JPH0544091B2 - - Google Patents

Info

Publication number
JPH0544091B2
JPH0544091B2 JP27743785A JP27743785A JPH0544091B2 JP H0544091 B2 JPH0544091 B2 JP H0544091B2 JP 27743785 A JP27743785 A JP 27743785A JP 27743785 A JP27743785 A JP 27743785A JP H0544091 B2 JPH0544091 B2 JP H0544091B2
Authority
JP
Japan
Prior art keywords
magnetic
head
yoke
gap
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27743785A
Other languages
Japanese (ja)
Other versions
JPS62137714A (en
Inventor
Kazuhiro Sato
Toshihiro Ishiwatari
Togo Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP27743785A priority Critical patent/JPS62137714A/en
Publication of JPS62137714A publication Critical patent/JPS62137714A/en
Publication of JPH0544091B2 publication Critical patent/JPH0544091B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気抵抗効果型薄膜磁気ヘツドに係
り、特に再生出力向上を図り得る磁気抵抗効果型
薄膜磁気ヘツドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetoresistive thin film magnetic head, and more particularly to a magnetoresistive thin film magnetic head capable of improving reproduction output.

従来の技術 一般に強磁性薄膜の磁気抵抗効果を利用した磁
気抵抗効果型薄膜磁気ヘツド(以下MRヘツドと
略称する)は、電磁誘導型薄膜磁気ヘツドに比し
て、低速再生の感度が高い、狭トラツク化が容易
でマルチ・トラツク磁気ヘツドとして有利などの
利点があり、高密度磁気記録媒体の再生用ヘツド
として用いられている。此のMRヘツドとして
は、磁気抵抗効果素子(以下MR素子と略称す
る)を記録媒体摺動面に露出させた、所謂シール
ド型、及びノン・シールド型のものと、それらの
信頼性を向上させた、所謂ヨーク型のものとがあ
る。第4図及び第5図に従来のヨーク型MRヘツ
ドの構造を示す。なお第5図は第4図におけるA
−A線に沿う断面図であり、また各図において同
一構成には同一符号を付して説明する。両図中、
1はMn−Znフエライト或はNi−Znフエライト
等よりなる磁性基板、2はAl、Al−Cu、Mo等
の金属より成るバイアス線、3及び5はAl2O3
はSiO2等の電気的絶縁膜、4はNi−Fe、Ni−Co
等の薄膜状のMR素子、6はヨーク半体6a,6
bより構成されるパーマロイ、センダスト(登録
商標)等の軟磁性膜よりなるヨークを夫々示して
いる。また7は信号磁界を検出するための磁気ギ
ヤツプ(以下、フロント・ギヤツプとする)で8
はMR素子4に記録媒体からの信号磁界の磁束を
供給する為の磁気ギヤツプ(以下センサー・ギヤ
ツプとする)である。此の様なヨーク型のMRヘ
ツド9は、MR素子4がテープ摺動面9aに露出
していないので、シールド型或いはノン・シール
ド型に比して耐蝕性に優れ、信頼性がある。
Conventional technology In general, a magnetoresistive thin-film magnetic head (hereinafter referred to as MR head), which utilizes the magnetoresistive effect of a ferromagnetic thin film, has a higher sensitivity for low-speed reproduction than an electromagnetic induction thin-film magnetic head. It has the advantage of being easy to track and is useful as a multi-track magnetic head, and is used as a head for reproducing high-density magnetic recording media. These MR heads include so-called shielded and non-shielded types in which a magnetoresistive element (hereinafter referred to as MR element) is exposed on the sliding surface of the recording medium, as well as non-shielded types with improved reliability. There is also a so-called yoke type. FIGS. 4 and 5 show the structure of a conventional yoke type MR head. In addition, Fig. 5 shows A in Fig. 4.
- It is a sectional view along the A line, and the same code|symbol is attached|subjected and demonstrated to the same structure in each figure. In both figures,
1 is a magnetic substrate made of Mn-Zn ferrite or Ni-Zn ferrite, 2 is a bias wire made of metal such as Al, Al-Cu, Mo, etc., and 3 and 5 are electric wires such as Al 2 O 3 or SiO 2 . Insulating film, 4 is Ni-Fe, Ni-Co
6 is a thin film MR element such as yoke half body 6a, 6
A yoke made of a soft magnetic film such as Permalloy made of B or Sendust (registered trademark) is shown. Also, 7 is a magnetic gap (hereinafter referred to as front gap) for detecting the signal magnetic field, and 8
is a magnetic gap (hereinafter referred to as a sensor gap) for supplying the magnetic flux of the signal magnetic field from the recording medium to the MR element 4. Since the MR element 4 is not exposed on the tape sliding surface 9a, such a yoke type MR head 9 has superior corrosion resistance and reliability compared to the shield type or non-shield type.

発明が解決しようとする問題点 しかるに上記従来のMRヘツド9では、前部ヨ
ーク半体6a、センサー・ギヤツプ8及びMR素
子4、後部ヨーク半体6b、磁性基板1とに依つ
て構成する磁気回路の磁気抵抗は、其の殆どがセ
ンサー・ギヤツプ8のセンサー・ギヤツプ長Sに
依つて決められ、此の部分の磁気抵抗が、フロン
ト・ギヤツプ7の磁気抵抗に比して大きい為、フ
ロント・ギヤツプ7より流入する信号磁束は、そ
の殆どがフロント・ギヤツプ7に於いて短絡し、
結果として信号磁束を検出する為のセンサー・ギ
ヤツプ8に於ける信号磁束は小となつて、MRヘ
ツド9の再生効率は低下している。これを避ける
為にフロント・ギヤツプ7の幅d(寿命寸法)を
小として、相対的にフロント・ギヤツプ7の磁気
抵抗を大とする方法があるが、これはMRヘツド
9の寿命を低下させる結果となる。この理由を第
6図を用いて以下説明する。第6図は上記MRヘ
ツド9の磁気回路の等価回路であつて、磁気記録
媒体からMRヘツド9に流入する信号磁束φ0はフ
ロント・ギヤツプ7の磁気抵抗Rgを通じて帰還
するφgと、センサー・ギヤツプ8の磁気抵抗
Rsg、及びそれに信号磁束を伝達するための磁気
ヨーク6a,6bの磁気抵抗Ryを通じて帰還す
る磁束φsに分岐する。
Problems to be Solved by the Invention However, in the conventional MR head 9 described above, the magnetic circuit is configured by the front yoke half 6a, the sensor gap 8, the MR element 4, the rear yoke half 6b, and the magnetic substrate 1. Most of the magnetic resistance of the front gap is determined by the sensor gap length S of the sensor gap 8, and the magnetic resistance of this part is larger than that of the front gap 7. Most of the signal magnetic flux flowing in from 7 is short-circuited at the front gear 7,
As a result, the signal magnetic flux in the sensor gap 8 for detecting the signal magnetic flux becomes small, and the reproduction efficiency of the MR head 9 decreases. In order to avoid this, there is a method of reducing the width d (life dimension) of the front gap 7 and relatively increasing the magnetic resistance of the front gap 7, but this results in a reduction in the life of the MR head 9. becomes. The reason for this will be explained below using FIG. FIG. 6 is an equivalent circuit of the magnetic circuit of the MR head 9, in which the signal magnetic flux φ 0 flowing from the magnetic recording medium into the MR head 9 returns through the magnetic resistance R g of the front gap 7, and the sensor・Magnetic resistance of gap 8
R sg and the magnetic flux φ s that returns through the magnetic resistance R y of the magnetic yokes 6a, 6b for transmitting the signal magnetic flux thereto.

再生効率φs/φ0は可能な限り大きくする必要
がある。同図よりφs/φ0を求めると φs/φ0=Rg/(Ry+Rsg+Rg) ……(1) であるが、磁気ヨーク6a,6bは軟磁性膜であ
り、磁気抵抗は、その高い透磁率の為に一般的に
は無視する事が出来、よつて(1)式は、 φs/φ0=Rg/(Rsg+Rg) =(Rg+Rsg)/(1+(Rg+Rsg)) ……(2) となる。
The regeneration efficiency φ s0 needs to be as large as possible. Determining φ s0 from the same figure, φ s0 = R g /(R y +R sg +R g )...(1) However, the magnetic yokes 6a and 6b are soft magnetic films, and the magnetic Resistance can generally be ignored due to its high permeability, so equation (1) is: φ s / φ 0 = R g / (R sg + R g ) = (R g + R sg ) /(1+(R g +R sg )) ...(2).

以上の結果より、再生効率を高めるには
(Rg/Rsg)を大とする必要があるが、上記の如
く、Rgを大とする方法はヘツドの寿命寸法dを
小とするか、フロント・ギヤツプ7の厚さgを大
とするなどの方法があるが、いずれもMRヘツド
9の品質を劣化させる結果となり、従来の構造で
は、センサー・ギヤツプ8の加工限界以上に再生
効率を高める事が出来ない。このため、実用とな
る電磁気性特性及び感度を得たヨーク型のMRヘ
ツド9では、寿命寸法が小さく、かつ再生特性に
劣るものしか提供することが出来ないという問題
点があつた。
From the above results, it is necessary to increase (R g /R sg ) to increase the regeneration efficiency, but as mentioned above, the method of increasing R g is to reduce the life size d of the head, There are methods such as increasing the thickness g of the front gap 7, but all of them result in deterioration of the quality of the MR head 9, and with the conventional structure, it is difficult to increase the regeneration efficiency beyond the processing limit of the sensor gap 8. I can't do anything. For this reason, the yoke type MR head 9, which has achieved practical electromagnetic characteristics and sensitivity, has a problem in that it has a short life span and can only provide inferior reproduction characteristics.

そこで本出願人は先に特許願「磁気抵抗効果ヘ
ツド」(昭和60年11月21日出願)において上記問
題点を解決すべく、ヨーク間に形成される磁気ギ
ヤツプを非直線的な形状に形成すると共にMR素
子を上記磁気ギヤツプに沿う非直線形状に形成し
た磁気抵抗効果ヘツドを提案した。
Therefore, in order to solve the above problem in the patent application ``Magnetoresistive Head'' (filed on November 21, 1985), the present applicant formed the magnetic gap formed between the yokes into a non-linear shape. At the same time, we proposed a magnetoresistive head in which the MR element is formed in a non-linear shape along the magnetic gap.

上記「磁気抵抗効果ヘツド」によれば、センサ
ー・ギヤツプを非直線的な形状に形成すると共に
MR素子をセンサー・ギヤツプに沿つて非直線形
状とすることにより、センサー・ギヤツプ部にお
ける磁気抵抗は小となり、これに伴い再生効率を
向上させることができ、また再生効率を従来の
MRヘツドと同程度に選定した場合には寿命寸法
を大とすることができ薄膜磁気ヘツドとしての信
頼性を向上することができる等の種々の利益があ
る。
According to the above-mentioned "magnetoresistive head", the sensor gap is formed into a non-linear shape and
By forming the MR element into a non-linear shape along the sensor gap, the magnetic resistance at the sensor gap becomes small, thereby improving the regeneration efficiency.
When selected to the same extent as the MR head, there are various benefits such as the life span can be increased and the reliability as a thin film magnetic head can be improved.

しかるに上記「磁気抵抗効果ヘツド」では再生
効率を上げる為に、磁気ギヤツプ及びMR素子の
パターンを更に細分化して、センサー・ギヤツプ
に於ける磁気抵抗を下げ、寿命寸法を大とし、更
にトラツク幅を小としようとした場合には、これ
に対応してヨークがセンサー・ギヤツプにより細
かく画成されてしまい、この画成されたヨーク部
の磁気抵抗が大きくなつて再生効率がかえつて低
下してしまうという問題があつた。
However, in order to increase the reproduction efficiency of the above-mentioned "magnetoresistive head", the pattern of the magnetic gap and MR element is further subdivided, the magnetic resistance in the sensor gap is lowered, the life is increased, and the track width is increased. If an attempt is made to make the yoke smaller, the yoke will be finely defined by the sensor gap, and the magnetic resistance of the defined yoke will increase, which will actually reduce the reproduction efficiency. There was a problem.

そこで本発明では、センサー・ギヤツプに於け
る磁気抵抗を小さくすると共に、それに磁束を供
給するヨークの磁性抵抗をも小さくする構成とす
ることにより上記問題点を解決した磁気抵抗効果
型薄膜磁気ヘツドを提供することを目的とする。
Therefore, the present invention provides a magnetoresistive thin film magnetic head that solves the above problems by reducing the magnetic resistance in the sensor gap and also reducing the magnetic resistance of the yoke that supplies the magnetic flux. The purpose is to provide.

問題点を解決するための手段 上記問題点を解決するために本発明では、記録
媒体に記録された信号磁界によりヨークを磁化
し、ヨークに設けられた磁気ギヤツプの漏れ磁界
を磁気抵抗効果素子により電気信号として取出す
ヘツド部を複数隣接して設けてなる磁気抵抗効果
型薄膜磁気ヘツドにおいて、上記複数の夫々の磁
気ヘツド部の磁気ギヤツプにより二分割されるヨ
ークの一方を互いに一体的に形成した。
Means for Solving the Problems In order to solve the above problems, the present invention magnetizes the yoke using a signal magnetic field recorded on a recording medium, and uses a magnetoresistive element to absorb the leakage magnetic field from the magnetic gap provided on the yoke. In a magnetoresistive thin film magnetic head having a plurality of adjacent head sections for extracting electrical signals, one side of a yoke divided into two by a magnetic gap of each of the plurality of magnetic head sections is formed integrally with each other.

実施例 第1図及び第2図に本発明になる磁気抵抗効果
型薄膜磁気ヘツド(MRヘツド)の一実施例を示
す。第1図はMRヘツドとして機能するふたつの
MRヘツド部10a,10bが隣接されて設けら
れた状態を拡大して示しており、また第2図は第
1図におけるB−B線に沿う断面を示している。
両図に示すMRヘツド10は薄膜形成技術を用い
て形成されており、例えば多トラツクのデジタル
テープレコーダに対応して複数のMRヘツド部1
0a,10bを隣接形成されて再生専用ヘツドと
して使用されるものである。なおMRヘツド10
の各MRヘツド部10a,10bは同一構成をな
しているため便宜上MRヘツド部10aのみ説明
し、必要に応じてMRヘツド部10bを説明す
る。MRヘツド10aはMn−Znフエライト或は
Ni−Znフエライト等の磁性体基板11と、この
基板11上に形成されたバイアス線12、磁気抵
抗効果素子(MR素子)13a、前方ヨーク14
a、後方ヨーク15、リード線16a−1,16
a−2等より構成されている。
Embodiment FIGS. 1 and 2 show an embodiment of a magnetoresistive thin film magnetic head (MR head) according to the present invention. Figure 1 shows the two MR heads that function as MR heads.
The MR head sections 10a and 10b are shown in an enlarged manner as being disposed adjacent to each other, and FIG. 2 shows a cross section taken along the line B--B in FIG. 1.
The MR head 10 shown in both figures is formed using thin film forming technology, and for example, a plurality of MR head parts 1 are formed to correspond to a multi-track digital tape recorder.
0a and 10b are formed adjacent to each other and used as a read-only head. Furthermore, MR head 10
Since the MR head sections 10a and 10b have the same configuration, only the MR head section 10a will be explained for convenience, and the MR head section 10b will be explained as necessary. The MR head 10a is made of Mn-Zn ferrite or
A magnetic substrate 11 such as Ni-Zn ferrite, a bias line 12 formed on this substrate 11, a magnetoresistive element (MR element) 13a, and a front yoke 14.
a, rear yoke 15, lead wires 16a- 1 , 16
It is composed of a- 2 , etc.

基板11には凹状溝17が刻設されており、こ
の凹状溝17にはガラス等の非磁性絶縁体18が
充填されている。また絶縁体18の所定位置に
は、Al、Al−Cu、Mo等の導体よりなりMR素子
13aに対してバイアス磁界を印加するバイアス
線12が埋設されている。バイアス線12及び絶
縁体18が形成された凹状溝17は、テープ摺動
面19と略平行に延在するように形成されてい
る。このバイアス線12等が形成された基板11
の上面には平面研磨が行なわれ、その後にSiO2
等の絶縁膜20(この絶縁膜20はギヤツプ材と
しても機能する)を介してNi−Fe、Ni−Co等の
MR素子13aが第1図に示す如く、略V字状の
非直線形状でパターン形成されている。このMR
素子13aは磁性体基板11と磁気的な絶縁をと
り得るよう凹状溝17に充填された絶縁体18上
に形成されている。またMR素子13aの両端部
には基板11上にパターン形成されたリード線1
6a−1,16a−2が電気的に接続されている。
更にMR素子13a及びリード線16a−1,1
6a−2が形成された基板11上には絶縁膜21
を介してパーマロイ、センダスト等の軟磁性膜よ
りなる前方ヨーク14a及び後部ヨーク15が形
成されている(これについては後に詳述する)。
この前方ヨーク14aと後部ヨーク15の間には
磁気ギヤツプ22a(以下この磁気ギヤツプをセ
ンサー・ギヤツプという)が形成されており、こ
のセンサー・ギヤツプ22aはMR素子13aの
パターン形状に沿つて非直線状の略V字状に形成
されている。またテープ摺動面19において前方
ヨーク14aは絶縁膜20を介して磁性体基板1
1と対向しており、磁気ギヤツプ23a(以下こ
の磁気ギヤツプをフロント・ギヤツプという)を
形成している。更に後方ヨーク15は絶縁膜2
0,21に形成されたスルーホール24aを介し
て磁性体基板11と磁気的に接続されており、い
わゆるバツク・ギヤツプにおける磁気抵抗は極め
て小さな値となつている。
A concave groove 17 is carved in the substrate 11, and this concave groove 17 is filled with a non-magnetic insulator 18 such as glass. Further, a bias line 12 made of a conductor such as Al, Al-Cu, Mo, etc. is buried in a predetermined position of the insulator 18 for applying a bias magnetic field to the MR element 13a. The concave groove 17 in which the bias line 12 and the insulator 18 are formed is formed to extend substantially parallel to the tape sliding surface 19. A substrate 11 on which this bias line 12 etc. are formed.
The top surface is polished and then SiO 2
(This insulating film 20 also functions as a gap material.) Ni-Fe, Ni-Co, etc.
As shown in FIG. 1, the MR element 13a is formed into a substantially V-shaped non-linear pattern. This MR
The element 13a is formed on an insulator 18 filled in the concave groove 17 so as to be magnetically insulated from the magnetic substrate 11. Further, lead wires 1 patterned on the substrate 11 are provided at both ends of the MR element 13a.
6a- 1 and 16a- 2 are electrically connected.
Furthermore, the MR element 13a and the lead wires 16a- 1 , 1
6a- 2 is formed on the substrate 11, an insulating film 21 is formed.
A front yoke 14a and a rear yoke 15 made of a soft magnetic film such as Permalloy or Sendust are formed through the yoke (this will be described in detail later).
A magnetic gap 22a (hereinafter referred to as a sensor gap) is formed between the front yoke 14a and the rear yoke 15, and this sensor gap 22a has a non-linear shape along the pattern shape of the MR element 13a. It is formed in a roughly V-shape. Further, on the tape sliding surface 19, the front yoke 14a is connected to the magnetic substrate 1 through the insulating film 20.
1, forming a magnetic gap 23a (hereinafter this magnetic gap will be referred to as a front gap). Further, the rear yoke 15 has an insulating film 2
It is magnetically connected to the magnetic substrate 11 through through holes 24a formed at holes 0 and 21, and the magnetic resistance in the so-called back gap is extremely small.

上記MRヘツド10を構成するMRヘツド部1
0aは、フロント・ギヤツプ23a、前方ヨーク
14a、MR素子13a、後部ヨーク15、磁性
体基板11より構成されるリング状の磁気回路を
形成する。このMRヘツド10のテープ摺動面1
9に磁気テープ25(第2図に一点鎖線で示す)
が当接摺動すると、磁気テープ25に記録されて
いる信号磁界はMRヘツド部10aに形成された
磁気回路内に供給される。すなわち、信号磁界の
磁束は前方ヨーク14aに進入し、センサー・ギ
ヤツプ22aに到り、センサー・ギヤツプ22a
の磁気抵抗が大であるためセンサー・ギヤツプ2
2aにおいて漏れ磁界を生ずる。この漏れ磁界の
一部はMR素子13aを貫通して通り、これによ
りMR素子13aは信号磁界の強さに対応してそ
の電気抵抗値を変化させる。MR素子13aには
予めセンス電流が印加されており、従つて信号磁
界の磁束変化に伴うMR素子13aの電気抵抗値
の変化によりMR素子両端の電圧も変化し、これ
は再生信号としてリード線16a−1,16a−2
より取り出される。その後、信号磁界の磁束は後
部ヨーク15、磁性体基板11を介してフロン
ト・ギヤツプ23aに到り、磁気的な閉ループを
形成する。
MR head section 1 constituting the above-mentioned MR head 10
0a forms a ring-shaped magnetic circuit composed of a front gap 23a, a front yoke 14a, an MR element 13a, a rear yoke 15, and a magnetic substrate 11. Tape sliding surface 1 of this MR head 10
9 is a magnetic tape 25 (shown by a dashed line in Fig. 2).
When the magnetic tape 25 contacts and slides, the signal magnetic field recorded on the magnetic tape 25 is supplied into the magnetic circuit formed in the MR head section 10a. That is, the magnetic flux of the signal magnetic field enters the front yoke 14a, reaches the sensor gap 22a, and
Since the magnetic resistance of the sensor gap 2 is large,
A leakage magnetic field is generated at 2a. A portion of this leakage magnetic field passes through the MR element 13a, causing the MR element 13a to change its electrical resistance value in response to the strength of the signal magnetic field. A sense current is applied to the MR element 13a in advance, and therefore, the voltage across the MR element changes due to a change in the electrical resistance value of the MR element 13a due to a change in the magnetic flux of the signal magnetic field, and this is transmitted as a reproduced signal to the lead wire 16a. -1,16a - 2
taken out from Thereafter, the magnetic flux of the signal magnetic field reaches the front gap 23a via the rear yoke 15 and the magnetic substrate 11, forming a magnetic closed loop.

ここで後部ヨーク15に注目し、以下詳述す
る。後部ヨーク15は隣接して形成されたMRヘ
ツド部10a,10bに対し共通のパターンとな
るよう形成されている。すなわち、一般にヨーク
型のMRヘツドの場合、上部ヨークはセンサー・
ギヤツプにより前方ヨーク部と後方ヨーク部に二
分割されるが、本発明になるMRヘツド10で
は、各隣接して配設されたMRヘツド部10a,
10bの各後方ヨーク部を一体的に形成し、磁気
的に接続したことを特徴とする。上記のように
MRヘツド部10a,10b内に構成される磁気
回路の磁気抵抗を小とするためMR素子13a,
13bのパターンを非直線形状とし、これに対応
してセンサー・ギヤツプ22a,22bのパター
ンをMR素子13a,13bに沿つて非直線形状
とした場合、第3図に示すような各隣接して形成
されたMRヘツド部26a,26bの後部ヨーク
27a,27bが独立した(磁気的に接続されて
いない)構成では、後部ヨーク27a,27bに
部分的に狭所が生じ、この部分(図中矢印Cで示
す)の磁気的抵抗値が大となりMRヘツド部26
a,26b全体としての磁気回路の磁気抵抗が大
となつてしまう(第3図中、第1図及び第2図と
同一構成には同一符号を付す)。しかるに各隣接
して形成されたMRヘツド部10a,10bの後
部ヨーク部を第1図に示す如く共通のパターンで
一体的に形成して夫々磁気的に接続させることに
より、MR素子13a,13bを非直線形状とし
ても狭所の形成を抑制することができ、後部ヨー
ク15の磁気抵抗値を小とすることができる。こ
れにより各MRヘツド部10a,10bに形成さ
れる磁気回路の磁気抵抗は小となり、磁気テープ
25に記録された信号磁界の磁束は容易に上記磁
気回路内に進入し、MR素子13a,13bを貫
通する信号磁界の磁束は大となり再生効率及び再
生出力を向上させることができる。これに加えて
MR素子13a,13b及びセンサー・ギヤツプ
22a,22bは後部ヨーク15の磁気抵抗に拘
わらず非直線形状に形成され得るため、センサ
ー・ギヤツプ22a,22bにおける磁気抵抗は
小で、これによつてもMRヘツド10の各MRヘ
ツド部10a,10bの再生効率及び再生出力を
向上させることができる。
Here, attention will be paid to the rear yoke 15, which will be described in detail below. The rear yoke 15 is formed to have a common pattern for the MR head sections 10a and 10b formed adjacent to each other. In other words, in the case of a yoke-type MR head, the upper yoke is generally used for the sensor.
The MR head 10 according to the present invention is divided into two parts by a gap into a front yoke part and a rear yoke part.
10b is characterized in that each rear yoke portion is integrally formed and magnetically connected. As described above
In order to reduce the magnetic resistance of the magnetic circuit configured in the MR head sections 10a and 10b, the MR elements 13a,
If the pattern of sensor gap 13b is made into a non-linear shape and correspondingly the pattern of sensor gaps 22a, 22b is made into non-linear shape along MR elements 13a, 13b, each adjacent pattern is formed as shown in FIG. In a configuration in which the rear yokes 27a and 27b of the MR head sections 26a and 26b are independent (not magnetically connected), a narrow space occurs in the rear yokes 27a and 27b, and this part (arrow C in the figure) The magnetic resistance value of the MR head 26 becomes large.
The magnetic resistance of the magnetic circuit as a whole and 26b increases (in FIG. 3, the same components as in FIGS. 1 and 2 are given the same reference numerals). However, by integrally forming the rear yoke parts of the MR head parts 10a and 10b formed adjacent to each other in a common pattern as shown in FIG. 1 and magnetically connecting them to each other, the MR elements 13a and 13b can be connected. Even with a non-linear shape, the formation of narrow areas can be suppressed, and the magnetic resistance value of the rear yoke 15 can be made small. As a result, the magnetic resistance of the magnetic circuit formed in each MR head section 10a, 10b becomes small, and the magnetic flux of the signal magnetic field recorded on the magnetic tape 25 easily enters the magnetic circuit, causing the MR elements 13a, 13b. The magnetic flux of the penetrating signal magnetic field becomes large, and reproduction efficiency and reproduction output can be improved. In addition to this
Since the MR elements 13a, 13b and the sensor gaps 22a, 22b can be formed in a non-linear shape regardless of the magnetic resistance of the rear yoke 15, the magnetic resistance in the sensor gaps 22a, 22b is small, which also allows the MR The reproduction efficiency and reproduction output of each MR head section 10a, 10b of the head 10 can be improved.

発明の効果 上述の如く本発明になる磁気抵抗効果型薄膜磁
気ヘツドによれば、複数の夫々の磁気ヘツド部の
磁気ギヤツプにより二分割されるヨークの一方を
互いに一体的に形成することにより、上記一体的
に形成されたヨークの磁気抵抗は小となり、これ
に伴い各磁気ヘツド部内に形成される磁気回路の
磁気抵抗は小となり、記録媒体に記録された信号
磁界の磁束は容易に各磁気ヘツド部に進入し、
MR素子を貫通する信号磁界の磁束は大となり再
生効率及び再生出力を向上させることができ、ま
たヨークの磁気抵抗値の増加をさほど考慮に入れ
ずにMR素子及びセンサー・ギヤツプの非直線状
のパターンを自由度をもつて形成することが可能
となり、MR素子及びセンサー・ギヤツプの実効
的な長さを大とすることができるためセンサー・
ギヤツプにおける磁気抵抗を小とし得、これによ
つても再生効率及び再生出力を向上させることが
できる等の特長を有する。
Effects of the Invention As described above, according to the magnetoresistive thin film magnetic head of the present invention, one of the yokes divided into two by the magnetic gap of each of the plurality of magnetic head parts is formed integrally with each other, thereby achieving the above-mentioned effect. The magnetic resistance of the integrally formed yoke becomes small, and accordingly the magnetic resistance of the magnetic circuit formed in each magnetic head section becomes small, and the magnetic flux of the signal magnetic field recorded on the recording medium is easily transferred to each magnetic head. enter the department,
The magnetic flux of the signal magnetic field passing through the MR element becomes large, which can improve the reproduction efficiency and reproduction output, and the non-linear shape of the MR element and sensor gap can be improved without taking into account the increase in the magnetic resistance value of the yoke. It is possible to form patterns with a degree of freedom, and the effective length of the MR element and sensor gap can be increased.
It has the advantage of being able to reduce the magnetic resistance in the gap, thereby improving reproduction efficiency and reproduction output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる磁気抵抗効果型薄膜磁気
ヘツドの一実施例の平面図、第2図は第1図にお
けるB−B線に沿う断面図、第3図はMR素子及
びセンサー・ギヤツプを非直線形状に形成すると
共に後部ヨークをMRヘツド毎に別個に形成した
構成の磁気抵抗効果型薄膜磁気ヘツドを説明する
ための平面図、第4図は従来の磁気抵抗効果型薄
膜磁気ヘツドの一例を示す平面図、第5図は第4
図におけるA−A線に沿う断面図、第6図は第4
図に示す磁気抵抗効果型薄膜磁気ヘツド内に形成
される磁気回路の等価磁気回路図である。 10……MRヘツド、11……基板、12……
バイアス線、13a,13b……MR素子、14
a,14b……前方ヨーク、15……後方ヨー
ク、23a,23b……フロント・ギヤツプ、2
5……磁気テープ。
FIG. 1 is a plan view of an embodiment of the magnetoresistive thin film magnetic head according to the present invention, FIG. 2 is a sectional view taken along line B-B in FIG. 1, and FIG. 3 is a diagram showing the MR element and sensor gap. FIG. 4 is a plan view illustrating a magnetoresistive thin film magnetic head having a non-linear shape and a rear yoke formed separately for each MR head. A plan view showing an example, Fig. 5 is the 4th
A cross-sectional view taken along the line A-A in the figure, Figure 6 is the 4th section.
FIG. 2 is an equivalent magnetic circuit diagram of a magnetic circuit formed within the magnetoresistive thin film magnetic head shown in the figure. 10...MR head, 11...board, 12...
Bias line, 13a, 13b...MR element, 14
a, 14b...front yoke, 15...rear yoke, 23a, 23b...front gap, 2
5...Magnetic tape.

Claims (1)

【特許請求の範囲】[Claims] 1 記録媒体に記録された信号磁界によりヨーク
を磁化し、該ヨークに設けられた磁気ギヤツプの
漏れ磁界を磁気抵抗効果素子により電気信号とし
て取り出す磁気ヘツド部を複数隣接して設けてな
る磁気抵抗効果型薄膜磁気ヘツドにおいて、上記
複数の夫々の磁気ヘツド部の該磁気ギヤツプによ
り二分割される該ヨークの一方を互いに一体的に
形成してなることを特徴とする磁気抵抗効果型薄
膜磁気ヘツド。
1. A magnetoresistive effect in which a plurality of adjacent magnetic heads are provided, which magnetizes a yoke by a signal magnetic field recorded on a recording medium and extracts the leakage magnetic field of a magnetic gap provided on the yoke as an electric signal using a magnetoresistive element. 1. A magnetoresistive thin film magnetic head, characterized in that one of the yokes of each of the plurality of magnetic head portions divided into two by the magnetic gap is integrally formed with each other.
JP27743785A 1985-12-10 1985-12-10 Magnet-resistance effect type thin film magnetic head Granted JPS62137714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27743785A JPS62137714A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27743785A JPS62137714A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS62137714A JPS62137714A (en) 1987-06-20
JPH0544091B2 true JPH0544091B2 (en) 1993-07-05

Family

ID=17583549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27743785A Granted JPS62137714A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS62137714A (en)

Also Published As

Publication number Publication date
JPS62137714A (en) 1987-06-20

Similar Documents

Publication Publication Date Title
US6078479A (en) Magnetic tape head with flux sensing element
CA1281132C (en) Magnetic transducer head utilizing magnetoresistance effect
US4255772A (en) Read/write magnetic head assembly with magnetoresistive sensor
EP0669607A2 (en) Magnetic head assembly with MR sensor
US3940797A (en) Shielded magnetoresistive magnetic transducer
JPH081687B2 (en) Perpendicular magnetization thin film head
US5097372A (en) Thin film magnetic head with wide recording area and narrow reproducing area
EP0204902B1 (en) Yoke type magnetic transducer head utilizing a magnetoresistance effect
US5722157A (en) Method of making an induction and magnetoresistance type composite magnetic head
US5436779A (en) Integrated yoke magnetoresistive transducer with magnetic shunt
US6097570A (en) Multi-element read/write tape head with low feedthrough
Shelledy et al. A linear self-biased magnetoresistive head
US5450264A (en) Magnetic head
JP2662334B2 (en) Thin film magnetic head
JPH0544091B2 (en)
JPH0441415B2 (en)
JPH0348571B2 (en)
JP2513689B2 (en) Magnetoresistive magnetic head
JP3000905B2 (en) Inductive / MR composite magnetic head and method of manufacturing the same
JPS62102411A (en) Magneto-resistance effect head
JPH06223333A (en) Magnetoresistance-effect playback head
JPH1083518A (en) Magnetoresistive effect type magnetic head
JPS62137712A (en) Thin film magnetic head
JPH1125419A (en) Thin film magnetic head
JPH052720A (en) Magneto-resistance effect reproducing head