S5976917 A JPS5976917 A JP S5976917A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- shrinkage stress
- undrawn
- heat shrinkage
- denier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、熱収縮応力(以下収縮応力という。)の高い
ポリエステル系繊維の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing polyester fibers having high heat shrinkage stress (hereinafter referred to as shrinkage stress).
ポリエステル系の延伸糸を加熱昇温した場合にその外温
過程において発生する最大収縮応力が極めて高い延伸糸
は1例えば高密度の組織にて製織を行って防水織物とし
てレインウェアーやスポーツウェアーにした場合、透湿
及び通気性を損なわずに防水性を向上するのに極めて効
果が大きいものであり1本発明はこれらの用途に有効に
使用されるポリエステル系繊維を容易に製造できる方法
を提供するものである。When a drawn polyester yarn is heated to an elevated temperature, the maximum shrinkage stress that occurs during the external temperature process is extremely high.For example, drawn yarn is woven with a high-density structure and made into waterproof fabrics such as rainwear and sportswear. In this case, it is extremely effective in improving waterproofness without impairing moisture permeability and air permeability, and the present invention provides a method for easily producing polyester fibers that can be effectively used in these applications. It is something.
レインウェアーやスポーツウェアーに使用する布帛の性
能として透湿及び通気性を損なうことなく防水性能が要
求される。透湿及び通気性を有しかつ完全防水という相
反する性能を持った防水布は従来存在しなかったが、あ
る程度満足される防水布が開発されてきた。Fabrics used for rainwear and sportswear are required to have waterproof performance without compromising moisture permeability and air permeability. Although there has not been a waterproof fabric that has the contradictory properties of moisture permeability, air permeability, and complete waterproofing, waterproof fabrics that are satisfactory to a certain extent have been developed.
これら防水は原理的には。In principle, these are waterproof.
(1)防水加工用の高分子皮膜を延伸し、ブイグリル化
を行って極めて小さな穴を開e+たフィルムを布にラミ
ネート又は布と布の間にサンドイッチに重ねたもの。(1) A film in which a waterproof polymer film is stretched and made into a veigrilled film with extremely small holes e+ is laminated to cloth or sandwiched between two cloths.
(2)通常使用している長繊維糸条を製織時において極
めて高い密度で織り込んで、糸条及び単糸間の空隙率を
極めて低下させて防水性能を持たせたもの。(2) Normally used long fiber yarns are woven at extremely high density during weaving to extremely reduce the porosity between the yarns and single filaments, giving it waterproof performance.
などが代表的な製法として知られている。なかでも、高
密度の組織で織り込んだ防水布は風合がやわらか(ゴワ
ゴワしない。ハードに取り扱っても上記(1)によるも
ののように多孔質のフィルムが割れたり剥がれたりしな
い。また9通常使用している糸条を何ら加工せずにその
まま製織が可能であることなどから、ブイグリル化した
多孔質のフィルムを使用する方法よりは有利な方法とい
える。etc. are known as typical manufacturing methods. Among these, waterproof fabrics woven with a high-density structure have a soft texture (not stiff. Even when handled hard, the porous film does not crack or peel off like the one described in (1) above. This method can be said to be more advantageous than the method using a porous film that has been made into a vee grill because it is possible to weave the yarn as it is without any processing.
高密度織物で防水布を製造するには、製織後の布帛を熱
セットや加熱染色を行った場合、lt!!織された糸条
が均一に収縮することが極めて重要である。すなわち、
m織に使用する糸条の収縮応力が小さい場合、高密度組
織のために糸条及び単糸間の摩擦抵抗が高くなり、糸条
及び単糸間に収縮の斑が生じ、その結果、空隙率にバラ
ツキが発生し透湿及び通気性能はあるものの防水性能は
極めて低い布帛となるのである。To produce waterproof fabric using high-density woven fabric, if the fabric is heat-set or heat-dyed after weaving, lt! ! It is extremely important that the woven yarn shrinks uniformly. That is,
When the shrinkage stress of the threads used in m-weaving is small, the frictional resistance between the threads and the single yarns becomes high due to the high density structure, causing uneven shrinkage between the threads and the single yarns, and as a result, voids are formed. This results in a fabric that has moisture permeability and air permeability but extremely low waterproof performance due to variations in the ratio.
このように、防水性能を目的とした高密度織物に用いる
糸条を例にとっても、収縮応力の高い糸条の製造はイ1
加価値の高い製品を作るのに必要なことであり、その製
造技術は極めて重要なものである。In this way, even if we take the example of yarn used in high-density fabrics aimed at waterproofing, it is difficult to manufacture yarn with high shrinkage stress.
This is necessary to make products with high added value, and the manufacturing technology is extremely important.
従来、ポリエステル系長繊維糸条を製造する場合、紡糸
速度i、5oon15+程度で捲き取った低配向度の未
延伸糸を供給系として用い、延伸後の糸条の残留伸度が
25〜35%になるような延伸倍率にて延伸を施し、定
長熱処理を行ってバーンに捲き取る方法が一般的である
。しかしながら、これらの方法で延伸された糸条の収縮
応力は、高々0.4〜0.59/デニールと低いもので
ある。また、さらに収縮応力を高めようとするならば、
延伸時に延伸倍率や延伸温度を極めて高くすることで収
縮応力の向上を図ることが知られているが、低配向度の
未延伸糸を延伸に供給した場合には延伸倍率を上げると
1毛羽や断糸が急増することになり、また延伸温度を高
くするに従って延伸斑が発生し易くその結果断糸や染色
斑が発生するので延伸温度としては(Tg+5)〜(T
g+10) ℃が限界である。Conventionally, when manufacturing polyester long fiber yarn, undrawn yarn with a low degree of orientation, which is wound at a spinning speed of i, about 5oon15+, is used as a supply system, and the residual elongation of the yarn after drawing is 25 to 35%. A common method is to stretch the film at a stretching ratio such that the film is stretched, perform constant length heat treatment, and then wind it up on a burner. However, the shrinkage stress of the yarn drawn by these methods is as low as 0.4 to 0.59/denier at most. Also, if you want to further increase the shrinkage stress,
It is known that the shrinkage stress can be improved by extremely increasing the draw ratio and drawing temperature during drawing, but when undrawn yarn with a low degree of orientation is supplied for drawing, increasing the draw ratio will result in 1 fluff or more. The number of yarn breakages increases rapidly, and as the stretching temperature increases, stretching unevenness is more likely to occur, resulting in yarn breakage and dyeing unevenness, so the stretching temperature should be set between (Tg+5) and (Tg
g+10) °C is the limit.
以上のように、低配向度の未延伸糸を用いて延伸を行っ
た場合は、収縮応力の高い糸条を得ることは容易でなく
、操茅性や品位を低下することな(8+!!造すること
は極めて困難なのである。As described above, when drawing is performed using undrawn yarn with a low degree of orientation, it is not easy to obtain a yarn with high shrinkage stress, and it is difficult to obtain a yarn with high shrinkage stress without deteriorating the manageability or quality (8+!! It is extremely difficult to create.
本発明者らは2以上の問題点を解消し、操業性や糸条の
品質を低下することなく収縮応力の高い糸条をN 1M
する方法について鋭意検討したところ高速紡糸法などで
捲き取られた配向度の高い未延伸糸を供給系として延伸
を施すと。The present inventors solved two or more problems and produced yarn with high shrinkage stress at N 1M without deteriorating workability or yarn quality.
After careful consideration of a method for this purpose, we found that we used undrawn yarn with a high degree of orientation, which had been wound up using a high-speed spinning method, as a supply system to draw the yarn.
(1)延伸倍率を上げて延伸糸の残留伸度を小さくしな
くても収縮応力は低配向の未延伸糸を延伸した場合に比
較して高い値を示し、さらに延伸倍率を高くしても供給
糸条の初期配向度が高いために延伸途中の断糸は少なく
安定しており。(1) Even if the residual elongation of the drawn yarn is not reduced by increasing the draw ratio, the shrinkage stress shows a higher value than when a low-oriented undrawn yarn is drawn, and even if the draw ratio is increased, Because the initial orientation of the supplied yarn is high, there is little yarn breakage during stretching, making it stable.
これにより収縮応力の極めて高い糸条が得られる。This results in a yarn with extremely high shrinkage stress.
(2)同様に、延伸温度を極めて高くしても熱に対して
安定で、延伸途中における断糸や延伸糸条に染色斑を発
生することなく安定した品位の糸条が得られる。(2) Similarly, even if the drawing temperature is extremely high, it is stable against heat, and a yarn of stable quality can be obtained without yarn breakage during drawing or uneven dyeing of the drawn yarn.
という知見を見い出し、この知見に基づいてさらに検討
を続け1本発明に達したのである。Based on this knowledge, they continued to conduct further studies and arrived at the present invention.
すなわち9本発明は複屈折率(Δn)が45X10〜1
以上である高配向度のポリエステル系未延伸糸を供給系
となし、下記式(す、(2)を満足する条件で延伸を施
すことを特徴とする収縮応力が0.79/デニ一ル以上
のポリエステル系高収縮応力糸のjilll造方法であ
る。That is, 9 the present invention has a birefringence index (Δn) of 45X10~1
A polyester undrawn yarn with a high degree of orientation as described above is used as a supply system, and the shrinkage stress is 0.79/denier or more, and is stretched under conditions that satisfy the following formula (2). This is a method for manufacturing polyester high shrinkage stress yarn.
(100+E)/146≦DR≦(100+E)/11
6 −(])Tg+30≦RT≦Tg+85
・・・(2)式中
E:延伸に供給する未延伸糸の残留伸度(%)DR:総
延伸倍率、ただしDR≧1.05Tg:延伸をこ供給す
る未延伸糸のガラス転移温度(℃)
RT:延伸時の供給系加熱ローラーの表面温度(℃)で
ある。(100+E)/146≦DR≦(100+E)/11
6 −(])Tg+30≦RT≦Tg+85
...(2) In the formula, E: Residual elongation (%) of the undrawn yarn supplied for drawing DR: Total stretching ratio, provided that DR≧1.05Tg: Glass transition temperature of the undrawn yarn supplied for drawing ( (°C) RT: Surface temperature (°C) of the supply system heating roller during stretching.
本発明でいうポリエステル糸とは、エチレンテレフタレ
ートを繰り返し単位とするポリエチレンテレフタレート
を用いることが最も望ましいが。As the polyester yarn referred to in the present invention, it is most desirable to use polyethylene terephthalate having ethylene terephthalate as a repeating unit.
該繰り返し単位を85モル%以上含有する共重合ボリエ
ヌテルを用いてもいつこうに差しつかえなしへ。Even if a copolymerized Borienether containing 85 mol% or more of the repeating unit is used, there is no hindrance.
また、延伸を施された糸条の収縮応力が高く。In addition, the shrinkage stress of the stretched yarn is high.
かつ操業性や品質の安定化を図るために延伸時に供給す
る糸条は高速紡糸法などで捲き取られた未延伸糸の複屈
折率(Δn)は45X10 ’以上の糸条を用いること
が必要である。In addition, in order to stabilize operability and quality, it is necessary to use yarn supplied during drawing that has a birefringence index (Δn) of undrawn yarn wound up using a high-speed spinning method, etc. of 45 x 10' or more. It is.
延伸時に供給する未延伸糸の複屈折率(Δn)が45X
10−3未満の糸条を用いた場合には、前記した延伸時
の断糸及び染色斑が発生し易く、目標とする0、79/
デニ一ル以上の収縮応力を有する延伸糸を得ることがで
きないのである。The birefringence (Δn) of the undrawn yarn supplied during drawing is 45X
If a thread of less than 10-3 is used, the above-mentioned thread breakage and dyeing spots are likely to occur during drawing, and the target value of 0, 79/
It is therefore impossible to obtain a drawn yarn having a shrinkage stress of one denier or more.
すなわち、本発明の目的である高収縮応力糸を効率よく
特殊な延伸条件のもとで亭造するためには、延伸に供給
する未延伸糸の複屈折率(Δn)は45X10−’!以
上とする必要がある。That is, in order to efficiently produce a high shrinkage stress yarn under special drawing conditions, which is the object of the present invention, the birefringence (Δn) of the undrawn yarn to be supplied for drawing must be 45X10-'! It is necessary to do more than that.
さらに、延伸糸条の残留伸度として30%以上が要求さ
れる場合には、延伸に供給する未延伸糸の複屈折率(Δ
n)はもつと高い方が好ましく。Furthermore, if a residual elongation of 30% or more is required for the drawn yarn, the birefringence index (Δ
The higher the value of n), the better.
65X10−’以上が好ましい。65x10-' or more is preferred.
式(1)は供給未延伸糸の残留伸度(F)と延伸系内に
おける総延伸倍率(DR)との関係を示している。Equation (1) shows the relationship between the residual elongation (F) of the supplied undrawn yarn and the total draw ratio (DR) in the drawing system.
本発明における総延伸倍率(DR)の規定は、収縮応力
及び延伸操業性との関係で必要である。すなわら、延伸
糸条の残留伸度は延伸に供給する未延伸糸の残留伸度及
び総延伸倍率(DR)と関係して変化するのであるが、
(100+E)/146 よりも小さい(DR)
で延伸を行った場合、収縮応力は小さくなり1本発明で
作られるような収縮応力の高い糸条を得ることがむつか
しく、また残留伸度が高くなるため、布帛にした場合伸
びが生じ好ましくないのである。The regulation of the total draw ratio (DR) in the present invention is necessary in relation to shrinkage stress and drawing operability. In other words, the residual elongation of the drawn yarn changes depending on the residual elongation of the undrawn yarn supplied for drawing and the total draw ratio (DR).
Less than (100+E)/146 (DR)
When stretching is carried out, the shrinkage stress decreases, making it difficult to obtain a yarn with high shrinkage stress such as the one produced by the present invention, and the residual elongation increases, which is undesirable as it causes elongation when made into a fabric. It is.
また、 (100+E)/116より大きい(DR)
で延伸を行った場合、驚くほどの高収縮応力糸が得られ
るが、延伸時において断糸の発生が著しく多くなり好ま
しくないのである。したがって、延伸時の総延伸倍率(
DR)の設定は式(1)で示される範囲にする必要があ
る。Also, greater than (100+E)/116 (DR)
When stretching is carried out, surprisingly high shrinkage stress yarns can be obtained, but the occurrence of yarn breakage during stretching is undesirable. Therefore, the total stretching ratio during stretching (
DR) needs to be set within the range shown by equation (1).
なお、紡糸時において紡糸速度を例えば5,000m/
分以上に上昇して結晶酩向の著しく高い糸条を捲き取る
ことが行われており、その場合未延伸糸の残留伸度(幻
は延伸を必要としないほど低伸度になるが9本発明にお
いてはどんな低伸度の未延伸糸を供給する場合でも、高
収縮応力糸を得るために延伸系内においては1.05以
上で加熱延伸を施す必要がある。In addition, during spinning, the spinning speed is set to, for example, 5,000 m/
In this case, the residual elongation of the undrawn yarn (the phantom is such that the elongation is so low that it does not require drawing) is wound up. In the present invention, no matter how low elongation undrawn yarn is supplied, it is necessary to heat-draw it at 1.05 or more in the drawing system in order to obtain a high shrinkage stress yarn.
また、延伸時に供給する未延伸糸の残留伸度(は]%)
の測定は、インストロンなどの引張り試鹸機を用い、試
料の長さi o <ex>の未延伸糸を引張り速度10
017分)で引張り未延伸糸が切断を開始した時の最大
応力時の伸度である。Also, residual elongation (%) of undrawn yarn supplied during drawing
The measurement is carried out using a tensile test machine such as Instron, and an undrawn yarn of sample length i o <ex> is pulled at a speed of 10
This is the elongation at the maximum stress when the undrawn yarn starts to break at 017 minutes).
加熱ローラーの温度(RT)は延伸に供給する未延伸糸
のガラス転移温度をTg(℃)とした時、(Tg+30
)℃〜(Tg+85)℃とすることが必要である。The temperature (RT) of the heating roller is (Tg+30
)°C to (Tg+85)°C.
すなわち、加熱ローフ−の温度(RT)が(Tg+30
)℃未満では延伸倍率による収縮応力への影響が極めて
大きく9条件に対して不安定であり9本発明で目標とす
る収縮応力がfl、7 f/デニール以上の糸条を安定
に製造することができないのである。That is, the temperature (RT) of the heated loaf is (Tg+30
) Celsius, the effect of the draw ratio on the shrinkage stress is extremely large and unstable under 9 conditions.9 The goal of the present invention is to stably produce yarn with a shrinkage stress of fl, 7 f/denier or more. It is not possible.
また、加熱ローラーの温度(RT)が(Tg+85)
℃を越える場合は、延伸において糸条の軟化や断糸が発
生し易くなるため、安定した操業性を得るうえで好まし
くないのである。Also, the temperature (RT) of the heating roller is (Tg+85)
If the temperature exceeds .degree. C., softening or breakage of the yarn tends to occur during drawing, which is not preferable in terms of obtaining stable operability.
ガラス転移温度(Tg)は差動走査熱量計などによって
測定が可能であり1例えば延伸に供給する未延伸糸がポ
リエチレンテレフタレートの場合ガラス転移温度は約7
5℃であって、この場合、加熱ローラーの温度(RT)
は105℃以上であって。The glass transition temperature (Tg) can be measured using a differential scanning calorimeter, etc. 1For example, if the undrawn yarn supplied for drawing is polyethylene terephthalate, the glass transition temperature is approximately 7.
5°C, in this case the temperature of the heating roller (RT)
is 105°C or higher.
160℃以下が好ましく、延伸に供給する未延伸糸の繊
度や紡糸時などに使用する油剤の種類及び目標とする収
縮応力によって適宜この温度の範囲内で選択することが
できる。The temperature is preferably 160° C. or lower, and the temperature can be appropriately selected within this range depending on the fineness of the undrawn yarn supplied for drawing, the type of oil agent used during spinning, and the target shrinkage stress.
布帛をM’Sするのに供給する糸条の収縮応力は高いほ
ど品位が安定し、かつ優れた布帛を得ることができるの
であって9例えば防水布や強撚織物などを製織する場合
、布帛を熱セットや加熱染色を施したとぎにその糸条が
持っている収縮歌会てが収縮することで、高い防水性能
やきめの細かいシボが発現するのであって、これらを満
足するには、ツジ織に供給する糸条の収縮応力は少なく
とも0.7 V/デニール耶上が必要であり、収縮応力
が〔〕、7g/デニール未満では布帛にした場合収縮の
絶対B(が小さく、かつ糸条及び中糸間のFF M抵抗
などによって収量uにばらつきが生じ、その結果、防水
性能が低くかったり、シボ立ちが粗くなったりして品位
の低い布帛になってしまうことから、防水布や強撚織物
などを製造する場合、供給する糸条の収縮応力は少なく
とも0.7 Q/デニールIJ、 lあるものが望ま1
7いのである。The higher the shrinkage stress of the yarn supplied to M'S the fabric, the more stable the quality will be, and the better the fabric can be obtained.9 For example, when weaving waterproof fabric or highly twisted fabric, After heat setting or heat dyeing, the shrinkage of the yarn shrinks, resulting in high waterproof performance and fine grain. The shrinkage stress of the yarn supplied to the weave must be at least 0.7 V/denier, and if the shrinkage stress is less than 7 g/denier, the absolute B of shrinkage (B) is small and the yarn is The yield u will vary due to FFM resistance between the intermediate yarns and other factors, and as a result, the waterproof performance will be low, the grain will become rough, and the fabric will be of low quality. When producing twisted fabrics, it is desirable that the shrinkage stress of the supplied yarn be at least 0.7 Q/denier IJ, l.
7.
なお、布帛を製造するに際し、供給する糸条の117縮
率を高くして収縮応力の低い分をカバーすることが容易
に考えられるが、この場合でもやはり糸条及び単糸間の
摩擦や織物組織の中では収縮が制限されることから充分
収縮することができす。In addition, when manufacturing fabrics, it is easy to consider increasing the 117 shrinkage ratio of the supplied yarn to compensate for the low shrinkage stress, but even in this case, friction between the yarns and single yarns and the fabric Within the tissue, contraction is restricted so that it can fully contract.
収縮量にばらつきが発生し、好ましくないのであり、さ
らには製織に供給する糸条の収縮率が高いために収縮率
の低い糸条に比較し°Cばらつきが拡大されて品位の低
下を招くのである。This is undesirable because it causes variations in the amount of shrinkage, and furthermore, because the shrinkage rate of the yarn supplied for weaving is high, the variation in °C is expanded compared to yarn with a low shrinkage rate, leading to a decline in quality. be.
なお、延伸に供給する未延伸糸の単糸繊度については特
に制限されることなく本発明の効果は現われるが、単糸
繊度を細くするに従って同一の紡糸速度でも配向度が上
昇し、かつ結晶配向が著しく高くなる傾向が見られるこ
とから、より収縮応力の(い糸条が得られ、有利である
。また、防水布や強撚織物など付加価値の高い布帛を得
ようとするならば、製織時に供給する糸条は乍糸繊度が
細く、かつ収縮応力の高い糸条を供給することが好まし
く、延伸後の繊度は0.7デニール以下の単糸繊度を有
する糸条がより好ましく使用されるのである。The effect of the present invention can be achieved without any particular restriction on the single fiber fineness of the undrawn yarn supplied for drawing, but as the single yarn fineness becomes thinner, the degree of orientation increases even at the same spinning speed, and the crystal orientation increases. As a result, yarns with higher shrinkage stress can be obtained, which is advantageous.Also, if you want to obtain fabrics with high added value such as waterproof fabrics and high-twist fabrics, weaving It is preferable to supply a yarn having a fineness of fineness and high shrinkage stress, and it is more preferable to use a yarn having a single yarn fineness of 0.7 denier or less after drawing. It is.
本発明でいう収縮応力とは、以下のように定義される。Shrinkage stress in the present invention is defined as follows.
すなわち、収縮応力を測定する糸条の繊度(D)を測定
した後、長さ10 (ffi)のループを形成したサン
プル糸条をカネボウエンジニアリング株式会社製の熱し
仁力il+11定機を用い、5W/デニールの初荷重で
炉にセットし、昇温速度1.67℃7勺で昇温を行う。That is, after measuring the fineness (D) of the yarn whose shrinkage stress is to be measured, the sample yarn forming a loop with a length of 10 (ffi) was heated at 5 W using a heating machine made by Kanebo Engineering Co., Ltd. /denier initial load, and the temperature was raised at a temperature increase rate of 1.67°C and 70mm.
糸条の各1品度(X軸)における発生する収縮応力(Y
軸)をXYレコーダーに記録する。収縮応力一温度曲線
のピーク点における収縮応力をFp (q)とするとぎ
1本発明でいう収縮応力は下記の式(3)で定義される
。Shrinkage stress (Y
axis) on the XY recorder. Assuming that the shrinkage stress at the peak point of the shrinkage stress-temperature curve is Fp (q), the shrinkage stress in the present invention is defined by the following equation (3).
収縮応力(9/デニー/I/) : FS=Fp/2D
・・・(3)以下、本発明の実施態様の例を図面を
用いて説明する。Shrinkage stress (9/Denny/I/): FS=Fp/2D
(3) Examples of embodiments of the present invention will be described below with reference to the drawings.
第1図は、本発明を実施するに際して、未延伸糸を供給
系となし、糸条を加熱及び延伸を行った後にバーンに捲
き取る工程を示した概略図であるが、かならずしもこの
方法に限定することはなく例えば多段延伸法を用いても
いつこうに差しつかえない。しかしながら9例えば多段
延伸法を用いて冷延伸倍率(DR)を分割した場合、1
つの延伸系内における延伸倍率は1.051ミヒにする
ことが必要であり、リラックス処理などを施すと、収縮
応力は低下する傾向にあるので注意を要する。FIG. 1 is a schematic diagram showing the process of using an undrawn yarn as a supply system and winding the yarn into a burner after heating and drawing the yarn when carrying out the present invention, but this method is not necessarily limited to this method. For example, there is no problem even if a multi-stage stretching method is used. However, when dividing the cold draw ratio (DR) using a multi-stage drawing method, for example, 1
It is necessary to set the stretching ratio in the two stretching systems to 1.051 μH, and care must be taken because shrinkage stress tends to decrease when relaxation treatment is performed.
供給系1は糸道ガイド2を通り、加熱ローラー6に捲回
されて送り出され、少なくとも加熱ローラー2との周速
比が1.05以上である延伸ローラー4に捲回され、延
伸された後に糸道ガイド5を通り送り出され、バー76
に捲き上げられる。この際の加熱ローラーや延伸ローラ
ーに糸条を捲回するとぎ、ローラー表面と糸条間にスリ
ップが発生しない程度に捲回する必要があり、また加熱
ローフ−への捲回については糸条のスリップを防止する
と同時に糸条への予熱効果を充分にするために0.05
秒以上加熱接触させることが好ましい。The supply system 1 passes through a yarn path guide 2, is wound around a heating roller 6, and is sent out. After being wound around a drawing roller 4 having a circumferential speed ratio of at least 1.05 to the heating roller 2, and stretched, The thread is fed out through the thread guide 5 and is fed to the bar 76.
It is rolled up. In this case, when winding the yarn around the heating roller or drawing roller, it is necessary to wind the yarn to such an extent that no slip occurs between the roller surface and the yarn. 0.05 in order to prevent slippage and at the same time to sufficiently preheat the yarn.
It is preferable that the heating contact be carried out for more than a second.
本発明の製造方法で得られた収縮応力の高い糸条は、実
施例でも明らかなように、特に防水布などの収縮応力が
高い糸条を必要とする高付加価値の布帛を製織して、そ
の効果が顕著であるが、もちろんこれに限定されるもの
ではない。As is clear from the examples, the yarn with high shrinkage stress obtained by the production method of the present invention can be used to weave high value-added fabrics that require yarn with high shrinkage stress, such as waterproof fabrics. Although the effect is remarkable, it is of course not limited to this.
以下実施例をもって本発明をさらに具体的に説明する。The present invention will be explained in more detail below with reference to Examples.
’J、?lパはC]11
固イ〒粘度〔η〕が0.65でガラス転移温度(Tg)
カフ5℃であるポリエチレンテレフタレートヲ溶融し、
72孔の紡糸口金を通して紡糸時の捲き取り速度を匹々
変化することによって複屈折率(Δn)の異なる未延伸
糸を採取した。'J,? lpa is C] 11 Hard i. Viscosity [η] is 0.65 and glass transition temperature (Tg)
Melt polyethylene terephthalate at a temperature of 5°C,
By varying the winding speed during spinning through a 72-hole spinneret, undrawn yarns with different birefringence indexes (Δn) were collected.
その未延伸糸を供給系として第1図に示した延伸Aし置
を用いて、加熱ローラーの温度(RT)を125℃(T
g+50 )にして延伸を行い、延伸倍率(DR)をI
)R=(100+E)/136とし、延伸糸の繊度が5
0デニールでフィラメント数が72フイヲメントである
糸条を得た。その糸条を前記した熱応力測定機にて収縮
応力を測定した結果及び筒編みを行い、その評価結果を
第1表に示した。The temperature (RT) of the heating roller was set to 125°C (T
g+50), and the stretching ratio (DR) was set to I
)R=(100+E)/136, and the fineness of the drawn yarn is 5.
A yarn having a denier of 0 and a number of filaments of 72 was obtained. The shrinkage stress of the yarn was measured using the thermal stress measuring machine described above, and the yarn was knitted in a tube, and the evaluation results are shown in Table 1.
実施例2
実施例1(こで採取した未延伸糸の中から、紡糸速度が
3,500m/分で捲き取った複屈折率(Δn)が55
.0x10−3である未延伸糸を用いて、加熱ローラー
の温度(RT)を125℃(Tg+50 )一定下で、
延伸倍率(DR)を種々変更して、得られた延伸糸(こ
ついて収縮応力の測定を行い、その結果を第2表に示し
た。Example 2 Example 1 (The birefringence index (Δn) of the undrawn yarn collected at a spinning speed of 3,500 m/min was 55
.. Using an undrawn yarn of 0x10-3, the heating roller temperature (RT) was kept constant at 125°C (Tg+50),
The shrinkage stress of the obtained drawn yarn was measured by changing the draw ratio (DR) variously, and the results are shown in Table 2.
実施例5
実施例2と同一の未延伸糸を供給系として、実施例1と
同一の装置を用いて、IA伸倍率(DR)を1.46一
定下で加熱ローツーの温度(RT)を種々変更し、得ら
れた糸条について収縮応力を測定し。Example 5 Using the same undrawn yarn as in Example 2 as a supply system and using the same equipment as in Example 1, the heating row two temperature (RT) was varied at a constant IA stretching ratio (DR) of 1.46. The shrinkage stress of the resulting yarn was measured.
その結果を第3表1こ示した。The results are shown in Table 3.
\
\
実施例4
実施例1と同一のポリエチレンテレフタレートを溶融し
、紡糸口金を通し、紡糸速度3,500 m1分で捲き
取った複屈折率(Δn)が87.3’X10−である高
配向の未延伸糸を採取した。\ \ Example 4 The same polyethylene terephthalate as in Example 1 was melted, passed through a spinneret, and wound up at a spinning speed of 3,500 ml/min. A highly oriented polyethylene terephthalate with a birefringence index (Δn) of 87.3'X10- An undrawn yarn was collected.
その未延伸糸を実施例1と同一の延伸装置を用い、加熱
ローラーの温度(RT)が135℃(Tg+60)で延
伸倍率(DR)が1.22 (100+E/136)の
条件にて延伸を行ったところ、延伸糸の残留伸度が28
.2 %で収縮応力が0.929/デニール、単糸繊度
が0.51デニールである延伸糸が得られた。The undrawn yarn was drawn using the same drawing device as in Example 1 under the conditions that the heating roller temperature (RT) was 135°C (Tg+60) and the drawing ratio (DR) was 1.22 (100+E/136). As a result, the residual elongation of the drawn yarn was 28.
.. At 2%, a drawn yarn having a shrinkage stress of 0.929/denier and a single yarn fineness of 0.51 denier was obtained.
該糸条を用いて、経糸が169*/インチで緯糸が81
和′インチの織り密度でタック織物を製織し、プレセッ
ト及び染色など一連の工程を経た後に該布帛の耐水圧試
験を行ったところ、 1,500ミリ以上の水圧を掛
けても完全防水を保っており、防水性能が極めて高い防
水布が得られた。Using this yarn, the warp is 169*/inch and the weft is 81
A tacked fabric was woven with a weave density of 1.5 inches, and after undergoing a series of processes such as presetting and dyeing, a water pressure test was conducted on the fabric, and it remained completely waterproof even when water pressure of over 1,500 mm was applied. A waterproof fabric with extremely high waterproof performance was obtained.
これに対して、同一の未延伸糸を用いて本発明の範囲外
の条件で延伸を施した収縮応力が0.61g/デニール
の延伸糸を実施例4で紹介した織り組織で製織及び染色
を施し、該布帛について丈耐水圧の試験を行ったところ
、#水圧は600 ミ!Jが限界であり1本発明で得ら
れた糸条を用−いた布帛は防水性に極めて優れているこ
とが認められた。In contrast, a drawn yarn with a shrinkage stress of 0.61 g/denier, which was drawn under conditions outside the scope of the present invention using the same undrawn yarn, was woven and dyed with the weave structure introduced in Example 4. When we conducted a length water pressure test on the fabric, the water pressure was 600 mi! J is the limit, and it was found that the fabric using the yarn obtained by the present invention has extremely excellent waterproof properties.
第1図は9本発明の高収縮応力糸を製造するための装置
の一例である延撚機の概略図である。
1:供給未延伸糸
2:糸道ガイド
5:加熱ローラー
4:延伸ローフ−
5:糸道ガイド
6:バーン
特許出願人 日本エステル株式会社
代理人 児玉雄三FIG. 1 is a schematic diagram of a drawing/twisting machine which is an example of an apparatus for producing the high shrinkage stress yarn of the present invention. 1: Supply undrawn yarn 2: Yarn path guide 5: Heating roller 4: Stretched loaf 5: Yarn path guide 6: Burn patent applicant Yuzo Kodama, agent of Nippon Ester Co., Ltd.
Claims (2)
配向度のポリエステル系未延伸糸を供給系となし。 r肥大(])、 (2)を嵩足する条件で延伸を施すこ
とを特徴とする熱収縮応力が0.79/デニ一ル以上で
あるポリエステル系高熱収縮応力糸のl1tll造方法
。 (+00+E)/146≦DR≦(100+B)/11
6 −(1,)Tg+50≦RT ≦Tg −1−85
−(2)式中 a:IA仲に供給する未延伸糸の残留伸度(%)DR=
総延伸倍率、ただしDR≧1.05Tg : FE伸に
供給する未延伸糸のガラス転移温度(℃) R’I’ : )TE伸時の供給系加熱ローツーの表面
温度(℃) である。(1) Highly oriented polyester undrawn yarn with a birefringence index (80) of 45×10-' or more was used as the supply system. A method for manufacturing a polyester-based high heat shrinkage stress yarn having a heat shrinkage stress of 0.79/denier or more, which is characterized by carrying out stretching under the conditions of increasing bulk (r) and (2). (+00+E)/146≦DR≦(100+B)/11
6-(1,)Tg+50≦RT≦Tg-1-85
-(2) where a: Residual elongation (%) of undrawn yarn supplied to IA medium DR=
Total stretching ratio, provided that DR≧1.05Tg: Glass transition temperature (°C) of undrawn yarn supplied to FE drawing R'I': ) Surface temperature (°C) of heating row two of supply system during TE drawing.
以下である特許請求の範囲第1項記載のポリエステル系
高熱収縮応力糸の製造方法。(2) j, If: The method for producing a polyester-based high heat-shrinkable stress yarn according to claim 1, wherein the single yarn warpage after stretching is 0.7 denier or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18385782A JPS5976917A (en) | 1982-10-20 | 1982-10-20 | Production of yarn having high heat shrinkage stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18385782A JPS5976917A (en) | 1982-10-20 | 1982-10-20 | Production of yarn having high heat shrinkage stress |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5976917A true JPS5976917A (en) | 1984-05-02 |
Family
ID=16143033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18385782A Pending JPS5976917A (en) | 1982-10-20 | 1982-10-20 | Production of yarn having high heat shrinkage stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976917A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094618A (en) * | 1983-10-22 | 1985-05-27 | Toyobo Co Ltd | Polyester fiber having high twist setting and creping property |
JPS6141319A (en) * | 1984-07-31 | 1986-02-27 | Toray Ind Inc | Manufacture of polyester multifilament |
EP0202940A2 (en) * | 1985-05-24 | 1986-11-26 | Trw Inc. | Use and preparation of a viscosifier and compositions containing the same |
JPS62110914A (en) * | 1985-11-01 | 1987-05-22 | Toyobo Co Ltd | Polyester yarn and polyester combined filament yarn having different contraction |
JPH02216215A (en) * | 1989-02-14 | 1990-08-29 | Toray Ind Inc | Easily soluble high-shrinkage polyester yarn and production thereof |
-
1982
- 1982-10-20 JP JP18385782A patent/JPS5976917A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094618A (en) * | 1983-10-22 | 1985-05-27 | Toyobo Co Ltd | Polyester fiber having high twist setting and creping property |
JPS6141319A (en) * | 1984-07-31 | 1986-02-27 | Toray Ind Inc | Manufacture of polyester multifilament |
JPH0366403B2 (en) * | 1984-07-31 | 1991-10-17 | Toray Industries | |
EP0202940A2 (en) * | 1985-05-24 | 1986-11-26 | Trw Inc. | Use and preparation of a viscosifier and compositions containing the same |
JPS62110914A (en) * | 1985-11-01 | 1987-05-22 | Toyobo Co Ltd | Polyester yarn and polyester combined filament yarn having different contraction |
JPH02216215A (en) * | 1989-02-14 | 1990-08-29 | Toray Ind Inc | Easily soluble high-shrinkage polyester yarn and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2729837B2 (en) | Polytetrafluoroethylene filament and method for producing the same | |
US4403094A (en) | Deep-dyeable polyester fiber | |
US4390685A (en) | Polyester fiber and process for producing same | |
JPS5976917A (en) | Production of yarn having high heat shrinkage stress | |
JP4226144B2 (en) | Polyester composite fiber for stretch woven and knitted fabric | |
JPS607732B2 (en) | Manufacturing method of differential shrinkage blend yarn | |
US4539242A (en) | Pile fabric with non-mushroom shaped cut ends | |
JPS6250568B2 (en) | ||
JPS6115168B2 (en) | ||
JP3459496B2 (en) | Method for producing nylon multifilament yarn | |
JPH0327140A (en) | Mixed yarn having different fineness and shrinkage | |
JPS5971413A (en) | Polyester yarn for high drapery cloth and its manufacture | |
KR100226657B1 (en) | Process for mixed yarn having different shrinkage | |
JP3898784B2 (en) | Method for producing polyamide chic and thin yarn | |
JP3321302B2 (en) | Core-sheath type entangled mixed yarn with loop fluff | |
JPS5936722A (en) | Conjugate spinning | |
JPS6221832A (en) | Production of polyester filament | |
JP2968381B2 (en) | Polyester fiber for textile | |
JP3581003B2 (en) | Polyester multifilament different shrinkage mixed yarn | |
JPS5926540A (en) | Production of polyester spun-like yarn | |
KR19980056784A (en) | Manufacturing method of polyester microfiber | |
JP2000199145A (en) | Production of polyester fiber | |
JPS60181315A (en) | Manufacture of combined filament yarn of polyester | |
JPS6247982B2 (en) | ||
JPH06346329A (en) | Special latent-crimping polyester yarn and its production |