JPH0348571B2 - - Google Patents

Info

Publication number
JPH0348571B2
JPH0348571B2 JP60262198A JP26219885A JPH0348571B2 JP H0348571 B2 JPH0348571 B2 JP H0348571B2 JP 60262198 A JP60262198 A JP 60262198A JP 26219885 A JP26219885 A JP 26219885A JP H0348571 B2 JPH0348571 B2 JP H0348571B2
Authority
JP
Japan
Prior art keywords
magnetic
head
gap
magnetoresistive
linear shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60262198A
Other languages
Japanese (ja)
Other versions
JPS62121915A (en
Inventor
Kazuhiro Sato
Toshihiro Ishiwatari
Togo Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP26219885A priority Critical patent/JPS62121915A/en
Publication of JPS62121915A publication Critical patent/JPS62121915A/en
Publication of JPH0348571B2 publication Critical patent/JPH0348571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • G11B5/3925Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure the two parts being thin films

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気抵抗効果ヘツドに係り、特に再生
出力向上を図り得る磁気抵抗効果ヘツドに関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetoresistive head, and more particularly to a magnetoresistive head capable of improving reproduction output.

従来の技術 一般に強磁性薄膜の磁気抵抗効果を利用した磁
気抵抗効果ヘツドは、電磁誘導型薄膜磁気ヘツド
に比して、低速再生の感度が高い、狭トラツク化
が容易でマルチ・トラツク磁気ヘツドとして有利
などの利点があり、高密度磁気記録媒体の再生用
ヘツドとして用いられている。此の磁気抵抗効果
ヘツド(以下MRヘツドと略称する)としては、
磁気抵抗効果素子(以下MR素子と略称する)を
記録媒体摺動面に露出させた、所謂シールド型、
及びノン・シールド型のものと、それらの信頼性
を向上させた、所謂ヨーク型ものとがある。第6
図及び第7図に従来のヨーク型MRヘツドの構造
を示す。なお第7図は第6図におけるA−A線に
沿う断面図であり、また各図において同一構成に
は同一符号を付して説明する。両図中、1はMn
−Znフエライト或はNi−Znフエライト等よりな
る磁性基板、2はAl、Al−Cu、Mo等の金属よ
り成るバイアス線、3及び5はAl2O3或はSiO2
の電気的絶縁膜、4はNi−Fe、Ni−Co等の薄膜
状のMR素子、6a,6bはパーマロイ、センダ
スト(登録商標)等の軟磁性膜よりなる磁気ヨー
クを夫々示している。また7は信号磁界を検出す
るための磁気ギヤツプ(以下、フロント・ギヤツ
プとする)で8はMR素子4に記録媒体の信号磁
界の磁束を供給する為の磁気ギヤツプ(以下セン
サー・ギヤツプとする)である。此の様なヨーク
型のMRヘツド9は、MR素子4がテープ摺動面
9aに露出していないので、シールド型或いはノ
ン・シールド型に比して耐蝕性に優れ、信頼性が
ある。
Conventional technology In general, a magnetoresistive head that utilizes the magnetoresistive effect of a ferromagnetic thin film has higher sensitivity in low-speed playback than an electromagnetic induction type thin-film magnetic head, and can easily be made into a narrow track, making it suitable for use as a multi-track magnetic head. Due to its advantages, it is used as a reproducing head for high-density magnetic recording media. This magnetoresistive head (hereinafter abbreviated as MR head) is
A so-called shield type in which a magnetoresistive element (hereinafter abbreviated as MR element) is exposed on the sliding surface of the recording medium.
There are non-shielded types and so-called yoke type types with improved reliability. 6th
7 and 7 show the structure of a conventional yoke type MR head. Note that FIG. 7 is a sectional view taken along the line A--A in FIG. 6, and the same components in each figure are given the same reference numerals and will be explained. In both figures, 1 is Mn
-Magnetic substrate made of Zn ferrite or Ni-Zn ferrite, etc., 2 is a bias line made of metal such as Al, Al-Cu, Mo, etc., 3 and 5 are electrical insulating films made of Al 2 O 3 or SiO 2 , etc. , 4 indicates a thin film MR element such as Ni-Fe or Ni-Co, and 6a and 6b indicate magnetic yokes made of a soft magnetic film such as Permalloy or Sendust (registered trademark). Further, 7 is a magnetic gap (hereinafter referred to as the front gap) for detecting the signal magnetic field, and 8 is a magnetic gap (hereinafter referred to as the sensor gap) for supplying the magnetic flux of the signal magnetic field of the recording medium to the MR element 4. It is. Since the MR element 4 is not exposed on the tape sliding surface 9a, such a yoke type MR head 9 has superior corrosion resistance and reliability compared to the shield type or non-shield type.

発明が解決しようとする問題点 しかるに上記従来のMRヘツド9では、前部磁
気ヨーク6a、センサー・ギヤツプ8及びMR素
子4、後部磁気ヨーク6b、磁性基板1とに依つ
て構成する磁気回路の磁気抵抗は、其の殆どがセ
ンサー・ギヤツプ8のセンサー・ギヤツプ長sに
依つて決められ、此の部分の磁気抵抗が、フロン
ト・ギヤツプ7の磁気抵抗に比して大きい為、フ
ロント・ギヤツプ7より流入する信号磁束は、そ
の殆どがフロント・ギヤツプ7に於いて短絡し、
結果として信号磁束を検出する為のサンセー・ギ
ヤツプ8に於ける信号磁束は小となつて、MRヘ
ツド9の再生効率は低下している。これを避ける
為にフロント・ギヤツプ7の幅d(寿命寸法)を
小として、相対的にフロント・ギヤツプ7の磁気
抵抗を大とする方法があるが、これはMRヘツド
9の寿命を低下させる結果となる。この理由を第
8図を用いて以下説明する。第8図は上記MRヘ
ツド9の磁気回路の等価回路であつて、磁気記録
媒体からMRヘツド9に流入する信号磁束φ0はフ
ロント・ギヤツプ7の磁気抵抗Rgを通じて帰還
するφgと、センサー・ギヤツプ8の磁気抵抗
Rsg、及びそれに信号磁束を伝達するための磁気
ヨーク6a,6bの磁気抵抗Ryを通じて帰還す
る磁束φsに分岐する。
Problems to be Solved by the Invention However, in the conventional MR head 9, the magnetic circuit composed of the front magnetic yoke 6a, the sensor gap 8, the MR element 4, the rear magnetic yoke 6b, and the magnetic substrate 1 is Most of the resistance is determined by the sensor gap length s of the sensor gap 8, and since the magnetic resistance of this part is larger than that of the front gap 7, it is larger than the front gap 7. Most of the incoming signal magnetic flux is short-circuited at the front gear 7.
As a result, the signal magnetic flux in the Sansei gap 8 for detecting the signal magnetic flux becomes small, and the reproduction efficiency of the MR head 9 decreases. In order to avoid this, there is a method of reducing the width d (life dimension) of the front gap 7 and relatively increasing the magnetic resistance of the front gap 7, but this results in a reduction in the life of the MR head 9. becomes. The reason for this will be explained below using FIG. FIG. 8 shows an equivalent circuit of the magnetic circuit of the MR head 9, in which the signal magnetic flux φ0 flowing into the MR head 9 from the magnetic recording medium returns through the magnetic resistance Rg of the front gap 7 and the sensor gap φg. 8 magnetic resistance
Rsg and the magnetic flux φs that returns through the magnetic resistance Ry of the magnetic yokes 6a and 6b for transmitting the signal magnetic flux thereto.

再生効率φs/φ0は可能な限り大きくする必要
がある。同図よりφs/φ0を求めると φs/φ0=Rg/(Ry+Rsg+Rg) ……(1) であるが、磁気ヨーク6a,6bは軟磁性膜であ
り、磁気抵抗は、その高い透磁率の為に一般的に
は無視する事が出来、よつて(1)式は φs/φ0=Rg/(Rsg+Rg) =(Rg/Rsg)/(1+(Rg/Rsg)) ……(2) となる。
The regeneration efficiency φs/φ 0 needs to be as large as possible. Calculating φs/φ 0 from the same figure, φs/φ 0 = Rg/(Ry+Rsg+Rg)...(1) However, the magnetic yokes 6a and 6b are soft magnetic films, and the magnetic resistance is due to their high magnetic permeability. Therefore, equation ( 1 ) can be generally ignored as Become.

以上の結果より、再生効率を高めるには
(Rg/Rsg)を大とする必要があるが、上記の如
く、Rgを大とする方法はヘツドの寿命寸法dを
小とするか、フロント・ギヤツプ7の厚さgを大
とするなどの方法があるが、いずれもMRヘツド
9の品質を劣化させる結果となり、従来の構造で
は、センサー・ギヤツプ8の加工限界以上に再生
効率を高める事が出来ない。このため、実用とな
る電磁気的特性及び感度を得たヨーク型のMRヘ
ツド9では、寿命寸法が小さく、かつ再生特性に
劣るものしか提供することが出来ないと言う問題
点があつた。
From the above results, it is necessary to increase (Rg/Rsg) in order to increase the regeneration efficiency, but as mentioned above, the method to increase Rg is to reduce the life dimension d of the head, or to increase the front gear. There are methods such as increasing the thickness g of the sensor gap 8, but all of them result in deterioration of the quality of the MR head 9. With the conventional structure, it is not possible to increase the regeneration efficiency beyond the processing limit of the sensor gap 8. do not have. For this reason, the yoke type MR head 9, which has achieved practical electromagnetic characteristics and sensitivity, has a problem in that it has a short life span and can only provide inferior reproduction characteristics.

またここでバイアス線2がMR素子4に印加す
るバイアス磁界の印加方向に注目すると、バイア
ス線2がMR素子4の延在方向に対し略平行に配
設された構成では、バイアス磁界はMR素子2の
延在方向に対し直角方向に印加される。一般に
MRヘツドにおいは、MR素子の再生特性を向上
させたり、バルクハウゼン・ノイズを減少せしめ
る方法として、バイアス磁界をMR素子の長手方
向に印加する方法が知られているが、上記構成の
MRヘツド9の場合、バイアス磁界をMR素子4
の長手方向に印加するのは困難である。よつて
MRヘツド9においては再生特性の向上及びバル
クハウゼン・ノイズの減少を図ることが非常に困
難であるという問題点があつた。
Also, if we pay attention to the direction in which the bias magnetic field is applied to the MR element 4 by the bias line 2, in a configuration in which the bias line 2 is arranged approximately parallel to the extending direction of the MR element 4, the bias magnetic field is applied to the MR element 4. 2 is applied in a direction perpendicular to the direction in which it extends. in general
Regarding MR head odor, it is known to apply a bias magnetic field in the longitudinal direction of the MR element as a method to improve the reproduction characteristics of the MR element and reduce Barkhausen noise.
In the case of MR head 9, the bias magnetic field is applied to MR element 4.
It is difficult to apply it in the longitudinal direction. Sideways
The MR head 9 has a problem in that it is extremely difficult to improve the reproduction characteristics and reduce Barkhausen noise.

そこで本発明では、センサー・ギヤツプ及び
MR素子を基板上に非直線形状で形成することに
より上記問題点を解決した磁気抵抗効果ヘツドを
提供することを目的とする。
Therefore, in the present invention, the sensor gap and
The object of the present invention is to provide a magnetoresistive head that solves the above problems by forming an MR element in a non-linear shape on a substrate.

問題点を解決するための手段及び作用 上記問題点を解決するために本発明では、軟磁
性薄膜から成るヨークの設けられた磁気ギヤツプ
に対向して磁気抵抗効果素子を配設してなる磁気
抵抗効果ヘツドにおいて、上記ヨーク間に形成さ
れる磁気ギヤツプを非直線的な形状に形成すると
共に磁気抵抗効果素子を上記磁気ギヤツプに沿う
非直線形状に形成した。
Means and Effects for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a magnetoresistive device in which a magnetoresistive element is disposed opposite a magnetic gap provided with a yoke made of a soft magnetic thin film. In the effect head, the magnetic gap formed between the yokes was formed in a non-linear shape, and the magnetoresistive element was formed in a non-linear shape along the magnetic gap.

また、軟磁性薄膜から成るヨークに設けられた
磁気ギヤツプに対向配設された磁気抵抗効果素子
と、この磁気抵抗効果素子にバイアス磁界を印加
するための電流通路を構成する導体とを設けてな
る磁気抵抗効果ヘツドにおいて、上記ヨーク間に
形成される磁気ギヤツプを非直線的な形状に形成
すると共に磁気抵抗効果素子を上記磁気ギヤツプ
に沿う非直線形状に形成し、かつ、上記導体を非
直線状の磁気抵抗効果素子及び磁気ギヤツプの全
体に亘つて対向する幅を有する形状とした。
Further, a magnetoresistance effect element is provided to face a magnetic gap provided on a yoke made of a soft magnetic thin film, and a conductor forming a current path for applying a bias magnetic field to the magnetoresistive effect element is provided. In the magnetoresistive head, the magnetic gap formed between the yokes is formed in a non-linear shape, the magnetoresistive element is formed in a non-linear shape along the magnetic gap, and the conductor is formed in a non-linear shape. The magnetoresistive element and the magnetic gap were shaped to have opposite widths over the entirety thereof.

磁気抵抗効果ヘツドを上記構成とすることによ
り、磁気ギヤツプの実効的な長さが大となりヨー
クの磁気ギヤツプにおける対向面積は大となりヨ
ークの磁気抵抗を小とすることができる。また導
体により発生するバイアス磁界は非直線的な形状
に形成された磁気抵抗効果素子に対して印加され
るため、磁気抵抗効果素子の長手方向に対しバイ
アス磁界を印加することが可能となる。
By configuring the magnetoresistive head as described above, the effective length of the magnetic gap becomes large, the opposing area of the yoke in the magnetic gap becomes large, and the magnetic resistance of the yoke can be reduced. Further, since the bias magnetic field generated by the conductor is applied to the magnetoresistive element formed in a non-linear shape, it is possible to apply the bias magnetic field in the longitudinal direction of the magnetoresistive element.

実施例 第1図及び第2図に本発明になる磁気抵抗効果
ヘツド(MRヘツド)の第一実施例を示す。なお
第1図にはふたつのMRヘツドが並設された状態
を示しており、また第2図は第1図におけるB−
B線に沿う断面を示している。同図に示すMRヘ
ツド10は薄膜形成技術を用いて形成されてお
り、例えば多トラツクのデジタルオーデイオテー
プレコーダの再生用ヘツドとして使用されるもの
である。このMRヘツド10はMn−Znフエライ
ト或はNi−Znフエライト等の磁性体基板11と、
この基板11上に形成されたバイアス線12、磁
気抵抗効果素子(MR素子)13、上部ヨーク1
4、リード線15a,15b等より構成されてい
る。
Embodiment FIGS. 1 and 2 show a first embodiment of a magnetoresistive head (MR head) according to the present invention. Note that Fig. 1 shows two MR heads installed side by side, and Fig. 2 shows the B-B in Fig. 1.
A cross section along line B is shown. The MR head 10 shown in the figure is formed using thin film forming technology, and is used, for example, as a reproduction head of a multi-track digital audio tape recorder. This MR head 10 includes a magnetic substrate 11 made of Mn-Zn ferrite or Ni-Zn ferrite,
A bias line 12, a magnetoresistive element (MR element) 13, and an upper yoke 1 are formed on this substrate 11.
4. Consists of lead wires 15a, 15b, etc.

基板11には凹状溝16が刻設されており、こ
の凹状溝16にはガラス等の非磁性絶縁体17が
充填されている。また絶縁体17の所定位置に
は、Al、Al−Cu、Mo等の導体よりなり、後述
する如くMR素子13に対してバイアス磁界を印
加するバイアス線12が埋設されている。このよ
うにMRヘツド10は、バイアス磁界印加方法と
して、バイアス線12に電流を流すことにより
MR素子13にバイアス磁界を印加する構成の電
流バイアス方を採用しているため、MR素子13
の異方性磁界の大きさに応じて電流の大きさ(即
ち印加磁界の大きさ)を容易に変化させることが
でき、適正な動作点を容易に得ることができる。
バイアス線12及び絶縁体17が形成された凹状
溝16は、テープ摺動面10aと略平行に延在す
るよう形成されている。このバイアス線12等が
形成された基板11の上面には平面研磨が行なわ
れ、その後にSiO2等の絶縁膜18(この絶縁膜
18はギヤツプ材としても機能する)を介して
Ni−Fe、Ni−Co等のMR素子13が第1図に示
す如く、略V字状の形状でパターン形成されてい
る(これについては後に詳述する)。このMR素
子13は磁性体基板11と磁気的な絶縁をとり得
るよう凹状溝16に充填された絶縁体17上に形
成されている。またMR素子13の両端部には基
板11上にパターン形成されたリード線15a,
15bが電気的に接続されている。更にMR素子
13及びリード線15a,15bが形成された基
板11上には絶縁膜19を介してパーマロイ、セ
ンダスト等の軟磁性膜よりなる上部ヨーク14が
形成されている。この上部ヨーク14のMR素子
13と対向する位置には磁気ギヤツプ20(以下
この磁気ギヤツプをセンサー・ギヤツプという)
が形成されている。すなわちセンサー・ギヤツプ
20は略V字状の形状でパターン形成されたMR
素子13に沿つて形成されている。このセンサ
ー・ギヤツプ20により上部ヨーク14はヨーク
半体14a,14bに画成されている。またテー
プ摺動面10aにおいて前方ヨーク半体14aは
絶縁膜18を介して磁性体基板11と対向してお
り磁気ギヤツプ21(以下この磁気ギヤツプをフ
ロント・ギヤツプという)を形成している。更に
後方ヨーク半体14bは絶縁膜18,19に形成
されたスルーホール22を介して磁性体基板11
と磁気的に接続されており、いわゆるバツク・ギ
ヤツプにおける磁気抵抗は極めて小さな値となつ
ている。
A concave groove 16 is cut into the substrate 11, and this concave groove 16 is filled with a non-magnetic insulator 17 such as glass. Further, in a predetermined position of the insulator 17, a bias line 12 made of a conductor such as Al, Al-Cu, Mo, etc. is buried, and applies a bias magnetic field to the MR element 13 as described later. In this way, the MR head 10 applies a bias magnetic field by passing a current through the bias line 12.
Since a current bias method is adopted in which a bias magnetic field is applied to the MR element 13, the MR element 13
The magnitude of the current (that is, the magnitude of the applied magnetic field) can be easily changed according to the magnitude of the anisotropic magnetic field, and an appropriate operating point can be easily obtained.
The concave groove 16 in which the bias line 12 and the insulator 17 are formed is formed to extend substantially parallel to the tape sliding surface 10a. The upper surface of the substrate 11 on which the bias line 12 etc. are formed is subjected to surface polishing, and then an insulating film 18 (this insulating film 18 also functions as a gap material) made of SiO 2 or the like is interposed.
As shown in FIG. 1, the MR element 13 made of Ni--Fe, Ni--Co, etc. is patterned in a substantially V-shape (this will be described in detail later). This MR element 13 is formed on an insulator 17 filled in a concave groove 16 so as to be magnetically insulated from the magnetic substrate 11. Further, at both ends of the MR element 13, lead wires 15a patterned on the substrate 11,
15b is electrically connected. Further, on the substrate 11 on which the MR element 13 and lead wires 15a and 15b are formed, an upper yoke 14 made of a soft magnetic film such as Permalloy or Sendust is formed with an insulating film 19 interposed therebetween. A magnetic gap 20 (hereinafter referred to as a sensor gap) is located on the upper yoke 14 at a position facing the MR element 13.
is formed. In other words, the sensor gap 20 is an MR pattern formed in a substantially V-shape.
It is formed along the element 13. The sensor gap 20 defines the upper yoke 14 into yoke halves 14a and 14b. Further, on the tape sliding surface 10a, the front yoke half 14a faces the magnetic substrate 11 with an insulating film 18 interposed therebetween, forming a magnetic gap 21 (hereinafter this magnetic gap will be referred to as a front gap). Furthermore, the rear yoke half 14b connects to the magnetic substrate 11 through through holes 22 formed in the insulating films 18 and 19.
The magnetic resistance in the so-called back gap is extremely small.

ここでセンサー・ギヤツプ20の形状を従来の
ような直線状ではなく、非直線的な略V字形状に
した理由及び効果について以下詳述する。まず前
記した式(2)におけるセサー・ギヤツプ20の磁気
抵抗Rsgに対するフロント・ギヤツプ21の磁気
抵抗Rgの比(以下この比を磁気抵抗比X0とす
る)を算出する。フロント・ギヤツプ21の磁気
抵抗Rsgは、 Rg=g/(μ0・W・d) ……(3) g:フロント・ギヤツプ21の厚さ寸法 μ0:フロンタ・ギヤツプ21の透磁率 W:トラツク幅 d:寿命寸法 で表わされ、またセンサー・ギヤツプ20の磁気
抵抗Rsgは、上部ヨーク14とMR素子13との
磁気的結合がMR素子13の磁気抵抗によつて決
定され、その値は Rsg=Wy/(μMR・L・tMR) ……(4) Wy:センサー・ギヤツプ20の長さ μMR:MR素子13の透磁率 tMR:MR素子13の厚さ L:MR素子13の長さ と近似できる。また磁気抵抗比x0は X0=Rg/Rsg ……(5) であるから、式(3)、式(4)を式(5)に代入すると、 X0=g・μMR・tMR/Wy・μ0・d・1/W……
(6) となる。従来のMRヘツド9(第6図に示す)に
おいては、トラツク幅WとMR素子13の長さL
が略等しい値(L≒W)であつたため式(6)は X0=g・μMR・tMR/Wy・μ0・d ……(7) と近似することができた。しかるに第1図に示す
MRヘツド10においては、一対のヨーク半体1
4a,14b間に形成されるセンサー・ギヤツプ
20は非直線的な略V字形状となつており、MR
素子13もセンサー・ギヤツプ20に沿つた非直
線形状となつている。従つてMR素子13の長さ
L及びセンサー・ギヤツプ20の延在長さは、ト
ラツク幅Wに対いて長くなつており、それがトラ
ツク幅Wのn倍(L=n・W)であると仮定した
場合の磁気抵抗比X1は、 X1=n・X0 ……(8) となる。式(8)を式(2)に代入して再生効率φs/φ0
の向上率αを求めると、 α=(n・X0/1+n・X0)/(X0/1+X0) =1+n−1/1+n・X0 ……(9) となり、式(9)で示される再生効率の向上を実現す
ることができる。
The reason and effect of making the sensor gap 20 non-linear and approximately V-shaped instead of the conventional linear shape will be described in detail below. First, the ratio of the magnetic resistance Rg of the front gap 21 to the magnetic resistance Rsg of the sensor gap 20 in equation (2) described above (hereinafter this ratio will be referred to as magnetic resistance ratio X 0 ) is calculated. The magnetic resistance Rsg of the front gap 21 is Rg=g/(μ 0・W・d) ……(3) g: Thickness dimension of the front gap 21 μ 0 : Magnetic permeability of the front gap 21 W: Track Width d: expressed as the life dimension, and the magnetic resistance Rsg of the sensor gap 20 is determined by the magnetic coupling between the upper yoke 14 and the MR element 13, and its value is Rsg =Wy/(μ MR・L・t MR ) ...(4) Wy: Length of sensor gap 20 μ MR : Magnetic permeability t of MR element 13 MR : Thickness of MR element 13 L: Thickness of MR element 13 It can be approximated as length. Also, the magnetoresistance ratio x 0 is X 0 = Rg/Rsg (5), so by substituting equations (3) and (4) into equation (5), X 0 = g・μ MR・t MR /Wy・μ 0・d・1/W……
(6) becomes. In the conventional MR head 9 (shown in FIG. 6), the track width W and the length L of the MR element 13 are
were approximately equal values (L≈W), so equation (6) could be approximated as X 0 =g・μ MR・t MR /Wy・μ 0・d (7). However, as shown in Figure 1
In the MR head 10, a pair of yoke halves 1
The sensor gap 20 formed between 4a and 14b has a non-linear approximately V-shape, and the MR
Element 13 also has a non-linear shape along sensor gap 20. Therefore, the length L of the MR element 13 and the extension length of the sensor gap 20 are longer than the track width W, and if they are n times the track width W (L=n·W), then The magnetoresistance ratio X 1 in the assumed case is X 1 =n·X 0 (8). Substituting equation (8) into equation (2), regeneration efficiency φs/φ 0
When calculating the improvement rate α, α=(n・X 0 /1+n・X 0 )/(X 0 /1+X 0 ) =1+n−1/1+n・X 0 ……(9), and in Equation (9), The improvement in regeneration efficiency shown can be achieved.

ここで実際に各式に数値を代入して再生効率を
求めてみる。tMR=0.03μm、d=10μm、g=0.5μ
m、W=60μm、Wy=5μm、μMR/1000として式
(7)を計算すると磁気抵抗比X0はX0=0.3であり、
またこれを式(2)に代入すると再生効率φs/φ0
φs/φ0=0.23となる。しかるに本発明になるMR
ヘツド10によればMR素子13の長さL及びセ
ンサー・ギヤツプ20の延在長さはトラツク幅W
に対し長くなつているため、仮にn=10とする
と、再生効率φs/φ0はφs/φ0=0.75となり、飛
躍的に再生効率を向上させることができる。また
再生効率を従来のMRヘツドと略等しく選定した
場合、すなわちX1=X0とした場合、式(7)、式(8)
より X0=n・g・μMR・tMR/Wy・μ0・n・d……
(10) とすることができ、これは寿命寸法dを大きくと
れることを意味している。よつてMRヘツド10
の再生効率を適宜選定し、かつ、センサー・ギヤ
ツプ20の形状を非直線形状とすることにより、
MRヘツド10の寿命寸法dを大とすることがで
き薄膜磁気ヘツドとしての信頼性を向上させるこ
とができる。上記のように、MR素子13を長く
することにより、MR素子13の電気抵抗を大き
くすることができ、よつて抵抗変化率が同じであ
れば大きな抵抗変化を得ることができ、再生出力
を向上させることができる。更にセンサー・ギヤ
ツプ20における記録媒体から上部ヨーク14内
に進入する信号磁界の磁束について説明するに、
上述の如くセンサー・ギヤツプ20が非直線形状
をとることにより式(4)よりセンサー・ギヤツプ2
0における磁気抵抗Rsgは従来のMRヘツドと比
べ小となるため、記録媒体に記録された信号磁界
の磁束はMRヘツド10が形成する磁気回路内に
進入し易すくなる。よつて大なる数の磁束が前方
ヨーク半体14aに侵入し、センサー・ギヤツプ
20においてはこの磁束は第1図中矢印で示す方
向に進行して後方ヨーク半体14bに進入し、こ
の過程で磁束の変化はMR素子13で磁界変換さ
れリード線15a,15bより再生信号として取
り出される。上記のように大なる数の磁束がMR
ヘツド9内に進入するため、再生出力は向上する
が、これに伴い磁束の変化量も大となり、バルク
ハウゼン・ノイズの発生が問題となる。しかるに
センサー・ギヤツプ20は非直線形状の、換言す
れば基板11上に長く延在する形状となつている
ため、単位長さ当りのセンサー・ギヤツプ20間
を貫通する磁束は小であり、相対的な磁束変化量
は小である。従つて単位長さ当たりのMR素子1
3に印加される磁束変化量も小となるため、例え
ば多トラツクのMRヘツドでトラツク毎にバイア
ス点が異なるような場合でも、再生出力を均一な
ものとする事ができ、かつバルクハウゼン・ノイ
ズの発生を防止することができる。なお、MR素
子13の単位長さにおける磁束変化量は小であつ
ても、MR素子13の全体長さは大であるため
MR素子13全体による総再生出力は大となるこ
とは自明のことである。
Here, we will actually calculate the regeneration efficiency by substituting numerical values into each equation. t MR = 0.03μm, d = 10μm, g = 0.5μ
Formula as m, W = 60μm, Wy = 5μm, μ MR /1000
Calculating (7), the magnetoresistance ratio X 0 is X 0 = 0.3,
Further, when this is substituted into equation (2), the regeneration efficiency φs/φ 0 becomes φs/φ 0 =0.23. However, the MR of the present invention
According to the head 10, the length L of the MR element 13 and the extended length of the sensor gap 20 are the track width W.
Therefore, if n=10, the regeneration efficiency φs/φ 0 becomes φs/φ 0 =0.75, and the regeneration efficiency can be dramatically improved. Furthermore, when the regeneration efficiency is selected to be approximately equal to that of the conventional MR head, that is, when X 1 = X 0 , Equations (7) and (8)
From X 0 = n・g・μ MR・t MR /Wy・μ 0・n・d……
(10), which means that the life dimension d can be increased. Yotsutte MR head 10
By appropriately selecting the regeneration efficiency and making the shape of the sensor gap 20 non-linear,
The life span d of the MR head 10 can be increased, and the reliability as a thin film magnetic head can be improved. As mentioned above, by increasing the length of the MR element 13, the electrical resistance of the MR element 13 can be increased, and therefore, if the resistance change rate is the same, a large resistance change can be obtained, and the reproduction output can be improved. can be done. Further, to explain the magnetic flux of the signal magnetic field entering the upper yoke 14 from the recording medium in the sensor gap 20,
As mentioned above, since the sensor gap 20 has a non-linear shape, the sensor gap 2
Since the magnetic resistance Rsg at 0 is smaller than that of a conventional MR head, the magnetic flux of the signal magnetic field recorded on the recording medium easily enters the magnetic circuit formed by the MR head 10. Therefore, a large amount of magnetic flux enters the front yoke half 14a, and in the sensor gap 20, this magnetic flux advances in the direction shown by the arrow in FIG. 1 and enters the rear yoke half 14b, and in this process, The change in magnetic flux is converted into a magnetic field by the MR element 13, and is extracted as a reproduced signal from the lead wires 15a and 15b. As mentioned above, a large number of magnetic fluxes are MR
Since the magnetic flux enters the head 9, the reproduction output is improved, but the amount of change in the magnetic flux is also increased, causing a problem of Barkhausen noise. However, since the sensor gap 20 has a non-linear shape, in other words, it has a shape that extends long on the substrate 11, the magnetic flux penetrating between the sensor gap 20 per unit length is small, and the relative The amount of change in magnetic flux is small. Therefore, 1 MR element per unit length
Since the amount of change in the magnetic flux applied to 3 is also small, even if the bias point is different for each track in a multi-track MR head, for example, the reproduced output can be made uniform and there is no Barkhausen noise. can be prevented from occurring. Note that even though the amount of change in magnetic flux per unit length of the MR element 13 is small, the overall length of the MR element 13 is large.
It is obvious that the total reproduction output of the entire MR element 13 is large.

またMR素子13及びセンサー・ギヤツプ20
の長さを大とすべく、第3図に示す如く、MR素
子23及びセンサー・ギヤツプ24の形状を非直
線的な略W字形状としたMRヘツド25としても
良い。この構成とするこにより第1図に示すMR
ヘツド10と比べてMR素子23及びセンサー・
ギヤツプ24は長くなり、上述したように再生効
率の向上が望める。しかるにここで注意すべきこ
とは、上記ヨーク14に長さの大なるセンサー・
ギヤツプ24を形成することにより、上部ヨーク
14上に部分的に狭所(第3図に中矢印Cで示
す)が形成されてしまう。この狭所Cにおいては
上部ヨーク14自体の磁気抵抗が大となつてしま
い、MRヘツド25全体としての磁気回路の磁気
抵抗が大となつてしまうことが考えられる。よつ
てセンサー・ギヤツプ24の形状は、MRヘツド
25としての磁気回路の磁気抵抗を小とし得、か
つセンサー・ギヤツプ24の磁気抵抗が小となる
適宜な形状を選定する必要がある。なお第3図に
おいて第1図と同一構成については同一符号を付
して、その説明は省略した。
Also, MR element 13 and sensor gap 20
In order to increase the length, the MR head 25 may have the MR element 23 and the sensor gap 24 in a non-linear substantially W-shape as shown in FIG. With this configuration, the MR shown in Fig.
Compared to the head 10, the MR element 23 and sensor
The gap 24 becomes longer, and as mentioned above, it is expected that the regeneration efficiency will be improved. However, what should be noted here is that the yoke 14 has a long sensor.
By forming the gap 24, a narrow space (indicated by a middle arrow C in FIG. 3) is formed partially on the upper yoke 14. In this narrow area C, the magnetic resistance of the upper yoke 14 itself becomes large, and it is conceivable that the magnetic resistance of the magnetic circuit of the MR head 25 as a whole becomes large. Therefore, it is necessary to select an appropriate shape for the sensor gap 24 so that the magnetic resistance of the magnetic circuit as the MR head 25 can be made small, and the magnetic resistance of the sensor gap 24 can be made small. In FIG. 3, the same components as those in FIG. 1 are given the same reference numerals, and their explanations are omitted.

本発明になる第二実施例を第4図及び第5図に
示す。なお第5図は第4図におけるD−D線に沿
う断面を示しており、また第1図で示した構成と
同一構成については同一符号を付してその説明を
省略する。同図に示すMRヘツド26は、磁性基
板に形成された凹状溝に充填されたガラス等の絶
縁体17上に、MR素子13にバイアス磁界を印
加するための電流通路を構成する導体23を幅広
に配設した構造となつている。この導体23は
Al、Al−Cu、Mo等より薄膜形成技術を用いて
テープ摺動面26aと略平行に形成されている。
また導体23は、この導体23上に非直線状の略
V字形状に形成されたMR素子13及びセンサ
ー・ギヤツプ20にその全体に亘り対向する幅寸
法で形成されている。
A second embodiment of the present invention is shown in FIGS. 4 and 5. Note that FIG. 5 shows a cross section taken along the line DD in FIG. 4, and the same components as those shown in FIG. The MR head 26 shown in the figure has a wide conductor 23 that forms a current path for applying a bias magnetic field to the MR element 13 on an insulator 17 such as glass that is filled in a concave groove formed in a magnetic substrate. The structure is arranged in This conductor 23
It is formed approximately parallel to the tape sliding surface 26a using a thin film formation technique of Al, Al-Cu, Mo, etc.
Further, the conductor 23 is formed with a width dimension so as to face the MR element 13 and the sensor gap 20, which are formed in a non-linear substantially V-shape on the conductor 23, over the entirety thereof.

上記構成になるMRヘツド26において、導体
23に図中矢印E方向に電流が流れると導体23
は磁界を発生し、その磁界の方向は第4図中矢印
Fで示す方向となる。この磁界はMR素子13に
対してバイアス磁界として機能し、かつその印加
方向はMR素子13の延在方向に対して直交する
方法でない方向、すなわちMR素子13の延在方
向(長手方向)にバイアス磁界を印加し得る成分
を有する方向となつている。上述したように一般
にMRヘツドにおいては、MR素子の再生特性を
向上させたり、バルクハウゼン・ノイズを減少せ
しめる方法として、バイアス磁界をMR素子の長
手方向に印加する方法が知られている。上記構成
のMRヘツド26ではMR素子13のパターン形
状を適宜選定することにより、バイアス磁界を
MR素子13の長手方向に印加することが可能と
なる。これにより再生特性を向上させることがで
きると共に衝撃性のバルクハウゼン・ノイズの低
減を図ることができる。
In the MR head 26 configured as described above, when a current flows through the conductor 23 in the direction of arrow E in the figure, the conductor 23
generates a magnetic field, and the direction of the magnetic field is the direction indicated by arrow F in FIG. This magnetic field functions as a bias magnetic field for the MR element 13, and the direction of its application is not perpendicular to the extending direction of the MR element 13, that is, the biasing direction is in the extending direction (longitudinal direction) of the MR element 13. The direction has a component that can apply a magnetic field. As mentioned above, in general, in MR heads, a method of applying a bias magnetic field in the longitudinal direction of the MR element is known as a method of improving the reproduction characteristics of the MR element and reducing Barkhausen noise. In the MR head 26 with the above configuration, the bias magnetic field can be controlled by appropriately selecting the pattern shape of the MR element 13.
It becomes possible to apply the voltage in the longitudinal direction of the MR element 13. This makes it possible to improve reproduction characteristics and reduce impulsive Barkhausen noise.

発明の効果 上述の如く、本発明になるMRヘツドによれ
ば、センサー・ギヤツプを非直線的な形状に形成
すると共にMR素子をセンサー・ギヤツプに沿つ
て非直線形状とすることにより、センサー・ギヤ
ツプ部における磁気抵抗は小となり、これに伴い
MRヘツド内に構成される磁気回路の磁気抵抗を
小とすることができ、記録媒体に記録された信号
磁界の磁束は容易に上記磁気回路内へ進入するた
め再生率を向上させることができ、また再生効率
を従来のMRヘツドと同程度に選定した場合には
寿命寸法を大とすることができ薄膜磁気ヘツドと
しての信頼性を向上することができ、更にMR素
子にバイアス磁界を印加する導体を非直線状の
MR素子及びセンサー・ギヤツプの全体に亘つて
対向する幅を有する形状とすることにより、MR
素子の長手方向に対してバイアス磁界を印加する
ことができ、MRヘツドの再生特性及びバルクハ
ウゼン・ノイズの発生を低減させることができ、
またMR素子の長さが長くなることによりMR素
子の電気抵抗を大きくすることができ、よつて抵
抗変化率が同じであれば大きな抵抗変化を得るこ
とができるため再生出力を向上させることができ
る等の特長を有する。
Effects of the Invention As described above, according to the MR head of the present invention, the sensor gap is formed in a non-linear shape and the MR element is formed in a non-linear shape along the sensor gap. The magnetic resistance at the
The magnetic resistance of the magnetic circuit configured in the MR head can be made small, and the magnetic flux of the signal magnetic field recorded on the recording medium can easily enter the magnetic circuit, so that the reproduction rate can be improved. In addition, if the reproduction efficiency is selected to be the same as that of conventional MR heads, the life span can be increased and the reliability as a thin film magnetic head can be improved. a non-linear
By making the MR element and the sensor gap have opposing widths, the MR
A bias magnetic field can be applied in the longitudinal direction of the element, which can reduce the reproduction characteristics of the MR head and the generation of Barkhausen noise.
In addition, by increasing the length of the MR element, the electrical resistance of the MR element can be increased, and therefore, if the resistance change rate is the same, a large resistance change can be obtained, and the reproduction output can be improved. It has the following features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になるMRヘツドの第一実施例
を示す平面図、第2図は第1図におけるB−B線
に沿う断面図、第3図は第1図に示すMRヘツド
に比べMR素子及びセンサー・ギヤツプの長さを
大としたMRヘツドを示す平面図、第4図は本発
明になるMRヘツドの第二実施例を示す平面図、
第5図は第4図におけるD−D線に沿う断面図、
第6図は従来のMRヘツドの一例の平面図、第7
図は第6図におけるA−A線に沿う断面図、第8
図は第6図に示すMRヘツドの等価磁気回路を示
す図である。 10,25,26……MRヘツド、11……磁
性体基板、12……バイアス線、13,23……
MR素子、14……上部ヨーク、14a,14b
……ヨーク半体、15a,15b……リード線、
20,24……センサー・ギヤツプ、21……フ
ロント・ギヤツプ、23……導体。
FIG. 1 is a plan view showing a first embodiment of the MR head according to the present invention, FIG. 2 is a sectional view taken along line B-B in FIG. 1, and FIG. 3 is a comparison of the MR head shown in FIG. FIG. 4 is a plan view showing a second embodiment of the MR head according to the present invention; FIG.
FIG. 5 is a sectional view taken along line D-D in FIG. 4,
Figure 6 is a plan view of an example of a conventional MR head; Figure 7 is a plan view of an example of a conventional MR head;
The figure is a sectional view taken along line A-A in Figure 6,
This figure shows an equivalent magnetic circuit of the MR head shown in FIG. 6. 10, 25, 26... MR head, 11... Magnetic substrate, 12... Bias line, 13, 23...
MR element, 14... Upper yoke, 14a, 14b
... Yoke half body, 15a, 15b ... Lead wire,
20, 24...sensor gap, 21...front gap, 23...conductor.

Claims (1)

【特許請求の範囲】 1 軟磁性薄膜から成るヨークに設けられた磁気
ギヤツプに対向して磁気抵抗効果素子を配設して
なる磁気抵抗効果ヘツドにおいて、上記ヨーク間
に形成される磁気ギヤツプを非直線的な形状に形
成すると共に該磁気抵抗効果素子を該磁気ギヤツ
プに沿う非直線形状に形成してなることを特徴と
する磁気抵抗効果ヘツド。 2 軟磁性薄膜から成るヨークに設けられた磁気
ギヤツプに対向配設された磁気抵抗効果素子と、
該磁気抵抗効果素子にバイアス磁界を印加するた
めの電流通路を構成する導体とを設けてなる磁気
抵抗効果ヘツドにおいて、上記ヨーク間に形成さ
れる磁気ギヤツプを非直線的な形状に形成すると
共に該磁気抵抗効果素子を該磁気ギヤツプに沿う
非直線形状に形成し、かつ該導体を該非直線状の
磁気抵抗効果素子及び該磁気ギヤツプの全体に亘
つて対向する幅を有する形状としてなることを特
徴とする磁気抵抗効果ヘツド。
[Scope of Claims] 1. A magnetoresistive head in which a magnetoresistive element is arranged opposite to a magnetic gap provided on a yoke made of a soft magnetic thin film, in which the magnetic gap formed between the yokes is not 1. A magnetoresistive head, characterized in that the magnetoresistive head is formed in a linear shape and the magnetoresistive element is formed in a non-linear shape along the magnetic gap. 2. A magnetoresistive element disposed opposite to a magnetic gap provided on a yoke made of a soft magnetic thin film;
In the magnetoresistive head which is provided with a conductor constituting a current path for applying a bias magnetic field to the magnetoresistive element, the magnetic gap formed between the yokes is formed in a non-linear shape, and the magnetic gap formed between the yokes is formed in a non-linear shape. The magnetoresistive element is formed in a non-linear shape along the magnetic gap, and the conductor has a width that faces across the non-linear magnetoresistive element and the magnetic gap. magnetoresistive head.
JP26219885A 1985-11-21 1985-11-21 Magneto-resistance effect head Granted JPS62121915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26219885A JPS62121915A (en) 1985-11-21 1985-11-21 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26219885A JPS62121915A (en) 1985-11-21 1985-11-21 Magneto-resistance effect head

Publications (2)

Publication Number Publication Date
JPS62121915A JPS62121915A (en) 1987-06-03
JPH0348571B2 true JPH0348571B2 (en) 1991-07-24

Family

ID=17372442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26219885A Granted JPS62121915A (en) 1985-11-21 1985-11-21 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPS62121915A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549612A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Thin-film magnetoresistant head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549612A (en) * 1977-06-23 1979-01-24 Mitsubishi Electric Corp Thin-film magnetoresistant head

Also Published As

Publication number Publication date
JPS62121915A (en) 1987-06-03

Similar Documents

Publication Publication Date Title
US6078479A (en) Magnetic tape head with flux sensing element
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
US5097372A (en) Thin film magnetic head with wide recording area and narrow reproducing area
JPH0845037A (en) Thin-film magnetoresistance transducer
US4734644A (en) Flux cancelling yoke type magnetic transducer head
JPH05314430A (en) Magnetoresistance effect type thin-film magnetic head
JPH07272225A (en) Magnetic resistive head
EP0675486A2 (en) Integrated yoke magnetoresistive transducer with magnetic shunt
JPH04351706A (en) Composite type thin-film magnetic head
JPS61120318A (en) Unified thin film magnetic head
US4922360A (en) Magnetic head
JPH064832A (en) Combine thin film magnetic head
US5905610A (en) Combined read/write magnetic head having MRE positioned between broken flux guide and non-magnetic substrate
JP2662334B2 (en) Thin film magnetic head
JPH0348571B2 (en)
JP3160947B2 (en) Magnetoresistive magnetic head
JPH0441415B2 (en)
JPS61177616A (en) Thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP2596010B2 (en) Magnetoresistive magnetic head
JP2583851B2 (en) Magnetoresistive magnetic head
JPS62102411A (en) Magneto-resistance effect head
JPH05266437A (en) Magnetoresistance effect type head
JPS5925282B2 (en) magnetoresistive head
JPH0544091B2 (en)