JPH0478737B2 - - Google Patents

Info

Publication number
JPH0478737B2
JPH0478737B2 JP62294868A JP29486887A JPH0478737B2 JP H0478737 B2 JPH0478737 B2 JP H0478737B2 JP 62294868 A JP62294868 A JP 62294868A JP 29486887 A JP29486887 A JP 29486887A JP H0478737 B2 JPH0478737 B2 JP H0478737B2
Authority
JP
Japan
Prior art keywords
shrinkage stress
fiber
temperature
heat shrinkage
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62294868A
Other languages
Japanese (ja)
Other versions
JPS63152437A (en
Inventor
Hideo Isoda
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP29486887A priority Critical patent/JPS63152437A/en
Publication of JPS63152437A publication Critical patent/JPS63152437A/en
Publication of JPH0478737B2 publication Critical patent/JPH0478737B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は定長下で熱収縮による応力が著しく高
い繊維(以下高収縮繊維応力という)に関する。 熱収縮応力を利用した被覆締付け材として、従
来よりポリエステル繊維が使用されているが、特
開昭56−9443号公報等に開示されているごとく熱
収縮応力が低いため、充分な締付け力を付与する
場合には多量の繊維を必要とし、特にモーターの
絶縁被覆締付け材として使用するほか、原子炉の
炉心締付け材等に使用する場合にも繊維使用量が
多くなり、コスト高となる。 本発明者らは、上記欠点を解決するため、より
締付け応力の大きい高収縮応力糸を得るべく鋭意
検討の結果、配向結晶化せしめた糸条を結晶化温
度付近で高倍率延伸することにより、熱収縮応力
が高くなることを知見し、本発明に到達した。 すなわち本発明は、固有粘度が0.7以上のポリ
エチレンテレフタレートを主成分とする配向結晶
化した、160℃乾熱収縮率が20%以下の未延伸糸
を、DSCで測定した昇温過程での結晶化による
発熱ピーク温度領域での延伸温度で多段延伸する
ことを特徴とする高収縮応力ポリエステル繊維の
製造方法。 本発明にいう熱収縮応力とは、繊維を0.05g/
デニールの張力下一定長で把持し、これを加熱昇
温していくと、繊維は熱収縮しようとするが、そ
の両端が固定されているため実際の収縮は起こら
ず、そのかわり繊維に収縮せんとする内部応力が
生じる。この応力を熱収縮応力という。熱収縮応
力の測定は、市販の非接触型金属抵抗線歪計を用
い、これを増輻させ連動した自動X−Y記録計で
時間に対する応力の変化を記録測定する。試料は
一定長のループとし、一端を歪計に直結したフツ
クに、他端もフツクに掛け、20℃において初期張
力0.05g/デニールになるように試料−フツク間
長さを調整固定する。(このときタルミのないよ
うに注意して張力を与える。)こうして固定され
た試料を内径φ8mmの円筒形石英ガラス管で外側
にニクロム線を巻いたヒーターで更にヒーター線
外側を内形φ25mmの石英管で囲つた二重管式ヒー
ター(長さ20cm)の中心に試料が位置するように
ヒーター中に試料を設置して、試料と3mm離れた
中心に設置した検出端とヒーターをプログラム付
き積分回路を有する温調器と直結させ、 20℃/分の昇温速度でヒーターを加熱して雰囲気
を連続して昇温せしめ溶断するまで加熱して測定
した熱収縮による収縮力を繊維のデニールで除し
た値を熱収縮応力とする。 従来知られている特公昭48−17212号公報、特
開昭56−9443号公報等に開示されているごとき未
配向結晶化未延伸糸を多段延伸したものでは雰囲
気温度が100℃以上溶断するまでの温度域で0.7
g/dを超える熱収縮応力を示すものは得られて
いないが、配向結晶化した未延伸糸を多段延伸し
て得た本発明繊維は、雰囲気温度が100℃以上溶
断するまでの温度域で0.8g/デニール以上の熱
収縮応力を示す高収縮応力糸である。好ましい本
発明の繊維は昇温過程において前記温度域で1.0
g/デニール以上の熱収縮応力を示し、このよう
な高収縮応力糸は、従来全く予期されていない。
なお昇温過程で前記温度域で最大を示す熱収縮応
力値(ピーク値)が0.8g/dを超えるものも本
発明に包含される。本発明繊維を構成する成分
は、ポリエステルが好ましく中でもポリエチレン
テレフタレートが特に好ましい。 本発明繊維の固有粘度(フエノール/テトラク
ロルエタン6/4混合溶媒中30℃で測定する。)
は、0.7以上であるとき熱収縮応力が高くなるの
で好ましく、0.9以上では1.0g/デニールを超え
るので特に好ましい。 本発明の繊維は、通常の結晶性熱可塑性ポリマ
ーの溶融紡糸により引取られた配向結晶化した未
延伸糸の乾熱160℃での収縮率(JIS−L−1073−
6−12に示される方法による。以下SHDと略
す。)が20%以下、ことに10%以下となる引取り
速度で得られるものが好ましい。SHDが40%以
上の未延伸糸を用いたものは、熱収縮応力が0.8
g/デニール未満となるので好ましくない。次い
で該未延伸糸は延伸し本発明繊維が得られるが、
延伸条件は2段延伸が好ましい。なお延伸温度
は、望む最大を示す熱収縮応力温度によつて適温
を選択すればよい。特に好ましくはDSCで測定
した昇温過程(昇温速度20℃/分)での結晶化に
よる発熱ピーク温度付近である。たとえばポリエ
チレンテレフタレート(〔η〕:0.7以上)から
3000〜4000m/分を紡速で得られた未延伸糸で
は、延伸速度によつて多少異なるが、通常110〜
115℃である。 このようにして得た本発明の繊維が示す熱収縮
応力発現挙動は第1図のに示すごとく、昇温過
程において100℃以上の温度域で0.8g/デニール
以上の高い熱収縮応力を示す新規な高収縮応力繊
維である。 この理由は今だ充分解明されてはいないが、高
度に伸長歪が付与された配向したアモルフアス領
域の分子鎖が、配向結晶化により生じた結晶でつ
ながれた網目構造状態で凍結された構造となつて
いるのではないかと想像され、この構造が熱エネ
ルギーを吸収して、分子運動を生じると著しく高
い収縮応力となつて発現するのではないかと推測
される。 本発明の繊維は、用途に応じマルチフイラメン
ト又はステープルとして締付け材として直接用い
てもよく、紐状として用いてもよく、更に他の有
用な繊維と複合化した紐、テープ、布帛等として
用いてもよい。特に本発明の高収縮応力繊維から
なる糸を経糸とし低収縮性糸または自発伸長糸を
緯糸とした布帛として用いるのが好ましい。この
ような高収縮応力繊維は、締付け材として多様な
方面に利用され軽量化や省コスト化を可能にする
ことから工業的意義は著しく大きいものである。 以下に本発明を実施例をもつて具体的に説明す
る。なお実施例中で用いた熱収縮応力値は、前述
した測定法中歪計は、東洋ボールドウイン社製
T.I−550−360型、前置増巾器は東洋ボールドウ
イン社製、PRE−AMPLIFIER SS−PR型、自
動X−Y記録計は横河電気工業社製、TYPE
PRO−11A型。温調器は真空理工社製AGNE
HPC−1500及びAGNESCR−BOXを用いて測定
した。 実施例 固有粘度1.0のポリエチレンテレフタレートを
310℃にてφ0.3のオリフイス孔を16個有するノズ
ルより、単孔当り1.5g/分の吐出量で紡出し、
引取速度4000m/分にて巻き取つた未延伸糸の特
性を表−1に示す。 得られた未延伸糸を次いで延伸速度100m/分
にて、1段目25℃、2段目110℃の温度条件で延
伸した延伸糸の特性を表−1に示す。 尚、延伸倍率は破断延伸倍率にもとづいて定め
た。すなわち1段目は破断延伸倍率の70%、2段
目は全延伸倍率が破断延伸倍率の95%になるよう
に設定した。 配向結晶化した未延伸糸を用いて得た本発明の
繊維は、第1図−に示すごとき高収縮応力糸で
あつた。 比較例 引取速度1300m/分とし、延伸倍率を変更した
以外実施例と同一の条件で得た未延伸糸及び延伸
糸の特性を表−1に示す。配向結晶化していない
未延伸糸を用いて得た繊維は、第1図−に示す
ごとく、熱収縮応力の低いものしか得られなかつ
た。
The present invention relates to fibers that exhibit significantly high stress due to heat shrinkage under constant length (hereinafter referred to as high shrinkage fiber stress). Polyester fiber has traditionally been used as a covering tightening material that utilizes heat shrinkage stress, but as disclosed in JP-A-56-9443, etc., the heat shrinkage stress is low, so it provides sufficient tightening force. In this case, a large amount of fiber is required, especially when used as a fastening material for the insulation coating of a motor, and also when used as a fastening material for a nuclear reactor core, etc., resulting in high costs. In order to solve the above-mentioned drawbacks, the present inventors have conducted intensive studies to obtain a high shrinkage stress yarn with higher tightening stress, and as a result, by drawing an oriented crystallized yarn at a high magnification near the crystallization temperature, The present invention was achieved based on the finding that thermal shrinkage stress increases. In other words, the present invention uses an undrawn yarn whose main component is polyethylene terephthalate with an intrinsic viscosity of 0.7 or more, which has been oriented and crystallized and has a dry heat shrinkage rate of 20% or less at 160° C. A method for producing a high shrinkage stress polyester fiber, the method comprising multi-stage drawing at a drawing temperature in an exothermic peak temperature region. The heat shrinkage stress referred to in the present invention is 0.05g/
When a denier is held at a certain length under tension and the temperature is increased, the fiber tries to shrink due to heat, but since both ends are fixed, no actual shrinkage occurs; instead, the fiber does not shrink. An internal stress is generated. This stress is called heat shrinkage stress. The heat shrinkage stress is measured using a commercially available non-contact metal resistance wire strain meter, which is increased in intensity and linked to an automatic X-Y recorder to record and measure changes in stress over time. The sample is made into a loop of a certain length, one end of which is hooked to a hook directly connected to the strain meter, and the other end of the loop is hooked, and the length between the sample and the hook is adjusted and fixed so that the initial tension is 0.05 g/denier at 20°C. (At this time, apply tension while being careful not to sag.) The sample fixed in this way is heated using a cylindrical quartz glass tube with an inner diameter of 8 mm and a nichrome wire wrapped around the outside. Place the sample in the heater so that the sample is located in the center of a double-tube heater (length 20 cm) surrounded by a tube, and connect the detection end and heater, which are placed in the center 3 mm away from the sample, with a programmed integrating circuit. The shrinkage force due to thermal shrinkage is divided by the denier of the fiber. The value obtained is the heat shrinkage stress. In conventionally known JP-B No. 48-17212, JP-A-56-9443, etc., unoriented crystallized undrawn yarns are drawn in multiple stages until the atmospheric temperature reaches 100°C or higher and the fibers are fused. 0.7 in the temperature range of
Although no fibers have been obtained that exhibit a heat shrinkage stress exceeding g/d, the fibers of the present invention obtained by multi-stage drawing of oriented crystallized undrawn yarns exhibit high thermal shrinkage stress in the ambient temperature range of 100°C or higher before melting. It is a high shrinkage stress yarn that exhibits a heat shrinkage stress of 0.8 g/denier or more. The preferred fiber of the present invention has a temperature of 1.0 in the temperature range during the heating process.
The yarn exhibits a heat shrinkage stress of more than g/denier, and such a high shrinkage stress yarn has never been expected.
Note that the present invention also includes those whose heat shrinkage stress value (peak value) showing a maximum in the above temperature range during the temperature raising process exceeds 0.8 g/d. The component constituting the fiber of the present invention is preferably polyester, and particularly preferably polyethylene terephthalate. Intrinsic viscosity of the fiber of the present invention (measured at 30°C in a 6/4 mixed solvent of phenol/tetrachloroethane)
When it is 0.7 or more, the heat shrinkage stress becomes high, so it is preferable, and when it is 0.9 or more, it exceeds 1.0 g/denier, so it is particularly preferable. The fiber of the present invention has a shrinkage rate (JIS-L-1073-
According to the method shown in 6-12. Hereinafter abbreviated as SHD. ) is preferably 20% or less, especially 10% or less. For those using undrawn yarn with SHD of 40% or more, the heat shrinkage stress is 0.8
g/denier, which is not preferable. The undrawn yarn is then drawn to obtain the fiber of the present invention,
Two-step stretching is preferred as the stretching condition. Note that an appropriate stretching temperature may be selected depending on the desired maximum heat shrinkage stress temperature. Particularly preferably, the temperature is near the exothermic peak temperature due to crystallization during the temperature increase process (temperature increase rate 20° C./min) measured by DSC. For example, from polyethylene terephthalate ([η]: 0.7 or more)
For undrawn yarn obtained at a spinning speed of 3000 to 4000 m/min, the spinning speed is usually 110 to
The temperature is 115℃. As shown in Figure 1, the fiber of the present invention thus obtained exhibits a high thermal shrinkage stress of 0.8 g/denier or more in the temperature range of 100°C or higher. It is a high shrinkage stress fiber. The reason for this is still not fully understood, but the molecular chains of the oriented amorphous region, which is highly elongated and strained, are frozen in a network structure connected by crystals produced by oriented crystallization. It is assumed that this structure absorbs thermal energy and causes molecular movement, which results in extremely high contraction stress. Depending on the application, the fibers of the present invention may be used directly as a tightening material in the form of multifilaments or staples, or may be used in the form of strings, or may be used as strings, tapes, fabrics, etc. composited with other useful fibers. Good too. In particular, it is preferable to use a fabric in which the warp is a yarn made of the high shrinkage stress fiber of the present invention and a low shrinkage yarn or a spontaneously elongated yarn is a weft. Such high shrinkage stress fibers are of great industrial significance because they are used in a wide variety of applications as tightening materials and enable weight and cost savings. The present invention will be specifically explained below using examples. The heat shrinkage stress values used in the examples were measured using the strain meter manufactured by Toyo Baldwin Co., Ltd.
TI-550-360 type, preamplifier manufactured by Toyo Baldwin, PRE-AMPLIFIER SS-PR type, automatic X-Y recorder manufactured by Yokogawa Electric Industries, TYPE
PRO-11A type. The temperature controller is AGNE manufactured by Shinku Riko Co., Ltd.
It was measured using HPC-1500 and AGNESCR-BOX. Example Polyethylene terephthalate with an intrinsic viscosity of 1.0
Spun at 310℃ from a nozzle with 16 φ0.3 orifice holes at a rate of 1.5g/min per single hole.
Table 1 shows the properties of the undrawn yarn taken up at a take-up speed of 4000 m/min. The obtained undrawn yarn was then drawn at a drawing speed of 100 m/min at a temperature of 25° C. in the first stage and 110° C. in the second stage. The properties of the drawn yarn are shown in Table 1. The stretching ratio was determined based on the stretching ratio at break. That is, the first stage was set so that the stretching ratio at break was 70%, and the second stage was set so that the total stretching ratio was 95% of the stretching ratio at break. The fiber of the present invention obtained using the oriented crystallized undrawn yarn was a high shrinkage stress yarn as shown in FIG. Comparative Example Table 1 shows the properties of undrawn yarn and drawn yarn obtained under the same conditions as in Example except that the take-up speed was 1300 m/min and the stretching ratio was changed. As shown in FIG. 1, fibers obtained using undrawn yarns that were not oriented and crystallized had only low heat shrinkage stress.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、昇温過程における熱収縮応力の変化
を示す。 は本発明の繊維が示す熱収縮応力の変化、
は比較例の繊維が示す熱収縮応力の変化である。
FIG. 1 shows the change in thermal shrinkage stress during the temperature rising process. is the change in heat shrinkage stress exhibited by the fiber of the present invention,
is the change in heat shrinkage stress exhibited by the fiber of the comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 固有粘度が0.7以上のポリエチレンテレフタ
レートを主成分とする配向結晶化した、160℃乾
熱収縮率が20%以下の未延伸糸を、DSCで測定
した昇温過程での結晶化による発熱ピーク温度領
域での延伸温度で多段延伸することを特徴とする
高収縮応力ポリエステル繊維の製造方法。
1 The exothermic peak temperature due to crystallization during the heating process measured by DSC of an oriented crystallized undrawn yarn whose main component is polyethylene terephthalate with an intrinsic viscosity of 0.7 or more and a dry heat shrinkage rate of 20% or less at 160°C. 1. A method for producing a high shrinkage stress polyester fiber, which is characterized by carrying out multi-stage drawing at a drawing temperature in a certain range.
JP29486887A 1987-11-20 1987-11-20 Production of high shrink stress fiber Granted JPS63152437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29486887A JPS63152437A (en) 1987-11-20 1987-11-20 Production of high shrink stress fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29486887A JPS63152437A (en) 1987-11-20 1987-11-20 Production of high shrink stress fiber

Publications (2)

Publication Number Publication Date
JPS63152437A JPS63152437A (en) 1988-06-24
JPH0478737B2 true JPH0478737B2 (en) 1992-12-14

Family

ID=17813289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29486887A Granted JPS63152437A (en) 1987-11-20 1987-11-20 Production of high shrink stress fiber

Country Status (1)

Country Link
JP (1) JPS63152437A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517226A (en) * 1974-07-11 1976-01-21 Toray Industries Tansenisokuno seizohoho
JPS5184918A (en) * 1975-01-17 1976-07-24 Toray Industries ENSHINHOHO
JPS52121530A (en) * 1976-04-05 1977-10-13 Unitika Ltd Method for hot drawing of polyester filament yarns having high tensile strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517226A (en) * 1974-07-11 1976-01-21 Toray Industries Tansenisokuno seizohoho
JPS5184918A (en) * 1975-01-17 1976-07-24 Toray Industries ENSHINHOHO
JPS52121530A (en) * 1976-04-05 1977-10-13 Unitika Ltd Method for hot drawing of polyester filament yarns having high tensile strength

Also Published As

Publication number Publication date
JPS63152437A (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US3529934A (en) Process for the preparation of carbon fibers
US5061561A (en) Yarn article comprising a tetrafluoroethylene polymer and a process for producing the same
EP0205960B1 (en) Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
Bell et al. Changes in the structure of wet-spun acrylic fibers during processing
JP2914385B2 (en) Dimensionally stable polyester yarn for high tenacity treatment cord
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
US4446299A (en) Melt spinning of synthetic fibers
JP4359999B2 (en) Method for producing polyphenylene sulfide fiber
US4973657A (en) High-strength polyester yarn and process for its preparation
US4755336A (en) Process for making polyester blend fiber
US4374114A (en) Process for the surface modification of carbon fibers
US3723150A (en) Surface modification of carbon fibers
JPH0478737B2 (en)
JPH0350004B2 (en)
US4112059A (en) Process for the production of carbon filaments utilizing an acrylic precursor
JPH01239109A (en) Polyphenylene sulfide fiber, its production and false-twisted yarn of said fiber
JP2000073230A (en) Production of polyester fiber
JPS6119811A (en) Three-dimensionally crimped fiber of polyester and its production
JPS60110939A (en) Highly shrinkable stress core yarn
JPS5976917A (en) Production of yarn having high heat shrinkage stress
JPH06257013A (en) Polycarbonate multifilament
JPH07118921A (en) Polyester fiber of high shrinkage stress and production thereof
JPS60119241A (en) Highly shrinkable stress core yarn
Brody Influence of orientation on polyester fibres
JPS60173128A (en) Differential shrink composite yarn