US3926228A - Carbonaceous tapes - Google Patents

Carbonaceous tapes Download PDF

Info

Publication number
US3926228A
US3926228A US355232A US35523273A US3926228A US 3926228 A US3926228 A US 3926228A US 355232 A US355232 A US 355232A US 35523273 A US35523273 A US 35523273A US 3926228 A US3926228 A US 3926228A
Authority
US
United States
Prior art keywords
tape
warp ends
fibrous
weave construction
incorporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US355232A
Inventor
Kenneth S Burns
George R Ferment
Roger C Waugh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUBJECT TO AGREEMENT RECITED SEE DOCUMENT FOR DETAILS
BASF SE
BASF Corp
Original Assignee
CELLANESE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00112189A external-priority patent/US3818082A/en
Application filed by CELLANESE CORP filed Critical CELLANESE CORP
Priority to US355232A priority Critical patent/US3926228A/en
Application granted granted Critical
Publication of US3926228A publication Critical patent/US3926228A/en
Assigned to CCF, INC. reassignment CCF, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CELANESE CORPORATION
Assigned to BASF STRUCTURAL MATERIALS, INC., A CORP. OF DE. reassignment BASF STRUCTURAL MATERIALS, INC., A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: INMONT CORPORATION, A CORP. OF DE.
Assigned to INMONT CORPORATION reassignment INMONT CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: CCF, INC., NARMCO MATERIALS, INC., QUANTUM, INCORPORATED
Assigned to SUBJECT TO AGREEMENT RECITED SEE DOCUMENT FOR DETAILS., BASF AKTIENGESELLSCHAFT, D-6700 LUDWIGSHAFEN, GERMANY reassignment SUBJECT TO AGREEMENT RECITED SEE DOCUMENT FOR DETAILS. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BASF STRUCTURAL MATERIALS INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/005Tapes or ribbons not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03JAUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
    • D03J1/00Auxiliary apparatus combined with or associated with looms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03JAUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
    • D03J2700/00Auxiliary apparatus associated with looms; Weavening combined with other operations; Shuttles
    • D03J2700/02Treatment of the weaving material on the loom, e.g. sizing, humidifying, cleaning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S273/00Amusement devices: games
    • Y10S273/23High modulus filaments

Definitions

  • the parallel warp ends are Related Application Data provided and maintained during at least a portion of the conversion process as an integral tape possessing a 62 1 Dmslon of Ser No 1 Feb 1971 high degree of structural integrity by the presence of 21 weft pick interlaced therewith In a sateen weave con- 52 US. Cl Struction which floats Substantial number of the par- Int CL allel warp ends as described. When the resulting car- [58].
  • carbon fibers or carbonaceous fibers are used herein in the generic sense and include graphite fibers as well as amorphous carbonfibers.
  • Graphite fibers are defined herein as fibers which consist essentially of carbon and have a predominant x-ray diffraction pattern characteristic of graphite.
  • Amorphous carbon fibers are defined as fibers in which the bulk of the fiber weight can be attributed to carbon and which exhibit an essentially amorphous x-ray diffraction pattern.
  • Graphite fibers generally have a higher Youngs modulus than do amorphous carbon fibers and in addition are more highly electrically and thermally conductive.
  • the preferred organic polymeric fibrous material is an acrylic polymer comprising at least about 85 mol per cent of acrylonitrile units and up to about 15 mol per cent of one or more monovinyl units copolymerized therewith.
  • the organic polymeric tape is provided in the sateen weave construction throughout the conversion process.
  • FIG. 4 is the numerical weaving pattern for the tape of FIG. 3.
  • FIG. 5 is an enlarged plan view of a portion of precursor tape of a 16 X 16 sateen weave construction suitable for use in the present process.
  • FIG. 6 is the numerical weaving pattern for the tape of FIG. 5.
  • FIG. 7 is an enlarged plan view of a portion of precursor tape having a weave construction not in accordance with that employed in the present process and is presented for comparative purposes.
  • FIG. 8 is the numerical weaving pattern for the tape of FIG. 7 and is presented for comparative purposes only.
  • the tape which is converted to a carbonaceous fibrous material possesses a sateen weave construction (as described in detail hereafter) during at least a portion of the conversion process which includes at least 32 adjoining substantially parallel linear warp ends.
  • the warp ends are composed of an organic polymeric fibrous material capable of conversion to a carbonaceous fibrous material.
  • the warp ends may be conveniently selected from those fibrous materials which are recognized as being suitable for thermal conversion to a carbonaceous fibrous material.
  • the warp ends may be derived from organic polymers such as an acrylic polymer, a cellulosic polymer, a polyamide, a polybenzimidazole, polyvinyl alcohol, pitch, etc.
  • acrylic polymeric materials are particularly suited for use in the formation of the warp ends employed in the present process.
  • suitable cellulosic materials include the natural and regenerated forms of cellulose, e.g. rayon.
  • suitable polyamide materials include the aromatic polyamides, such as nylon 6T, which is formed by the condensation of hexamethylenediamine and terephthalic acid.
  • An illustrative example of a suitable polybenzimidazole is poly-2,2-m-phenylene-S ,5 bibenzimidazole.
  • An acrylic polymeric material prior to thermal stabilization may be formed primarily of recurring acrylonitrile units.
  • the acrylic polymer should contain not less than about mol per cent of acrylonitrile units with not more than about 15 mol per cent of a monovinyl compound which is copolymerizable with acrylonitrile such as styrene, methyl acrylate, methyl methacrylate, vinly acetate, vinyl chloride, vinylidene chloride, vinyl pyridine, and the like, or a plurality of such monomers.
  • a particularly preferred acrylic polymeric material is an acrylonitrile homopolymer, or a closely related acrylonitrile copolymer (i.e. contains at least about mol per cent of acrylonitrile units and up to about 5 mol per cent of one or more monovinyl compounds copolymerized with acrylonitrile).
  • the warp ends may be provided in a variety of physical configurations.
  • the warp ends may assume the configuration of continuous lengths of multifilament yarns, tows, strands, cables, or similar fibrous assemblages.
  • the warp ends are a continuous multifilament yarn.
  • the warp ends may optionally be provided with a twist which tends to improve the handling characteristics.
  • a twist of about 0.1 to 5 tpi, and pref-- erably about 0.3 to 1.0 tpi, may be utilized.
  • a false twist may be used instead of or in addition to a real twist.
  • the warp ends may be more highly oriented. e.g. drawn up to a single filament tenacity of about 7.5 to 8 grams per denier. or more.
  • the weft pick is preferably also composed of an organic polymeric fibrous material which is capable of undergoing carbonization without the destruction of its original fibrous configuration.
  • the weft pick may be initially provided as a previously stabilized organic polymeric fibrous material, a carbonaceous fibrous material, or other fibrous material capable of withstanding the carbonization temperatures.
  • a weft pick may be selected which is incapable of withstanding the highly elevated temperatures required to complete carbonization and/or graphitization of the warp ends.
  • the weft pick may be formed from a cellulosic material such as cotton which will impart dimensional stability to the warp ends through the stabilization step, but which is incapable of withstanding a subsequent heat treatment step.
  • the weft pick may be provided in a variety of physical configurations.
  • the weft pick may assume the configuration of a multifilament yarn, tow, strand, cable, or similar fibrous assemblage.
  • the weft pick is a continuous multifilament yarn having a total denier equal to or less than that of the continuous multifilament yarn warp ends.
  • the total denier of a multifilament acrylic yarn weft pick prior to thermal stabilization is below about 400, e.g. about 100 to 300, total denier.
  • the total denier of the weft pick is about 0.2 to 0.5 times the total denier of a warp end.
  • a minor amount of twist may be remedially provided in a multifilament yarn weft pick which improves the handling characteristics during weaving.
  • the weft pick may be provided with a twist of about 0.1 to tpi (preferably 0.1 to 3 tpi), and most preferably about 0.2 to 0.7 tpi. If a twist is utilized in the warp ends it is recommended that any twist employed in the weft pick be to a lesser degree so that the weft pick may readily assume a more flatened configuration when in contact with warp ends.
  • the weft pick utilized in the formation of the tape lacks a tendency to undergo excessive shrinkage during heat treatment (described hereafter) which imparts a pucker to the warp ends and thereby interferes with the flat configuration of the tape.
  • the weft pick is hot drawn at least about 3 times its as-spun length to increase its orientation and is subsequently relaxed (e.g. 5 to 40 percent of drawn length) prior to incorporation in the precursor tape so that its tendency to undergo shrinkage is minimized.
  • the fibrous material utilized as the warp ends and weft pick may optionally be provided in intimate association with one or more catalytic agents capable of en hancing the rate of the thermal conversion to a carbonaceous fibrous material.
  • the fibrous organic polymeric tape utilized as the precursor in the process of the present invention during at least a portion of its thermal conversion to a carbonized form is provided in a highly unbalanced sateen weave construction.
  • a sateen weave construction is defined as a woven construction possessing a substantial number of floats which run fillingwise (i.e. weftwise).
  • the term float is used in usual sense and indicates that a plurality of substantially perpendicular strands present within the construction are being passed over or skipped in the absence of interlacement.
  • the tape is unbalanced in the sense that the numerical proportion of warp ends to filling picks per square inch present within the same is substantially greater than 1:1, e.g. about 4:1 to :1, or more, and preferably about 1521 to 30:1.
  • the tape comprises at least 32 adjoining substantially parallel linear warp ends. Commonly, the tape comprises about 32 to 500 adjoining warp ends; however, even a substantially larger number of warp ends can be employed, e.g. 1000 or more.
  • the warp ends are essentially coextensive with the length of the tape.
  • the weft pick present within the tape of sateen weave construction is provided at a frequency of about 0.1 to 8 picks per inch of said tape, and preferably at a frequency of about 1 to 3 picks per inch of said tape.
  • the weft pick is provided at a relatively low frequency, and preferably as a continuous length, it may intersect the edge of the tape at an angle other than exactly ninety degrees unlike common woven fabrics.
  • the exact angle of intersection with the edge of the tape is influenced by the pick frequency, and the width of the tape (i.e. number and total denier of the warp ends).
  • the sateen weave construction of the tape is such that the weft pick is interlaced with the warp ends at a plurality of points capable of maintaining the substantially parallel relationship of the warp ends which are in an adjoining relationship in the form of a flat tape with contact being made between contiguous warp ends.
  • the weft pick is provided under a tension sufficient that the linear configuration of the warp ends present within the tape is substantially unimpaired. Additionally, any crimp which is present in the tape components should be present in the weft pick and not in the warp ends.
  • the weft pick is interlaced with the warp ends in such a manner that it substantially floats at least 4 of the warp ends prior to each additional interlacing point in the main body of the tape, i.e. the central portion of the tape with the possible exclusion of the selvage. More specifically, the weft pick floats from about 4 to 16, or more, of the warp ends prior to each additional interlacing point in the main body of the tape as the warp ends are traversed. As the weft pick passes between adjoining warp ends in the main body of the tape at an interlacing point, an additional float preferably of like length is begun on the opposite face of the tape. Accordingly, floats of at least 4 warp ends are substantially present upon each face of the main tape body.
  • Such floats maintain the warp ends as an integral tape of controlled lateral integrity.
  • the weft pick floats about 8 of the warp ends prior to the next interlacing point. While standard weaving equipment is commonly incapable of producing a sateen weave construction wherein more than 16 warp ends are floated, this fact should not limit the maximum float utilized in the process to 16 warp ends. It should be recognized, however, that the structural integrity of the tape tends to be reduced if the float greatly exceeds 16 warp ends, e.g. up to about 50 warp ends.
  • the lengths of the floats utilized in the sateen weave construction in the main body of the tape need not all be identical provided at least 4 of the substantially parallel linear warp ends are skipped prior to each additional point of interlacement. It is preferred, however, that floats of substantially uniform length (i.e.naturally balanced in weft direction) be used throughout a given sateen weave construction. Such substantially uniform float lengths aid in imparting transverse symmetry to the resulting tape which enhances its ability to maintain a flat configuration as the carbonization reaction progresses.
  • the intersection points are preferably varied between successive weft interlacements. Accordingly, as will be apparent to those skilled in weaving technology, the counter (i.e. step or move) of the sateen weave construction may commonly be from about 1 to 10, or more, and is preferably one.
  • the tape of sateen weave construction utilized in the present process can be formed by conventional weaving techniques as will be apparent to those skilled in weaving technology. For instance, the warp ends may be beamed, and the weft pick subsequently inserted at appropriate intervals utilizing a narrow fabric loom. Care, of course, must be taken to insure that the tension exerted upon the weft pick is insufficient to impair the substantially linear configuration of the warp ends.
  • selvage which is capable of aiding the structural integrity of the weave.
  • selvage may be positioned upon each edge of the main body of the tape and is of a relatively narrow width.
  • the selvage may be formed by converting the sateen weave construction created bythe weft pick to a plain weave construction as the pair of warp ends at each edge of the tape are traversed.
  • a selvage of relatively narrow width has been found helpful in retaining the weft pick at substantially the same location as initially woven, and does not deleteriously influence composite properties to any significant degree.
  • the heating temperatures, heating atmospheres, and residence times utilized in the present process to produce carbon fibers may be in accordance with thermal conversion techniques heretofore known in the art.
  • the plurality of adjoining ends of an organic polymeric fibrous material while in the form of a tape are converted to a carbonaceous fibrous material by continuous passage in the direction of their length through a series of heating zones while substantially suspended therein to form a fibrous product which contains at least 90 per cent carbon by weight.
  • the organic polymeric fibrous tape during at least a portion of its thermal conversion to a carbonaceous fibrous material is provided in the form of a highly unbalanced tape of a sateen weave configuration (as heretofore described).
  • the organic polymeric fibrous tape is provided in the sateen weave configuration throughout its thermal conversion to a carbonaceous fibrous material.
  • the sateen weave tape configuration may be formed subsequent to an initial thermal stabilization treatment.
  • the sateen weave tape configuration may be optionally retained while the tape is passed through any or all of the following (1) a graphitization zone, (2) a surface treatment zone wherein the surface characteristics of the fibrous product are modified so as to enhance its bonding characteristics to a matrix material, and (3) a resin impregnation zone.
  • the stabilization heating zone is commonly provided at a temperature of about 200 to 400C. depending upon the composition of the tape.
  • the atmosphere provided in the stabilization heating zone may be varied.
  • a cellulosic precursor is commonly stabilized in (1) an oxygen-containing atmosphere or (2) in an inert or non-oxidizing atmosphere, such as nitrogen, helium,
  • precursors such as an acrylic polymer, a polyamide, a polybenzimidazole, or polyvinyl alcohol are commonly stabilized in an oxygen-containing atmosphere. Air may be conveniently selected as the oxygen-containing atmosphere for use in the process.
  • the stabilization treatment is conducted in an oxygen-containing atmosphere, it is commonly termed a preoxidation treatment.
  • the stabilization heating zone is substantially enclosed in order to facilitate the confinement and withdrawal of off gases and/or the maintenance of an appropriate atmosphere.
  • the strands may pass through a seal as they continuously enter and leave the heat treatment chamber in order to exclude oxygen.
  • the stabilization of fibers of acrylonitrile homopolymers and copolymers in an oxygen-containing atmosphere involves (I) an oxidative cross-linking reaction of adjoining molecules as well as (2) a cyclization reaction of pendant nitrile groups to a condensed dihydropyridine structure. While the reaction mechanism is complex and not readily explainable, it is believed that these two reactions occur concurrently, or are to some extent competing reactions.
  • the cyclization reaction involving pendant nitrile groups which occurs upon exposure of an acrylic fibrous material to heat is generally highly exothermic and, if uncontrolled, results in the destruction of the fibrous configuration of the starting material. In some instances this exothermic reaction will occur with explosive violence and result in the fibrous material being consumed by flame. More commonly, however, the fibrous material will simply rupture, disintegrate and/or coalesce when the critical temperature is reached. As the quantity of comonomer present in an acrylonitrile copolymer is increased, a fibrouslmaterial consisting of the same tends to soften at a progressively lower temperature and the possible destruction of the original fibrous configuration through coalescence of adjoining fibers becomes a factor of increasing importance.
  • the critical temperature referred to herein is defined as the temperature at which the fibrous configuration of a given sample of acrylic fibrous starting material will be destroyed in the absence of prior stabilization.
  • the acrylic starting material exhibits a critical temperature of at least about 300C., e.g. about 300C. to 330C.
  • the detection of the critical temperature of a given acrylic fibrous material may be aided by the use of thermoanalytical methods, such as differential scanning calorimeter techniques, whereby the location and magnitude of the exothermic reaction can be measured quantitatively.
  • the stabilized acrylic warp ends l) retain essentially the same fibrous configuration as the starting material, (2) are capable of undergoing carbonization, (3) are black in appearance, (4) are non-buming when sub jected to an ordinary match flame, and (5) commonly contain a bound oxygen content of at least about 7 per cent by weight as determined by the Unterzaucher analysis.
  • the sateen tape (heretofore described) is stabilized in accordance with the processing conditions of commonly assigned U.S. Ser. Nos. 749,957, filed Aug. 8, l968, and 865,332, filed Oct. l0, 1969 (now abandoned) which are herein incorporated by reference.
  • the carbonization heating zone is commonly provided with an inert or non-oxidizing atmosphere at a temperature of at least about 900C. (e.g. 900 to l600C.).
  • Suitable inert atmospheres include nitrogen, argon, helium, etc.
  • An optional graphitization zone is Commonly provided with an inert or non-oxidizing atmosphere at a more highly elevated temperature of about 2000 to 3100C.
  • a longitudinal tension may optionally be applied to the tape while passing through the carbonization and- /or graphitization heating zones in accordance with techniques known in the art.
  • the carbonization and graphitization of a stabilized acrylic sateen tape may be conducted by the continuous passage of the same through a single heating apparatus, such as the susceptor of an induction furnace, provided with a temperature gradient in accordance with the teachings of commonly assigned U.S. Ser. No. 777,275, filed Nov. 20, 1968 (now abandoned), which is herein incorporated by reference.
  • a particularly preferred susceptor for use in the production of carbonaceous fibrous materials while in tape form is disclosed in commonly assigned U.S. Ser. No. 46,675, filed June 16, 1970 (now U.S. Pat. No. 3,656,910), which is herein incorporated by reference.
  • the carbonaceous tape can next optionally be passed through a surface treatment zone wherein its ability to bond to a matrix material is enhanced. Any conventional surface treatment technique may be selected. Additionally, the tape (preferably following surface treatment) can optionally be passed through a coating zone wherein it is impregnated with a resinous matrix-forming material, e.g. an epoxy resin.
  • a resinous matrix-forming material e.g. an epoxy resin.
  • the tape undergoing treatment if the present process is continuously passed in the direction of its length through each of the heating zones (e.g. a stabilization zone and a carbonization zone).
  • the forward movement of the tape may be terminated between heating zones and the tape collected upon a support where it is stored prior to additional processing. It is recommended, however, that the heating zones be aligned in close proximity and the tape continuously passed from one zone to another without termination of the forward movement.
  • Various rolls, or other guides may be employed to direct the movement of the' tion zone, (3) a heating zone provided with a temperature gradient wherein both carbonization and graphitization were carried out, (4) and a surface treatment zone. Following resin impregnation composite articles incorporating the resulting graphite tape as fibrous reinforcement were formed.
  • Each tape was produced by initially beaming 200 warp ends of a dry spun acrylonitrile homopolymer, and inserting a-weft pick by use of a Fletcher narrow fabric loom.
  • Each warp end consisted of about 385 continuous filaments having a total denier of about 775, and was provided with a twist of about 0.5 turn per inch.
  • the 200 warp ends were aligned in adjoining parallel contact to form a flat tape having a width of 4 inches. Prior to incorporation in the tape the warp ends had been hot drawn to a single filament tenacity of about 4 grams per denier.
  • the pretreatment of the acrylonitrile homopolymer tape was conducted in accordance with the teachings of commonly assigned U.S. Ser. No. 17,962, filed Mar. 9, 1970 (now abandoned).
  • the tape was continuously passed throughan oven containing circulating air provided at about 220C. while under a longitudinal tension sufficient to permit a 16 per cent reduction in length brought about by shrinkage for a residence time of about 300 seconds.
  • the stabilization i.e. preoxidation
  • the tape was continuously passed through an oven containing circulating air maintained at about 265C. while under a longitudinal tension sufficient to maintain a constant length for a residence time of about 175 minutes.
  • the preoxidized tape was black in appearance, retained its initial fibrous configuration essentially intact,-was non-buming when subjected to an ordinary match flame, and contained a bound oxygen content of 10 percent by weight as determined by the Unterzaucher analysis.
  • the preoxidized tape was continuously passed through a heating zone of an induction furnace provided with a nitrogen atmosphere and a temperature gradient in accordance with the teachings of commonly assigned U.S. Ser. No. 777,275, filed Nov. 20, 1968 (now abandoned).
  • the hollow graphite susceptor of the induction. furnace was formed in accordance with the teachingsv of commonly assigned U.S. Ser. No. 46,675, filed .June 16, 1970, now U.S. Pat. No. 3,656,910.
  • the temperature gradient within the heating zone raised the tape from room temperature (i.e. about 25C.)'-to;a temperature of 800C. in approximately 50 seconds after entering the susceptor, from 800C. to 160090 in approximately 25 seconds to produce a carbonized tape, and from 1600C.
  • the graphite tape was next surface treated to modify its surface characteristics by continuous passage through a heating zone provided with an atmosphere of 1 1 molecular oxygen in an inert carrier gas.
  • the surface treated tape was collected by winding upon a package
  • Tensile and interlaminar shear strength test bars were formed employing the surface treated tape as a fibrous reinforcing medium in a resinous matrix.
  • the tensile test bars had dimensions of 8.5 inches X 0.5 inch X 0.03 inch, and the interlaminar shear strength test bars had dimensions of 8 inches X 0.25 inch X 0.125 inch.
  • the composite articles were formed by immersing strips of the tape in a liquid epoxy resin-hardener mixture provided at about 70C., removing excess resin, placing a plurality of the strips of the impregnated tape in a fixed stop matched die mold, and curing for 40 minutes at 93C. with minimal pressure, 80 minutes at 93C. at a pressure of 100 psi, and 150 minutes at 200C. at a pressure of 100 psi, cooling the resulting bars to room temperature, trimming the same, and cementing tabs to the ends of the bars for use in an Instron tester. Twelve plies of the tape were utilized in the tensile test bars, and 24 plies of the tape were utilized in the interlaminar shear strength test bars.
  • the resinous matrix material used in the formation of the composites was provided as a solventless system which contained 100 parts by weight epoxy resin and 88 parts by weight of anhydride curing agent.
  • the tensile strength and the horizontal interlaminar shear strength of the resulting composites were determined.
  • the tensile strength was determined employing a modified ASTM D638 procedure utilizing fiberglass tabs to avoid clamp damage. Precise alignment of the bars was obtained prior to setting the clamps.
  • the horizontal interlaminar shear strength of the composite was determined by short beam testing of the fiber reinforced composite according to the procedure of ASTM D2344-65T as modified for straight bar testing with a 4:1 span to depth ratio.
  • EXAMPLE I The acrylonitrile homopolymer tape having a double faced 4 float filling sateen weave construction as illustrated in FIG. 1 was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch. The weft pick was provided at a frequency of 4 picks per inch of tape.
  • the counter for the weave was one.
  • the weave pattern for the tape is illustrated in FIG. 2.
  • the appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape.
  • the absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape.
  • a plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
  • the tape width had decreased to 2.8 inches. Following carbonization and graphitization the width of the tape had decreased to 2.4 inches.
  • the average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10 grams per denier tenacity, and 3250 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 70,000 psi, and an average horizontal interlaminar shear strength of 7,300
  • EXAMPLE II The acrylonitrile homopolymer tape having a double faced 8 float filling sateen weave construction as illustrated in FIG. 3 was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately continuous fils of acrylonitrile homopolymer having a total denier of about 200 and a twist of 0.5 turn per inch. The weft pick was provided at a frequency of 2 picks per inch of tape.
  • the counter for the weave was one.
  • the weave pattern for the tape is illustrated in FIG. 4.
  • the appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape.
  • the absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape.
  • a plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
  • the tape width had decreased to approximately 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to approximately 2.5 inches.
  • the average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10.2 grams per denier tenacity, and 3200 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 95,000 psi, and an average horizontal interlaminar shear strength of 8,700 psi.
  • EXAMPLE III The acrylonitrile homopolymer tape having a double faced 8 float filling sateen weave construction similar to that illustrated in FIG. 3 was employed.
  • the weft pick was formed from approximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch.
  • the weft pick was provided at a frequency of 6 picks per inch of tape.
  • the counter for the weave was one.
  • the weave pattern for the tape is illustrated in FIG. 4.
  • the appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape.
  • the absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape.
  • a plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
  • the tape width had decreased to 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to 2.5 inches.
  • the average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10 grams per denier tenacity, and 3000 grams per denier Youngs modulus.
  • the resulting composite exhibited an average tensile strength of 72,000 psi, and an average horizontal interlaminar shear strength of 7,700 psi. A comparison of the composite properties indicates that the tape of Example II is preferred to that of Example III for utilization in the process of the invention.
  • EXAMPLE IV The acrylonitrile homopolymer tape having a double faced 16 float filling sateen weave construction as illustrated in FIG. was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately 100 continuous fils of acrylonitrile homopolymer having a total denier of about 200 and a twist of 0.5 turn per inch. The weft pick was provided at a frequency of 4 picks per inch of tape.
  • the counter for the weave was one.
  • the weave pattern for the tape is illustrated in FIG. 6.
  • the appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape.
  • the absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape.
  • a plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
  • the tape width had decreased to approximately 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to approximately 2.5 inches.
  • the average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were grams per denier tenacity, and 3309 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 105 ,000 psi, and an average horizontal interlaminar shear strength of 8,400 psi.
  • an acrylonitrile homopolymer tape employing identical warp ends was processed as heretofore described in the absence of any form of weaving. More specifically, the warp ends were maintained in parallel in the form of a flat tape which lacked a weft pick interlaced therewith.
  • the average single filament tensile properties breaks tested) of the warp ends following graphitization and prior to surface treatment were 11.5 grams per denier tenacity, and 3200 grams per denier Youngs modulus.
  • the resulting composites exhibited an average tensile strength of 90,000 psi, and an average horizontal interlaminar shear strength of 8,800 psi.
  • a comparison of the composite properties indicates that the presence of the weft pick within composites reinforced by carbonized sateen tapes formed in accordance with the present process results in no substantial diminution of composite properties. Additionally, the present process offers significant fiber handling advantages.
  • a woven acrylonitrile homopolymer tape was formed in a plain weave construction and processed as heretofore described.
  • the warp ends were in adjoining contact throughout the process.
  • the weave construction is illustrated in FIG. 7.
  • Representative warp ends are identified at A and reprersentative weft picks at B.
  • the weft pick was formed from ap-' proximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch.
  • the weft pick was provided at a frequency of 2 picks per inch of tape.
  • the counter for the weave was one.
  • the weave pattern for the tape is illustrated in FIG. 8.
  • the appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape.
  • the absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape.
  • stabilization i.e. preoxidation
  • the tape width had decreased to 3.15 inches.
  • carbonization and graphitization the width of the tape had decreased to 2.4 inches.
  • the average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 8.6 grams per denier tenacity, and 3300 grams per denier Youngs modulus.
  • the resulting composite exhibited an average tensile strength 'of 46,000 psi, and an average horizontal interlaminar shear strength of 7,200 psi.
  • a comparison of composite properties indicates a substantial diminution of composite properties results when the reinforcing tape is formed in the plain weave construction.
  • a tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Woven Fabrics (AREA)
  • Inorganic Fibers (AREA)

Abstract

An improved process is provided for the simultaneous conversion of a plurality of adjoining parallel ends of an organic polymeric fibrous material to a carbonaceous fibrous material. The parallel warp ends are provided and maintained during at least a portion of the conversion process as an integral tape possessing a high degree of structural integrity by the presence of a weft pick interlaced therewith in a sateen weave construction which floats a substantial number of the parallel warp ends as described. When the resulting carbonaceous tape is incorporated in a matrix material to form a composite article, the presence of the weft pick therein produces no substantial diminution in the composite properties.

Description

United States Patent 1 [111 3,926,228
Burns et a1. [45] Dec. 16, 1975 1 CARBONACEOUS TAPES 3,669,158 6/1972 Philips 139/420 [75] Inventors: Kenneth S. Burns, Basking Ridge;
George R. Ferment, Dover, both of Primary Examiner-Henry S. Jaudon N.J.; Roger C. Waugh, Rock Mart, Ga. [73] Assignee: Cellanese Corporation, New York, [57] I ABSTRACT An improved process is provided for the simultaneous [22] Filed: Apt 27 1973 conversion of a plurality of adjoining parallel ends of an organic polymeric fibrous material to a carbonal 1 PP bio-3355,2312 ceous fibrous material. The parallel warp ends are Related Application Data provided and maintained during at least a portion of the conversion process as an integral tape possessing a 62 1 Dmslon of Ser No 1 Feb 1971 high degree of structural integrity by the presence of 21 weft pick interlaced therewith In a sateen weave con- 52 US. Cl Struction which floats Substantial number of the par- Int CL allel warp ends as described. When the resulting car- [58]. Field f 5 1 bonaceous tape is incorporated in a matrix material to "55 1 F 264/29 /447 form a composite article, the presence of the weft pick therein produces no substantial diminution in the [56] References Cited composlte propemes UNITED STATES PATENTS 9 i 8 Drawing Figures 1,659,680 2/1928 Burns 139/420 i i n ii. i 1 IIZF) 'i; I 121 I U.S. Patent Dec. 16, 1975 Sheet 1 of4 3,926,228
I VFW-1 llllll III U.S. Patent Dec. 16,1975 Sheet20f4 3,926,228
8 8 8 8 1 1 1 1 7 7 7 7 1 1 1 1 6 6 6 6 1 11 1 5 5 5 5 1 1 1 1 4 4 4 4 11 1 1 3 3 3 3 1 11 1 2 2 2 2 1 1 11 5 D 11 1 1 N 1 1 1 1 E O 0 0 1 11 1 D. R 9 9 9 9 A W 8 8 8 8 7 7 7 7 6 6 6 6 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 8 7 6 5 4 3 2 1 SELVAGE Pomon OF mm BYODY or- TAPE WARP ENDS PO\2T\ON OF MAN BQBY 0F TAPE SEWAGE WARP ENDS TS m WP U.S. Patent Dec. 16, 1975 Sheet 3 of4 3,926,228
CARBONACEOUS TAPES This is a division of application Ser. No. 112,189, filed Feb. 3, 1971 now US. Pat. No. 3,818,082.
BACKGROUND OF THE INVENTION In the search for high performance materials, considerable interest has been focused upon carbon fibers. The terms carbon fibers or carbonaceous fibers are used herein in the generic sense and include graphite fibers as well as amorphous carbonfibers. Graphite fibers are defined herein as fibers which consist essentially of carbon and have a predominant x-ray diffraction pattern characteristic of graphite. Amorphous carbon fibers, on the other hand, are defined as fibers in which the bulk of the fiber weight can be attributed to carbon and which exhibit an essentially amorphous x-ray diffraction pattern. Graphite fibers generally have a higher Youngs modulus than do amorphous carbon fibers and in addition are more highly electrically and thermally conductive.
Industrial high performance materials of the future are projected to make substantial utilization of fiber reinforced composites, and graphitic carbon fibers theoretically have among the best properties of any fiber for use as high strength reinforcement. Among these desirable properties are corrosion and high temperature resistance, low density, high tensile strength, and high modulus. Uses for carbon fiber reinforced composites include acrospace structural components, rocket motor casings, deep-submergence vessels and ablative materials for heat shields on re-entry vehicles.
As is known in the art, numerous procedures have been proposed in the past for the conversion of various organic polymeric fibrous materials to a carbonaceous form while retaining the original fibrous configuration essentially intact. Such procedures have in common the thermal treatment of the fibrous precursor in an appropriate atmosphere or atmospheres which is commonly conducted in a plurality of heating zones, or alternatively in a single heating zone wherein the fibrous material is subjected to progressively increasing temperatures. Both batch and continuous processing techniques have been proposed. From the commercial standpoint those processes which are capable of functioning on a continuous basis are generally considered to be the most attractive. However, many of the prior art continuous conversion techniques have been inherently limited to the processing of a single end of fibrous precursor at a given time. Such techniques while offering the advantages of possible automation, still suffer the disadvantage of limited productivity.
Additionally, techniques have been proposed wherein a plurality of ends of the fibrous precursor may be simultaneously processed. See for instance the process of commonly assigned U.S. Ser. Nos. 865,332,
filed Oct. 10, 1969, of Kenneth S. Burns and William M. Cooper (now abandoned) wherein a multiplicity of strands of polymeric fibrous material are simultaneously stabilized prior to subsequent carbonization; and 874,731, filed Nov. 7, 1969 (now US. Pat. No. 3,723,157), of Melvin L. Druin wherein a plurality of multifilament bundles capable of undergoing graphitization are simultaneously graphitized and subsequently coated. While such generically defined processes offer substantial advantages over prior art batch and continuous processes, fiber handling difficulties may occasionally arise. For example, if one of the fibrous ends undergoing treatment should be defective, the breakage of the same while being passed through one of the heating zones frequently results in catastrophic failure of the process. The operation of the process must be terminated, the oven or ovens cooled. and the broken end re-united or replaced. Also, precise handling of the plurality of ends is essential if substantial end crossovers are to be eliminated and a uniform width of the plurality of the ends maintained.
One technique heretofore proposed for the simultaneous conversion of a substantial number of fibrous ends to a carbonaceous form has involved the thermal treatment of a fibrous precursor while in the form of a woven cloth. See, for instance, Belgian Patent Nos. 720,947 and 726,761, as. well as US. Pat. No. 3,541,582 for representative disclosures of the processing of cloth precursors. While fibrous assemblages in cloth form commonly offer advantages with respect to the maintenance of structural integrity throughout the thermal treatment, a permanent crimp is commonly imparted to the filaments and the single filament tensile properties of the fibers present within the cloth have tended to be adversely influenced. Additionally, a high degree of fiber loading within a composite article is commonly impossible because of the inability of the cloth to form compact plys within the same. The weft threads in the cloth further appear to produce an overall reduction in the composite physical properties.
It is an object of the invention to provide an improved process for the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material while in the form of a tape to a carbonaceous fibrous-material.
It is an object of the invention to provide an improved process for the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material "to a carbonaceous fibrous material while in the form of a tape of enhanced structural integl'lty. '1
It is an object of the invention to provide an improved process for the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material to a carbonaceous fibrous material wherein catastrophic process failure resulting from the breakage of an end is effectively eliminated.
It is an object of the invention to provide an improved process for the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material to a carbonaceous fibrous material while in the form of a tape wherein splits and crossovers are substantially eliminated.
It is anothe'robject of the invention to provide an improved processfor the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material wherein the warp ends are maintained in position by at least one weft pick in the substantial absence of the impairment of the linear configuration and tensile properties of the warp ends.
It is another object of the invention to provide an improved process for the conversion of a plurality of adjoining ends of an organic polymeric fibrous material to an integral carbonaceous tape which is capable of high degree of compaction and fiber loading when utilized as a reinforcing medium in a composite article.
It is another object of the invention to provide an improved process for producing a woven carbonaceous tape which when utilized as a reinforcing medium yields a composite article of enhanced physical properties.
the detailed description which follows, and the ap-v pended claims.
SUMMARY OF THE INVENTION It has been found in a process for the simultaneous conversion of a plurality of adjoining ends of an organic polymeric fibrous material capable of undergoing conversion to a carbonaceous fibrous material while in the form of a tape to a carbonaceous fibrous material wherein the ends are continuously passed in the direction of their length through a series of heating zones while substantially suspended therein to form a fibrous product which contains at 90 per cent carbon by weight, that improved results are achieved by providing the fibrous material during at least a portion of the conversion process in the form of a tape of sateen weave construction consisting of at least 32 adjoining substantially parallel linear warp ends capable of undergoing conversion to a carbonaceous fibrous material essentially coextensive with the length of the tape and a weft pick interlaced therewith at a plurality of points capable of maintaining the substantially parallel relationship of the warp ends which substantially floats at least 4 of the warp ends prior to each additional interlacing point in the main body of the tape as the warp ends are traversed, the weft pick being provided at a tension sufficient that the linear configuration of the warp ends is substantially unimpaired and at a frequency of about 0.1 to 8 picks per inch of the tape.
The preferred organic polymeric fibrous material is an acrylic polymer comprising at least about 85 mol per cent of acrylonitrile units and up to about 15 mol per cent of one or more monovinyl units copolymerized therewith. In a preferred embodiment of the process the organic polymeric tape is provided in the sateen weave construction throughout the conversion process.
DESCRIPTION OF THE DRAWINGS sor tape of an 8 X 8 sateen weave construction suitable for use in the present process.
FIG. 4 is the numerical weaving pattern for the tape of FIG. 3.
FIG. 5 is an enlarged plan view of a portion of precursor tape of a 16 X 16 sateen weave construction suitable for use in the present process.
FIG. 6 is the numerical weaving pattern for the tape of FIG. 5.
FIG. 7 is an enlarged plan view of a portion of precursor tape having a weave construction not in accordance with that employed in the present process and is presented for comparative purposes.
FIG. 8 is the numerical weaving pattern for the tape of FIG. 7 and is presented for comparative purposes only.
DESCRIPTION OF PREFERRED EMBODIMENTS The tape which is converted to a carbonaceous fibrous material possesses a sateen weave construction (as described in detail hereafter) during at least a portion of the conversion process which includes at least 32 adjoining substantially parallel linear warp ends.
The warp ends are composed of an organic polymeric fibrous material capable of conversion to a carbonaceous fibrous material. The warp ends may be conveniently selected from those fibrous materials which are recognized as being suitable for thermal conversion to a carbonaceous fibrous material. For instance, the warp ends may be derived from organic polymers such as an acrylic polymer, a cellulosic polymer, a polyamide, a polybenzimidazole, polyvinyl alcohol, pitch, etc. As discussed hereafter, acrylic polymeric materials are particularly suited for use in the formation of the warp ends employed in the present process. Illustrative examples of suitable cellulosic materials include the natural and regenerated forms of cellulose, e.g. rayon. Illustrative examples of suitable polyamide materials include the aromatic polyamides, such as nylon 6T, which is formed by the condensation of hexamethylenediamine and terephthalic acid. An illustrative example of a suitable polybenzimidazole is poly-2,2-m-phenylene-S ,5 bibenzimidazole.
An acrylic polymeric material prior to thermal stabilization may be formed primarily of recurring acrylonitrile units. For instance, the acrylic polymer should contain not less than about mol per cent of acrylonitrile units with not more than about 15 mol per cent of a monovinyl compound which is copolymerizable with acrylonitrile such as styrene, methyl acrylate, methyl methacrylate, vinly acetate, vinyl chloride, vinylidene chloride, vinyl pyridine, and the like, or a plurality of such monomers. A particularly preferred acrylic polymeric material is an acrylonitrile homopolymer, or a closely related acrylonitrile copolymer (i.e. contains at least about mol per cent of acrylonitrile units and up to about 5 mol per cent of one or more monovinyl compounds copolymerized with acrylonitrile).
The warp ends may be provided in a variety of physical configurations. For instance, the warp ends may assume the configuration of continuous lengths of multifilament yarns, tows, strands, cables, or similar fibrous assemblages. In a preferred embodiment of the process the warp ends are a continuous multifilament yarn.
The warp ends may optionally be provided with a twist which tends to improve the handling characteristics. For instance, a twist of about 0.1 to 5 tpi, and pref-- erably about 0.3 to 1.0 tpi, may be utilized. Also, a false twist may be used instead of or in addition to a real twist. Alternatively, one may select bundles of fibrous material which possess essentially no twist.
desired, however, the warp ends may be more highly oriented. e.g. drawn up to a single filament tenacity of about 7.5 to 8 grams per denier. or more.
The weft pick is preferably also composed of an organic polymeric fibrous material which is capable of undergoing carbonization without the destruction of its original fibrous configuration. If desired, however, the weft pick may be initially provided as a previously stabilized organic polymeric fibrous material, a carbonaceous fibrous material, or other fibrous material capable of withstanding the carbonization temperatures. Alternatively, a weft pick may be selected which is incapable of withstanding the highly elevated temperatures required to complete carbonization and/or graphitization of the warp ends. For instance, the weft pick may be formed from a cellulosic material such as cotton which will impart dimensional stability to the warp ends through the stabilization step, but which is incapable of withstanding a subsequent heat treatment step.
The weft pick may be provided in a variety of physical configurations. For instance, the weft pick may assume the configuration of a multifilament yarn, tow, strand, cable, or similar fibrous assemblage. In a preferred embodiment of the process the weft pick is a continuous multifilament yarn having a total denier equal to or less than that of the continuous multifilament yarn warp ends. Preferably the total denier of a multifilament acrylic yarn weft pick prior to thermal stabilization is below about 400, e.g. about 100 to 300, total denier. In a particularly preferred embodiment of the process the total denier of the weft pick is about 0.2 to 0.5 times the total denier of a warp end. A minor amount of twist may be benefically provided in a multifilament yarn weft pick which improves the handling characteristics during weaving. For instance, the weft pick may be provided with a twist of about 0.1 to tpi (preferably 0.1 to 3 tpi), and most preferably about 0.2 to 0.7 tpi. If a twist is utilized in the warp ends it is recommended that any twist employed in the weft pick be to a lesser degree so that the weft pick may readily assume a more flatened configuration when in contact with warp ends.
It is essential that the weft pick utilized in the formation of the tape lacks a tendency to undergo excessive shrinkage during heat treatment (described hereafter) which imparts a pucker to the warp ends and thereby interferes with the flat configuration of the tape. In a preferred embodiment of the process the weft pick is hot drawn at least about 3 times its as-spun length to increase its orientation and is subsequently relaxed (e.g. 5 to 40 percent of drawn length) prior to incorporation in the precursor tape so that its tendency to undergo shrinkage is minimized.
The fibrous material utilized as the warp ends and weft pick may optionally be provided in intimate association with one or more catalytic agents capable of en hancing the rate of the thermal conversion to a carbonaceous fibrous material.
The fibrous organic polymeric tape utilized as the precursor in the process of the present invention during at least a portion of its thermal conversion to a carbonized form is provided in a highly unbalanced sateen weave construction. A sateen weave construction is defined as a woven construction possessing a substantial number of floats which run fillingwise (i.e. weftwise). The term float is used in usual sense and indicates that a plurality of substantially perpendicular strands present within the construction are being passed over or skipped in the absence of interlacement.
The tape is unbalanced in the sense that the numerical proportion of warp ends to filling picks per square inch present within the same is substantially greater than 1:1, e.g. about 4:1 to :1, or more, and preferably about 1521 to 30:1. The tape comprises at least 32 adjoining substantially parallel linear warp ends. Commonly, the tape comprises about 32 to 500 adjoining warp ends; however, even a substantially larger number of warp ends can be employed, e.g. 1000 or more. The warp ends are essentially coextensive with the length of the tape. The weft pick present within the tape of sateen weave construction is provided at a frequency of about 0.1 to 8 picks per inch of said tape, and preferably at a frequency of about 1 to 3 picks per inch of said tape. Since the weft pick is provided at a relatively low frequency, and preferably as a continuous length, it may intersect the edge of the tape at an angle other than exactly ninety degrees unlike common woven fabrics. The exact angle of intersection with the edge of the tape is influenced by the pick frequency, and the width of the tape (i.e. number and total denier of the warp ends).
The sateen weave construction of the tape is such that the weft pick is interlaced with the warp ends at a plurality of points capable of maintaining the substantially parallel relationship of the warp ends which are in an adjoining relationship in the form of a flat tape with contact being made between contiguous warp ends. The weft pick is provided under a tension sufficient that the linear configuration of the warp ends present within the tape is substantially unimpaired. Additionally, any crimp which is present in the tape components should be present in the weft pick and not in the warp ends.
The weft pick is interlaced with the warp ends in such a manner that it substantially floats at least 4 of the warp ends prior to each additional interlacing point in the main body of the tape, i.e. the central portion of the tape with the possible exclusion of the selvage. More specifically, the weft pick floats from about 4 to 16, or more, of the warp ends prior to each additional interlacing point in the main body of the tape as the warp ends are traversed. As the weft pick passes between adjoining warp ends in the main body of the tape at an interlacing point, an additional float preferably of like length is begun on the opposite face of the tape. Accordingly, floats of at least 4 warp ends are substantially present upon each face of the main tape body. Such floats maintain the warp ends as an integral tape of controlled lateral integrity. In the particularly preferred embodiment of the process the weft pick floats about 8 of the warp ends prior to the next interlacing point. While standard weaving equipment is commonly incapable of producing a sateen weave construction wherein more than 16 warp ends are floated, this fact should not limit the maximum float utilized in the process to 16 warp ends. It should be recognized, however, that the structural integrity of the tape tends to be reduced if the float greatly exceeds 16 warp ends, e.g. up to about 50 warp ends.
The lengths of the floats utilized in the sateen weave construction in the main body of the tape need not all be identical provided at least 4 of the substantially parallel linear warp ends are skipped prior to each additional point of interlacement. It is preferred, however, that floats of substantially uniform length (i.e.naturally balanced in weft direction) be used throughout a given sateen weave construction. Such substantially uniform float lengths aid in imparting transverse symmetry to the resulting tape which enhances its ability to maintain a flat configuration as the carbonization reaction progresses. The intersection points are preferably varied between successive weft interlacements. Accordingly, as will be apparent to those skilled in weaving technology, the counter (i.e. step or move) of the sateen weave construction may commonly be from about 1 to 10, or more, and is preferably one.
The tape of sateen weave construction utilized in the present process can be formed by conventional weaving techniques as will be apparent to those skilled in weaving technology. For instance, the warp ends may be beamed, and the weft pick subsequently inserted at appropriate intervals utilizing a narrow fabric loom. Care, of course, must be taken to insure that the tension exerted upon the weft pick is insufficient to impair the substantially linear configuration of the warp ends.
in a preferred embodiment of the process of the tape of sateen weave construction (as previously described) is provided with a selvage which is capable of aiding the structural integrity of the weave. Such selvage may be positioned upon each edge of the main body of the tape and is of a relatively narrow width. For instance, the selvage may be formed by converting the sateen weave construction created bythe weft pick to a plain weave construction as the pair of warp ends at each edge of the tape are traversed. such a selvage of relatively narrow width has been found helpful in retaining the weft pick at substantially the same location as initially woven, and does not deleteriously influence composite properties to any significant degree.
The heating temperatures, heating atmospheres, and residence times utilized in the present process to produce carbon fibers may be in accordance with thermal conversion techniques heretofore known in the art. The plurality of adjoining ends of an organic polymeric fibrous material while in the form of a tape are converted to a carbonaceous fibrous material by continuous passage in the direction of their length through a series of heating zones while substantially suspended therein to form a fibrous product which contains at least 90 per cent carbon by weight. The organic polymeric fibrous tape during at least a portion of its thermal conversion to a carbonaceous fibrous material is provided in the form of a highly unbalanced tape of a sateen weave configuration (as heretofore described). In a preferred embodiment of the process the organic polymeric fibrous tape is provided in the sateen weave configuration throughout its thermal conversion to a carbonaceous fibrous material. Alternatively, the sateen weave tape configuration may be formed subsequent to an initial thermal stabilization treatment. Additionally, the sateen weave tape configuration may be optionally retained while the tape is passed through any or all of the following (1) a graphitization zone, (2) a surface treatment zone wherein the surface characteristics of the fibrous product are modified so as to enhance its bonding characteristics to a matrix material, and (3) a resin impregnation zone.
The stabilization heating zone is commonly provided at a temperature of about 200 to 400C. depending upon the composition of the tape. As will be apparent to those skilled in the art, the atmosphere provided in the stabilization heating zone may be varied. For instance, a cellulosic precursor is commonly stabilized in (1) an oxygen-containing atmosphere or (2) in an inert or non-oxidizing atmosphere, such as nitrogen, helium,
argon, etc. Additionally, precursors such as an acrylic polymer, a polyamide, a polybenzimidazole, or polyvinyl alcohol are commonly stabilized in an oxygen-containing atmosphere. Air may be conveniently selected as the oxygen-containing atmosphere for use in the process. When the stabilization treatment is conducted in an oxygen-containing atmosphere, it is commonly termed a preoxidation treatment.
The stabilization heating zone is substantially enclosed in order to facilitate the confinement and withdrawal of off gases and/or the maintenance of an appropriate atmosphere. When a non-oxidizing atmosphere is desired within the heat treatment chamber, the strands may pass through a seal as they continuously enter and leave the heat treatment chamber in order to exclude oxygen.
The stabilization of fibers of acrylonitrile homopolymers and copolymers in an oxygen-containing atmosphere involves (I) an oxidative cross-linking reaction of adjoining molecules as well as (2) a cyclization reaction of pendant nitrile groups to a condensed dihydropyridine structure. While the reaction mechanism is complex and not readily explainable, it is believed that these two reactions occur concurrently, or are to some extent competing reactions.
The cyclization reaction involving pendant nitrile groups which occurs upon exposure of an acrylic fibrous material to heat is generally highly exothermic and, if uncontrolled, results in the destruction of the fibrous configuration of the starting material. In some instances this exothermic reaction will occur with explosive violence and result in the fibrous material being consumed by flame. More commonly, however, the fibrous material will simply rupture, disintegrate and/or coalesce when the critical temperature is reached. As the quantity of comonomer present in an acrylonitrile copolymer is increased, a fibrouslmaterial consisting of the same tends to soften at a progressively lower temperature and the possible destruction of the original fibrous configuration through coalescence of adjoining fibers becomes a factor of increasing importance. The critical temperature referred to herein is defined as the temperature at which the fibrous configuration of a given sample of acrylic fibrous starting material will be destroyed in the absence of prior stabilization.
In a preferred embodiment of the invention the acrylic starting material exhibits a critical temperature of at least about 300C., e.g. about 300C. to 330C. In addition to visual observation, the detection of the critical temperature of a given acrylic fibrous material may be aided by the use of thermoanalytical methods, such as differential scanning calorimeter techniques, whereby the location and magnitude of the exothermic reaction can be measured quantitatively.
The stabilized acrylic warp ends l) retain essentially the same fibrous configuration as the starting material, (2) are capable of undergoing carbonization, (3) are black in appearance, (4) are non-buming when sub jected to an ordinary match flame, and (5) commonly contain a bound oxygen content of at least about 7 per cent by weight as determined by the Unterzaucher analysis.
In a preferred embodiment of the process the sateen tape (heretofore described) is stabilized in accordance with the processing conditions of commonly assigned U.S. Ser. Nos. 749,957, filed Aug. 8, l968, and 865,332, filed Oct. l0, 1969 (now abandoned) which are herein incorporated by reference.
The carbonization heating zone is commonly provided with an inert or non-oxidizing atmosphere at a temperature of at least about 900C. (e.g. 900 to l600C.). Suitable inert atmospheres include nitrogen, argon, helium, etc. During the carbonization reaction elements present in the continuous length of fibrous material other than carbon, e.g. nitrogen, hydrogen and oxygen are substantially expelled until the warp ends contain at least 90 per cent carbon by weight, and preferably at least 95 per cent carbon by weight.
An optional graphitization zone is Commonly provided with an inert or non-oxidizing atmosphere at a more highly elevated temperature of about 2000 to 3100C.
A longitudinal tension may optionally be applied to the tape while passing through the carbonization and- /or graphitization heating zones in accordance with techniques known in the art.
In a preferred embodiment of the process the carbonization and graphitization of a stabilized acrylic sateen tape may be conducted by the continuous passage of the same through a single heating apparatus, such as the susceptor of an induction furnace, provided with a temperature gradient in accordance with the teachings of commonly assigned U.S. Ser. No. 777,275, filed Nov. 20, 1968 (now abandoned), which is herein incorporated by reference. A particularly preferred susceptor for use in the production of carbonaceous fibrous materials while in tape form is disclosed in commonly assigned U.S. Ser. No. 46,675, filed June 16, 1970 (now U.S. Pat. No. 3,656,910), which is herein incorporated by reference.
The carbonaceous tape, whether formed of amorphous or graphitic carbon, can next optionally be passed through a surface treatment zone wherein its ability to bond to a matrix material is enhanced. Any conventional surface treatment technique may be selected. Additionally, the tape (preferably following surface treatment) can optionally be passed through a coating zone wherein it is impregnated with a resinous matrix-forming material, e.g. an epoxy resin.
During the stabilization and carbonization steps of the present process it is common for the width of the tape to diminish due to controlled shrinkage as elements other than carbon are expelled. A flat tape configuration is nevertheless retained.
The tape undergoing treatment if the present process is continuously passed in the direction of its length through each of the heating zones (e.g. a stabilization zone and a carbonization zone). If desired, the forward movement of the tape may be terminated between heating zones and the tape collected upon a support where it is stored prior to additional processing. It is recommended, however, that the heating zones be aligned in close proximity and the tape continuously passed from one zone to another without termination of the forward movement. Various rolls, or other guides may be employed to direct the movement of the' tion zone, (3) a heating zone provided with a temperature gradient wherein both carbonization and graphitization were carried out, (4) and a surface treatment zone. Following resin impregnation composite articles incorporating the resulting graphite tape as fibrous reinforcement were formed.
Each tape was produced by initially beaming 200 warp ends of a dry spun acrylonitrile homopolymer, and inserting a-weft pick by use of a Fletcher narrow fabric loom. Each warp end consisted of about 385 continuous filaments having a total denier of about 775, and was provided with a twist of about 0.5 turn per inch. The 200 warp ends were aligned in adjoining parallel contact to form a flat tape having a width of 4 inches. Prior to incorporation in the tape the warp ends had been hot drawn to a single filament tenacity of about 4 grams per denier.
The pretreatment of the acrylonitrile homopolymer tape was conducted in accordance with the teachings of commonly assigned U.S. Ser. No. 17,962, filed Mar. 9, 1970 (now abandoned). The tape was continuously passed throughan oven containing circulating air provided at about 220C. while under a longitudinal tension sufficient to permit a 16 per cent reduction in length brought about by shrinkage for a residence time of about 300 seconds.
The stabilization (i.e. preoxidation) was conducted in accordance with the teachings of commonly assigned U.S. Ser. No. 865,332, filed Oct. 10, 1969 (now abandoned). The tape was continuously passed through an oven containing circulating air maintained at about 265C. while under a longitudinal tension sufficient to maintain a constant length for a residence time of about 175 minutes. The preoxidized tape was black in appearance, retained its initial fibrous configuration essentially intact,-was non-buming when subjected to an ordinary match flame, and contained a bound oxygen content of 10 percent by weight as determined by the Unterzaucher analysis.
The preoxidized tape was continuously passed through a heating zone of an induction furnace provided with a nitrogen atmosphere and a temperature gradient in accordance with the teachings of commonly assigned U.S. Ser. No. 777,275, filed Nov. 20, 1968 (now abandoned). The hollow graphite susceptor of the induction. furnace was formed in accordance with the teachingsv of commonly assigned U.S. Ser. No. 46,675, filed .June 16, 1970, now U.S. Pat. No. 3,656,910. The temperature gradient within the heating zone raised the tape from room temperature (i.e. about 25C.)'-to;a temperature of 800C. in approximately 50 seconds after entering the susceptor, from 800C. to 160090 in approximately 25 seconds to produce a carbonized tape, and from 1600C. to 2750C. in approximately 50 seconds where it was maintained 150C. for about 40 seconds to produce a graphitized tape. A longitudinal tension of pounds (i.e. about grams per warp end) was exerted upon the tape as it passed through the heating zone of the induction furnace. The warp ends and weft picks substantially retained their original fibrous configuration following carbonization and graphitization and exhibited a specific gravity of about 2.0. The tape exhibited a predominant x-ray diffraction pattern characteristic of graphitic carbon when subjected to x-ray analysis.
The graphite tape was next surface treated to modify its surface characteristics by continuous passage through a heating zone provided with an atmosphere of 1 1 molecular oxygen in an inert carrier gas. The surface treated tape was collected by winding upon a package Tensile and interlaminar shear strength test bars were formed employing the surface treated tape as a fibrous reinforcing medium in a resinous matrix. The tensile test bars had dimensions of 8.5 inches X 0.5 inch X 0.03 inch, and the interlaminar shear strength test bars had dimensions of 8 inches X 0.25 inch X 0.125 inch. The composite articles were formed by immersing strips of the tape in a liquid epoxy resin-hardener mixture provided at about 70C., removing excess resin, placing a plurality of the strips of the impregnated tape in a fixed stop matched die mold, and curing for 40 minutes at 93C. with minimal pressure, 80 minutes at 93C. at a pressure of 100 psi, and 150 minutes at 200C. at a pressure of 100 psi, cooling the resulting bars to room temperature, trimming the same, and cementing tabs to the ends of the bars for use in an Instron tester. Twelve plies of the tape were utilized in the tensile test bars, and 24 plies of the tape were utilized in the interlaminar shear strength test bars. The resinous matrix material used in the formation of the composites was provided as a solventless system which contained 100 parts by weight epoxy resin and 88 parts by weight of anhydride curing agent.
The tensile strength and the horizontal interlaminar shear strength of the resulting composites were determined. The tensile strength was determined employing a modified ASTM D638 procedure utilizing fiberglass tabs to avoid clamp damage. Precise alignment of the bars was obtained prior to setting the clamps. The horizontal interlaminar shear strength of the composite was determined by short beam testing of the fiber reinforced composite according to the procedure of ASTM D2344-65T as modified for straight bar testing with a 4:1 span to depth ratio.
EXAMPLE I The acrylonitrile homopolymer tape having a double faced 4 float filling sateen weave construction as illustrated in FIG. 1 was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch. The weft pick was provided at a frequency of 4 picks per inch of tape.
,The counter for the weave was one. The weave pattern for the tape is illustrated in FIG. 2. The appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape. The absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape. A plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
Following stabilization (i.e. preoxidation) the tape width had decreased to 2.8 inches. Following carbonization and graphitization the width of the tape had decreased to 2.4 inches. The average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10 grams per denier tenacity, and 3250 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 70,000 psi, and an average horizontal interlaminar shear strength of 7,300
EXAMPLE II The acrylonitrile homopolymer tape having a double faced 8 float filling sateen weave construction as illustrated in FIG. 3 was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately continuous fils of acrylonitrile homopolymer having a total denier of about 200 and a twist of 0.5 turn per inch. The weft pick was provided at a frequency of 2 picks per inch of tape.
The counter for the weave was one. The weave pattern for the tape is illustrated in FIG. 4. The appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape. The absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape. A plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
Following stabilization (i.e. preoxidation) the tape width had decreased to approximately 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to approximately 2.5 inches. The average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10.2 grams per denier tenacity, and 3200 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 95,000 psi, and an average horizontal interlaminar shear strength of 8,700 psi.
EXAMPLE III The acrylonitrile homopolymer tape having a double faced 8 float filling sateen weave construction similar to that illustrated in FIG. 3 was employed. The weft pick was formed from approximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch. The weft pick was provided at a frequency of 6 picks per inch of tape.
The counter for the weave was one. The weave pattern for the tape is illustrated in FIG. 4. The appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape. The absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape. A plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
Following stabilization (i.e. preoxidation) the tape width had decreased to 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to 2.5 inches. The average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 10 grams per denier tenacity, and 3000 grams per denier Youngs modulus. The resulting composite exhibited an average tensile strength of 72,000 psi, and an average horizontal interlaminar shear strength of 7,700 psi. A comparison of the composite properties indicates that the tape of Example II is preferred to that of Example III for utilization in the process of the invention.
EXAMPLE IV The acrylonitrile homopolymer tape having a double faced 16 float filling sateen weave construction as illustrated in FIG. was employed. Representative warp ends are identified at A and representative weft picks at B. The weft pick was formed from approximately 100 continuous fils of acrylonitrile homopolymer having a total denier of about 200 and a twist of 0.5 turn per inch. The weft pick was provided at a frequency of 4 picks per inch of tape.
The counter for the weave was one. The weave pattern for the tape is illustrated in FIG. 6. The appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape. The absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape. A plain weave construction was employed when the weft pick traversed the pair of warp ends adjacent each edge of the tape.
Following stabilization (i.e. preoxidation) the tape width had decreased to approximately 2.9 inches. Following carbonization and graphitization the width of the tape had decreased to approximately 2.5 inches. The average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were grams per denier tenacity, and 3309 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 105 ,000 psi, and an average horizontal interlaminar shear strength of 8,400 psi.
For comparative purposes an acrylonitrile homopolymer tape employing identical warp ends was processed as heretofore described in the absence of any form of weaving. More specifically, the warp ends were maintained in parallel in the form of a flat tape which lacked a weft pick interlaced therewith. The average single filament tensile properties breaks tested) of the warp ends following graphitization and prior to surface treatment were 11.5 grams per denier tenacity, and 3200 grams per denier Youngs modulus. The resulting composites exhibited an average tensile strength of 90,000 psi, and an average horizontal interlaminar shear strength of 8,800 psi. A comparison of the composite properties indicates that the presence of the weft pick within composites reinforced by carbonized sateen tapes formed in accordance with the present process results in no substantial diminution of composite properties. Additionally, the present process offers significant fiber handling advantages.
For comparative purposes a woven acrylonitrile homopolymer tape was formed in a plain weave construction and processed as heretofore described. The warp ends were in adjoining contact throughout the process. The weave construction is illustrated in FIG. 7. Representative warp ends are identified at A and reprersentative weft picks at B. The weft pick was formed from ap-' proximately 200 continuous fils of acrylonitrile homopolymer having a total denier of about 400 and a twist of 4.5 turns per inch. The weft pick was provided at a frequency of 2 picks per inch of tape. The counter for the weave was one. The weave pattern for the tape is illustrated in FIG. 8. The appearance of a number within a box of the weave pattern indicates that the corresponding warp end is present upon the surface of the woven tape. The absence of a number within a box of the weave pattern indicates that a weft pick is present upon the surface of the woven tape. Following stabilization (i.e. preoxidation) the tape width had decreased to 3.15 inches. Following carbonization and graphitization the width of the tape had decreased to 2.4 inches. The average single filament tensile properties (20 breaks tested) of the warp ends following graphitization and prior to surface treatment were 8.6 grams per denier tenacity, and 3300 grams per denier Youngs modulus. The resulting composite exhibited an average tensile strength 'of 46,000 psi, and an average horizontal interlaminar shear strength of 7,200 psi. A comparison of composite properties indicates a substantial diminution of composite properties results when the reinforcing tape is formed in the plain weave construction.
Although the invention has been described with preferred embodiments, it is to be understood that variations and modifications may be resorted to as will be apparent to those skilled in the art. Such variations and modifications are to be considered within the purview and scope of the claims appended hereto.
We claim:
1. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material consisting of at least 32 adjoining substantially parallel linear warp ends of a carbonaceous fibrous material essentially coextensive with the length of said tape containing at least per cent carbon by weight, and a fibrous weft pick interlaced with said warp ends at a plurality of points capable of maintaining said substantially parallel relationship of said warp ends which floats at least 4 of said warp ends prior to each additional interlacing point in the main body of said tape as said warp ends are traversed and provided at a frequency of about 0.1 to 8 picks per inch of said tape.
2. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material contains at least per cent carbon by weight.
3. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material comprises graphitic carbon.
4. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material comprises about 32 to 500 adjoining warp ends.
5. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick floats from about 4 to 16 of said warp ends prior to each additional interlacing point in the main body of said tape.
6. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick possesses a twist of about 0.1 to 3 turns per inch.
7. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick possesses a twist of about 0.5 turn per inch.
8. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated 9. A tape of sateen weave construction suitable for 16 use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick is provided at a frequency of about 1 to 3 picks per inch of said tape.

Claims (9)

1. A TAPE OF SATEEN WEAVE CONSTRUCTION SUITABLE FOR USE AS A FIBROUS REINFORCING MEDIUM WHEN INCORPORATED IN A MATRIX MATERIAL CONSISTING OF AT LEAST 32 ADJOINING SUBSTANTIALLY PAR LEL LINEAR WARP ENDS OF A CARBONACEOUS FIBROUS MATERIAL ESSENTIALLY COEXXTENSIVE WITH THE LENGTH OF SAID TAPE CONTAINING AT LEAST 90 PER CENT CARBON BY WEIGHT, AND A FIBROUS WEFT PICK INTERLACED WITH SAID WARP ENDS AT A PLURALITY OF POINTS CAPABLE OF MAINTAINING SAID SUBSTANTIALLY PARALLEL RELATIONSHIP OF SAID WARP ENDS WHICH FLOATS AT LEAST 4 OF SAID WARP ENDS PRIOR TO EACH ADDITIONAL INTERLACING POINT IN THE MAN BODY OF SAID TAPE AS SAID WARP ENDS ARE TRAVERSED AND PROVIDED AT A FREQUENCY OF ABOUT 0.1 TO 8 PICKS PER INCH OF SAID TAPE.
2. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material contains at least 95 per cent carbon by weight.
3. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material comprises graphitic carbon.
4. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said carbonaceous fibrous material comprises about 32 to 500 adjoining warp ends.
5. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick floats from about 4 to 16 of said warp ends prior to each additional interlacing point in the main body of said tape.
6. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick possesses a twist of about 0.1 to 3 turns per inch.
7. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick possesses a twist of about 0.5 turn per inch.
8. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick floats about 8 of said warp ends prior to each additional interlacing point in the main body of said tape.
9. A tape of sateen weave construction suitable for use as a fibrous reinforcing medium when incorporated in a matrix material in accordance with claim 1 wherein said weft pick is provided at a frequency of about 1 to 3 picks per inch of said tape.
US355232A 1971-02-03 1973-04-27 Carbonaceous tapes Expired - Lifetime US3926228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US355232A US3926228A (en) 1971-02-03 1973-04-27 Carbonaceous tapes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00112189A US3818082A (en) 1971-02-03 1971-02-03 Process for the production of carbonaceous tapes
US355232A US3926228A (en) 1971-02-03 1973-04-27 Carbonaceous tapes

Publications (1)

Publication Number Publication Date
US3926228A true US3926228A (en) 1975-12-16

Family

ID=26809677

Family Applications (1)

Application Number Title Priority Date Filing Date
US355232A Expired - Lifetime US3926228A (en) 1971-02-03 1973-04-27 Carbonaceous tapes

Country Status (1)

Country Link
US (1) US3926228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207422A2 (en) * 1985-06-27 1987-01-07 BASF Aktiengesellschaft Woven fabric made from unsized carbon fiber multifilamentary yarn bundles
US20030036325A1 (en) * 1998-10-20 2003-02-20 The Boeing Company Composite prepreg material form with improved resistance to core crush and porosity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1659680A (en) * 1925-07-06 1928-02-21 West Boylston Mfg Company Woven cord fabric
US3669158A (en) * 1969-03-10 1972-06-13 Technology Uk Continuous carbon fiber tapes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1659680A (en) * 1925-07-06 1928-02-21 West Boylston Mfg Company Woven cord fabric
US3669158A (en) * 1969-03-10 1972-06-13 Technology Uk Continuous carbon fiber tapes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0207422A2 (en) * 1985-06-27 1987-01-07 BASF Aktiengesellschaft Woven fabric made from unsized carbon fiber multifilamentary yarn bundles
EP0207422A3 (en) * 1985-06-27 1988-08-17 BASF Aktiengesellschaft Woven fabric made from unsized carbon fiber multifilamentary yarn bundles
US20030036325A1 (en) * 1998-10-20 2003-02-20 The Boeing Company Composite prepreg material form with improved resistance to core crush and porosity
US6523578B1 (en) * 1998-10-20 2003-02-25 The Boeing Company Composite prepreg material form with improved resistance to core crush and porosity
US6845791B2 (en) * 1998-10-20 2005-01-25 The Boeing Company Composite prepreg material form with improved resistance to core crush and porosity

Similar Documents

Publication Publication Date Title
US3818082A (en) Process for the production of carbonaceous tapes
US3914494A (en) Pervious low density carbon fiber reinforced composite articles
US4714642A (en) Carbon fiber multifilamentary tow which is particularly suited for weaving and/or resin impregnation
US5356707A (en) Non-linear carbonaceous fiber
US3503708A (en) Graphite yarn
US3539295A (en) Thermal stabilization and carbonization of acrylic fibrous materials
US3859158A (en) Production of pervious low density carbon fiber reinforced composite articles
US3723607A (en) Surface modification of carbon fibers
US5328764A (en) Linear carbonaceous fiber with improved elongability
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
US3775520A (en) Carbonization/graphitization of poly-acrylonitrile fibers containing residual spinning solvent
US6524501B1 (en) Pitch fiber bundle and pitch type carbon fiber bundle and method for production thereof
US3925587A (en) Pervious low density carbon fiber reinforced composite articles
US3556729A (en) Process for oxidizing and carbonizing acrylic fibers
US4374114A (en) Process for the surface modification of carbon fibers
US3533743A (en) Process for the manufacture of continuous high modulus carbon yarns and monofilaments
US3754957A (en) Enhancement of the surface characteristics of carbon fibers
US4781223A (en) Weaving process utilizing multifilamentary carbonaceous yarn bundles
US3723150A (en) Surface modification of carbon fibers
Ezekiel et al. Preparation of graphite fibers from polymeric fibers
US3926228A (en) Carbonaceous tapes
US3859187A (en) Electrolytic process for the surface modification of high modulus carbon fibers
US3993829A (en) Production of pervious low density carbon fiber reinforced composite articles
US3894884A (en) Process for the enhancement of low modulus carbon fibers
US3677705A (en) Process for the carbonization of a stabilized acrylic fibrous material

Legal Events

Date Code Title Description
AS Assignment

Owner name: CCF, INC.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CELANESE CORPORATION;REEL/FRAME:004413/0650

Effective date: 19850510

AS Assignment

Owner name: BASF STRUCTURAL MATERIALS, INC., 1501 STEELE CREEK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INMONT CORPORATION, A CORP. OF DE.;REEL/FRAME:004540/0948

Effective date: 19851231

AS Assignment

Owner name: INMONT CORPORATION

Free format text: MERGER;ASSIGNORS:NARMCO MATERIALS, INC.;QUANTUM, INCORPORATED;CCF, INC.;REEL/FRAME:004580/0870

Effective date: 19860417

AS Assignment

Owner name: SUBJECT TO AGREEMENT RECITED SEE DOCUMENT FOR DETA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BASF STRUCTURAL MATERIALS INC.;REEL/FRAME:004718/0001

Effective date: 19860108

Owner name: BASF AKTIENGESELLSCHAFT, D-6700 LUDWIGSHAFEN, GERM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BASF STRUCTURAL MATERIALS INC.;REEL/FRAME:004718/0001

Effective date: 19860108