JPH0348361B2 - - Google Patents

Info

Publication number
JPH0348361B2
JPH0348361B2 JP58163725A JP16372583A JPH0348361B2 JP H0348361 B2 JPH0348361 B2 JP H0348361B2 JP 58163725 A JP58163725 A JP 58163725A JP 16372583 A JP16372583 A JP 16372583A JP H0348361 B2 JPH0348361 B2 JP H0348361B2
Authority
JP
Japan
Prior art keywords
path
passage
pilot
load
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58163725A
Other languages
Japanese (ja)
Other versions
JPS6057002A (en
Inventor
Masaru Sugyama
Juichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP16372583A priority Critical patent/JPS6057002A/en
Publication of JPS6057002A publication Critical patent/JPS6057002A/en
Publication of JPH0348361B2 publication Critical patent/JPH0348361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Fluid-Driven Valves (AREA)

Description

【発明の詳細な説明】 本発明は、パイロツト切換弁の操作により、流
入路と第1負荷路間、流入路と第2負荷路間、流
出路と第1負荷路間、及び流出路と第2負荷路間
を連通遮断して、流入路に接続される流体ポンプ
等圧力源からの圧力流体によつて両負荷路に接続
される流体アクチユエータを作動させるようにし
た流体制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for switching between the inflow path and the first load path, between the inflow path and the second load path, between the outflow path and the first load path, and between the outflow path and the first load path, by operating a pilot switching valve. The present invention relates to a fluid control valve that disconnects communication between two load paths and operates a fluid actuator connected to both load paths using pressure fluid from a pressure source such as a fluid pump connected to an inflow path.

この種の流体制御弁の一つとして、従来、特開
昭57−107486号公報にて、第1図にて示したよう
な、流入路1と第1負荷路2間を連通遮断する第
1ポペツト弁体3、流入路1と第2負荷路4間を
連通遮断する第2ポペツト弁体5、流出路6と第
1負荷路2間を連通遮断する第3ポペツト弁体
7、及び流出路6と第2負荷路4間を連通遮断す
る第4ポペツト弁体8を有し、パイロツト切換弁
V1によつて各ポペツト弁体3,5,7,8の背
部に形成した各パイロツト室9,10,11,1
2に圧力流体を導くことにより流入路1と第1負
荷路2間、流入路1と第2負荷路4間、流出路6
と第1負荷路2間、及び流出路6と第2負荷路4
間を遮断し、第1ポペツト弁体3及び第4ポペツ
ト弁体8の各パイロツト室9,12内に第1パイ
ロツト路13を通して圧力流体を導入しかつ第2
ポペツト弁体5及び第3ポペツト弁体7の各パイ
ロツト室10,11内の流体を第2パイロツト路
14を通して排出することより流入路1と第2負
荷路4間及び流出路6と第1負荷路2間を連通さ
せるとともに流入路1と第1負荷路2間及び流出
路6と第2負荷路4間を遮断させ、また第2ポペ
ツト弁体5及び第3ポペツト弁体7の各パイロツ
ト室10,11内に第2パイロツト路14を通し
て圧力流体を導入しかつ第1ポペツト弁体3及び
第4ポペツト弁体8の各パイロツト室9,12内
の流体を第1パイロツト路13を通して排出する
ことより流入路1と第1負荷路2間及び流出路6
と第2負荷路6間を連通させるとともに流入路1
と第2負荷路4間及び流出路6と第1負荷路2間
を遮断させる切換弁15と、第1パイロツト路1
3又は第2パイロツト路14を通して付与される
流体により作動する開閉弁16及びリリーフ弁1
7によつて制御されるアンロード弁18を備えた
流体制御弁が提案されている。
As one of this type of fluid control valve, a first valve that cuts off communication between an inflow path 1 and a first load path 2, as shown in FIG. A poppet valve body 3, a second poppet valve body 5 for communicating and blocking communication between the inflow path 1 and the second load path 4, a third poppet valve body 7 for communicating and disconnecting between the outflow path 6 and the first load path 2, and an outflow path. 6 and the second load path 4, each pilot chamber 9 is formed at the back of each poppet valve body 3, 5, 7, 8 by a pilot switching valve V1. 10,11,1
2, between the inflow path 1 and the first load path 2, between the inflow path 1 and the second load path 4, and the outflow path 6.
and the first load path 2, and between the outflow path 6 and the second load path 4.
Pressure fluid is introduced into the respective pilot chambers 9, 12 of the first poppet valve body 3 and the fourth poppet valve body 8 through the first pilot passage 13, and
By discharging the fluid in each of the pilot chambers 10 and 11 of the poppet valve body 5 and the third poppet valve body 7 through the second pilot passage 14, the fluid between the inflow passage 1 and the second load passage 4 and between the outflow passage 6 and the first load is discharged. The passage 2 is communicated with the inflow passage 1 and the first load passage 2, and the outflow passage 6 and the second load passage 4 are disconnected. 10, 11 through the second pilot passage 14, and the fluid in each pilot chamber 9, 12 of the first poppet valve body 3 and the fourth poppet valve body 8 is discharged through the first pilot passage 13. between the inflow path 1 and the first load path 2 and the outflow path 6
and the second load path 6, and the inflow path 1
and the second load path 4 and between the outflow path 6 and the first load path 2; and the first pilot path 1.
3 or a relief valve 1 and an on-off valve 16 operated by fluid applied through the second pilot passage 14.
A fluid control valve with an unload valve 18 controlled by 7 is proposed.

かかる流体制御弁においては、切換弁15に
おいてポペツト弁体3,5,7,8が採用されて
いるため、該弁体による遮断時の洩れは少ない。
各ポペツト弁体3,5,7,8の背部に形成し
た各パイロツト室9,10,11,12に圧力流
体を導入・排出することにより各通路1,2,
4,6の切換がなされるため、作動応答性がよ
い。第1パイロツト路13又は第2パイロツト
路14を通して付与される流体により作動する開
閉弁16及びリリーフ弁17によつてアンロード
弁18が制御されるため、流入路1の圧力上昇下
降が適確に得られる。等といつた利点があるもの
の、開閉弁16の作動時には流入路1内の圧力が
リリーフ弁17によつて規定される圧力まで上昇
しなければアンロード弁18は作動せず、各ポペ
ツト弁体3,5の弁部での絞りによつて流入路1
と負荷路2,4間に差圧が生じて流入路1内の圧
力すなわち流入路1に接続した流体ポンプPの吐
出圧力が各負荷路2,4に接続したアクチユエー
タ(流体シリンダ)Cにて必要とされる圧力以上
となることがあり、これによるエネルギ損失(流
体ポンプPの不必要な高負荷運転)は避けられな
い。
In such a fluid control valve, since the poppet valve bodies 3, 5, 7, and 8 are employed in the switching valve 15, there is little leakage when the valve bodies are shut off.
By introducing and discharging pressure fluid into each pilot chamber 9, 10, 11, 12 formed at the back of each poppet valve body 3, 5, 7, 8,
Since switching between 4 and 6 is performed, the operational response is good. Since the unload valve 18 is controlled by the on-off valve 16 and the relief valve 17, which are operated by the fluid applied through the first pilot passage 13 or the second pilot passage 14, the pressure rise and fall of the inflow passage 1 can be appropriately controlled. can get. However, when the on-off valve 16 is operated, the unload valve 18 will not operate unless the pressure in the inflow passage 1 rises to the pressure specified by the relief valve 17, and each poppet valve The inlet passage 1 is closed by the restriction at the valve parts 3 and 5.
A differential pressure is generated between the load paths 2 and 4, and the pressure in the inflow path 1, that is, the discharge pressure of the fluid pump P connected to the inflow path 1, is increased at the actuator (fluid cylinder) C connected to each load path 2, 4. The pressure may exceed the required pressure, and energy loss (unnecessary high-load operation of the fluid pump P) due to this is unavoidable.

本発明はかかる問題に着目してなされたもの
で、その目的は従来装置の利点を損なうことなく
上記したエネルギ損失を無くすことにある。
The present invention has been made in view of this problem, and its purpose is to eliminate the above-mentioned energy loss without sacrificing the advantages of the conventional device.

かかる目的を達成するため、本発明において
は、当該流体制御弁を、 流入路と第1負荷路間を連通遮断する第1ポペ
ツト弁体、流入路と第2負荷路間を連通遮断する
第2ポペツト弁体、流出路と第1負荷路間を連通
遮断する第3ポペツト弁体、及び流出路と第2負
荷路間を連通遮断する第4ポペツト弁体を有し、
パイロツト切換弁によつて前記各ポペツト弁体の
背部に形成した各パイロツト室に圧力流体を導く
ことにより前記流入路と第1負荷路間、流入路と
第2負荷路間、流出路と第1負荷路間、及び流出
路と第2負荷路間を遮断し、前記第1ポペツト弁
体及び第4ポペツト弁体の各パイロツト室内に第
1パイロツト路を通して圧力流体を導入しかつ前
記第2ポペツト弁体及び第3ポペツト弁体の各パ
イロツト室内の流体を第2パイロツト路を通して
排出することにより前記流入路と第2負荷路間及
び流出路と第1負荷路間を連通させるとともに前
記流入路と第1負荷路間及び流出路と第2負荷路
間を遮断させ、また前記第2ポペツト弁体及び第
3ポペツト弁体の各パイロツト室内に第2パイロ
ツト路を通して圧力流体を導入しかつ前記第1ポ
ペツト弁体及び第4ポペツト弁体の各パイロツト
室内の流体を第1パイロツト路を通して排出する
ことにより前記流入路と第1負荷路間及び流出路
と第2負荷路間を連通させるとともに前記流入路
と第2負荷路間及び流出路と第1負荷路間を遮断
させる第1切換弁と、 前記流入路と流出路間の連通を制御する弁体を
有し、該弁体の背部に形成した流体室内に付与さ
せる流体圧によつて前記流入路内の圧力を制御す
る圧力制御弁と、 該圧力制御弁の前記流体室を排出路、前記第1
負荷路又は前記第2負荷路に選択的に連通させる
弁体を有し、前記第1パイロツト路及び第2パイ
ロツト路を通して圧力流体が供給されたとき前記
流体室を排出路に連通させ、前記第1パイロツト
路を通して圧力流体が供給されたとき前記流体室
を第2負荷路に連通させ、前記第2パイロツト路
を通して圧力流体が供給されたとき前記流体室を
第1負荷路に連通させる第2切換弁と、 前記圧力制御弁の前記流体室に付与される最高
圧力を設定するパイロツトリリーフ弁及びこのパ
イロツトリリーフ弁のリリーフ作動時に前記流体
室への圧力流体の流入を制限する絞り によつて構成した。なお、上記第1切換弁は従来
装置の切換弁15と同じ構成である。
In order to achieve such an object, the present invention provides the fluid control valve with a first poppet valve body that disconnects communication between the inflow path and the first load path, and a second poppet valve body that disconnects communication between the inflow path and the second load path. It has a poppet valve body, a third poppet valve body that disconnects communication between the outflow path and the first load path, and a fourth poppet valve body that disconnects communication between the outflow path and the second load path,
By guiding pressure fluid to each pilot chamber formed at the back of each poppet valve body by a pilot switching valve, a pressure fluid is established between the inflow path and the first load path, between the inflow path and the second load path, and between the outflow path and the first load path. The load path and the outflow path and the second load path are cut off, pressure fluid is introduced into each pilot chamber of the first poppet valve element and the fourth poppet valve element through the first pilot path, and the pressure fluid is introduced into the pilot chamber of the first poppet valve element and the fourth poppet valve element. By discharging the fluid in each pilot chamber of the body and the third poppet valve body through the second pilot passage, communication is established between the inflow passage and the second load passage, and between the outflow passage and the first load passage, and also between the inflow passage and the second load passage. the first load passage and the outflow passage and the second load passage, and introducing pressure fluid into each pilot chamber of the second poppet valve body and the third poppet valve body through the second pilot passage, and By discharging the fluid in each pilot chamber of the valve body and the fourth poppet valve body through the first pilot passage, communication is established between the inflow passage and the first load passage, and between the outflow passage and the second load passage, and also between the inflow passage and the second load passage. A first switching valve that shuts off between the second load path and between the outflow path and the first load path, and a valve body that controls communication between the inflow path and the outflow path, and a fluid formed at the back of the valve body. a pressure control valve that controls the pressure in the inflow passage by fluid pressure applied to the chamber; and the fluid chamber of the pressure control valve is connected to the discharge passage;
a valve body that selectively communicates with the load path or the second load path, which communicates the fluid chamber with the discharge path when pressure fluid is supplied through the first pilot path and the second pilot path; a second switch which communicates the fluid chamber with the second load path when pressure fluid is supplied through the first pilot path, and communicates the fluid chamber with the first load path when pressure fluid is supplied through the second pilot path; a pilot relief valve that sets the maximum pressure applied to the fluid chamber of the pressure control valve; and a throttle that restricts the flow of pressure fluid into the fluid chamber when the pilot relief valve operates for relief. . Note that the first switching valve has the same configuration as the switching valve 15 of the conventional device.

これにより、本発明においては、第1切換弁
においてポペツト弁体が採用されているため、該
弁体による遮断時の洩れは少ない。各ポペツト
弁体の背部に形成した各パイロツト室に圧力流体
を導入・排出することにより流入路、第1負荷
路、第2負荷路、流出路の切換がなされるため、
作動応答性がよい。第1パイロツト路又は第2
パイロツト路を通して付与される流体により作動
する第2切換弁によつて圧力制御弁が制御される
ため、流入路の圧力上昇下降が適確に得られる。
といつた利点が得られることは勿論のこと、全て
のポペツト弁体が閉じているときには第2切換弁
によつて圧力制御弁の流体室が流出路に連通され
て流入路内の圧力が極めて低い値とされ、また流
入路と第1又は第2負荷路が連通しているときに
は、圧力制御弁の流体室が第1又は第2負荷路に
連通されて流入路内の圧力が第1又は第2負荷路
にて必要な圧力とされるため、流入路内の圧力は
常に必要な圧力以上とならない。しかも、圧力制
御弁の流体室が第1又は第2負荷路に連通されて
流入路内の圧力が第1又は第2負荷路にて必要な
圧力とされているときに、流体室内の圧力がパイ
ロツトリリーフ弁の設定圧に達すると、パイロツ
トリリーフ弁が作動して絞りの作用下にて流体室
内の圧力流体を迅速かつ的確に排出路に逃がすた
め、圧力制御弁が迅速に開作動して流入路内の圧
力流体が的確に流出路にブリードされ、流入路内
の圧力がパイロツトリリーフ弁にて設定した圧力
以上にならない。したがつて、流体ポンプの不必
要な高負荷運転が避けられ、不要なエネルギ損失
を無くすことができる。
Accordingly, in the present invention, since the poppet valve element is employed in the first switching valve, there is little leakage when the valve element shuts off. By introducing and discharging pressure fluid into each pilot chamber formed at the back of each poppet valve body, the inflow path, first load path, second load path, and outflow path are switched.
Good operational response. 1st pilot path or 2nd pilot path
Since the pressure control valve is controlled by the second switching valve operated by the fluid applied through the pilot passage, the pressure rise and fall of the inflow passage can be accurately achieved.
Of course, when all the poppet valve bodies are closed, the fluid chamber of the pressure control valve is communicated with the outflow path by the second switching valve, and the pressure in the inflow path becomes extremely low. When the value is low and the inflow path and the first or second load path are in communication, the fluid chamber of the pressure control valve is communicated with the first or second load path, and the pressure in the inflow path becomes the first or second load path. Since the required pressure is maintained in the second load path, the pressure in the inflow path does not always exceed the required pressure. Moreover, when the fluid chamber of the pressure control valve is communicated with the first or second load path and the pressure in the inflow path is set to the required pressure in the first or second load path, the pressure in the fluid chamber is When the set pressure of the pilot relief valve is reached, the pilot relief valve operates to quickly and accurately release the pressure fluid in the fluid chamber to the discharge path under the action of the throttle, and the pressure control valve quickly opens to prevent inflow. The pressure fluid in the passage is accurately bled to the outflow passage, and the pressure in the inflow passage does not exceed the pressure set by the pilot relief valve. Therefore, unnecessary high-load operation of the fluid pump can be avoided, and unnecessary energy loss can be eliminated.

以下に本発明の一実施例を図面に基づいて説明
する。第2図に示した本発明に係る流体制御弁は
パイロツト切換弁V1、第1切換弁V2、圧力制
御弁V3、第2切換弁V4によつて構成されてい
る。パイロツト切換弁V1は、パイロツト路20
をパイロツト路21及び又は22に連通させる電
磁切換弁であり、図示のごとくパイロツト路20
を両パイロツト路21,22に連通させたり、パ
イロツト路20を右方のパイロツト路21に連通
させかつ左方のパイロツト路22を排出路23に
連通させたり、パイロツト路20を左方のパイロ
ツト路22に連通させかつ右方のパイロツト路2
1を排出路23に連通させたりすることができ
る。なお、排出路23はタンクTに接続されてい
る。
An embodiment of the present invention will be described below based on the drawings. The fluid control valve according to the present invention shown in FIG. 2 is composed of a pilot switching valve V1, a first switching valve V2, a pressure control valve V3, and a second switching valve V4. The pilot switching valve V1 is connected to the pilot path 20.
This is an electromagnetic switching valve that communicates the pilot passage 21 and/or 22 with the pilot passage 20 as shown in the figure.
The pilot passage 20 may be made to communicate with the right pilot passage 21 and the left pilot passage 22 may be made to communicate with the discharge passage 23, or the pilot passage 20 may be made to communicate with the left pilot passage 21. 22 and the pilot path 2 on the right
1 can be communicated with the discharge path 23. Note that the discharge path 23 is connected to the tank T.

第1切換弁V2は、パイロツト切換弁V1によ
つて作動を制御されるもので、その本体24には
パイロツト路20,21,22、排出路23、流
入路25、第1負荷路26、第2負荷路27、流
出路28が設けられるとともに、4個の異径孔2
9,30,31,32が異径段部に弁座33,3
4,35,36を形成して設けられており、各異
径孔29,30,31,32内にはポペツト弁体
37,38,39,40がそれぞれ摺動可能に嵌
挿されている。流入路25は、異径孔29,30
の小径孔に直接連通するとともに、逆止弁41を
介してパイロツト路20に連通していて、流体ポ
ンプPに接続されている。第1負荷路26は、異
径孔29の大径孔と異径孔31の小径孔に直接連
通するとともに、逆止弁42を介してパイロツト
路20に連通していて、流体アクチユエータとし
てのシリンダCの一方の室に接続されている。第
2負荷路27は、異径孔30の大径孔と異径孔3
2の小径孔に直接連通するとともに、逆止弁43
を介してパイロツト路20に連通していて、シリ
ンダCの他方の室に接続されている。流出路28
は、異径孔31,32の大径孔に直接連通してい
て、タンクTに接続されている。各ポペツト弁体
37,38,39,40は、弁座33,34,3
5,36に向けてスプリング付勢されていて、背
部にパイロツト室44,45,46,47を形成
している。パイロツト室44,47はパイロツト
路21に連通し、パイロツト室45,46はパイ
ロツト路22に連通している。
The operation of the first switching valve V2 is controlled by the pilot switching valve V1, and the main body 24 includes pilot passages 20, 21, 22, a discharge passage 23, an inflow passage 25, a first load passage 26, and a first switching valve V2. 2 load passage 27 and an outflow passage 28 are provided, and four different diameter holes 2 are provided.
9, 30, 31, 32 are valve seats 33, 3 on the stepped portions with different diameters.
4, 35, and 36, and poppet valve bodies 37, 38, 39, and 40 are slidably inserted into the holes 29, 30, 31, and 32 of different diameters, respectively. The inflow path 25 has different diameter holes 29 and 30.
It communicates directly with the small diameter hole of , and also communicates with the pilot passage 20 via a check valve 41, and is connected to the fluid pump P. The first load path 26 directly communicates with the large diameter hole of the different diameter hole 29 and the small diameter hole of the different diameter hole 31, and also communicates with the pilot path 20 via the check valve 42, and is connected to the cylinder as a fluid actuator. It is connected to one chamber of C. The second load path 27 includes a large diameter hole of the different diameter hole 30 and a different diameter hole 3.
The check valve 43 directly communicates with the small diameter hole of No.2.
It communicates with the pilot passage 20 via the cylinder C, and is connected to the other chamber of the cylinder C. Outflow channel 28
is in direct communication with the large diameter holes of the different diameter holes 31 and 32, and is connected to the tank T. Each poppet valve body 37, 38, 39, 40 has a valve seat 33, 34, 3
5, 36, and has pilot chambers 44, 45, 46, 47 formed in the back. Pilot chambers 44 and 47 communicate with pilot passage 21, and pilot chambers 45 and 46 communicate with pilot passage 22.

圧力制御弁V3は、流入路25内の圧力を制御
するもので、第3図にて示したように、その本体
48にはパイロツト路21,22、排出路23、
流入路25、第1負荷路26、第2負荷路27、
流出路28が設けられるとともに、中間部を大径
とした内孔49が設けられており、内孔49内に
はスプール弁50が摺動可能に嵌挿されている。
流入路25は内孔49の小径孔に連通し、流出路
28は内孔49の大径孔に連通している。第1負
荷路26及び第2負荷路27は分岐路51,52
を有していて、各分岐路51,52中には固定絞
り53,54が設けられている。スプール弁50
は、流入路25と流出路28間を連通制御するも
ので、スプリング55により内孔49の小径孔に
向けて付勢されており、背部に流体室56を形成
している。
The pressure control valve V3 controls the pressure within the inflow passage 25, and as shown in FIG.
Inflow path 25, first load path 26, second load path 27,
An outflow passage 28 is provided, as well as an inner hole 49 having a large diameter in the middle, and a spool valve 50 is slidably inserted into the inner hole 49.
The inlet passage 25 communicates with a small diameter hole of the inner hole 49, and the outlet passage 28 communicates with a large diameter hole of the inner hole 49. The first load path 26 and the second load path 27 are branch paths 51 and 52.
Fixed throttles 53 and 54 are provided in each branch path 51 and 52, respectively. Spool valve 50
, which controls communication between the inflow passage 25 and the outflow passage 28, is biased toward the small diameter hole of the inner hole 49 by a spring 55, and forms a fluid chamber 56 at the back.

第2切換弁V4は、パイロツト路21,22を
通して供給される圧力流体によつて作動を制御さ
れて圧力制御弁V3の作動を制御するもので、第
3図にて示したように、その本体57にはパイロ
ツト路21,22、排出路23、第1負荷路26
の分岐路51、第2負荷路27の分岐路52、流
体室56にそれぞれ連通する通路58,59,6
0,61,62,63が設けられるとともに、通
路58〜63が開口する内孔64が設けられてお
り、内孔64内にはスプール弁65が摺動可能に
嵌挿されている。内孔64は、中間部に通路6
0,61,62,63が開口する環状溝66,6
7,68,69を有し、両端を大径として形成さ
れていて、両端をプラグ70,71により閉塞さ
れている。スプール弁65は、中間部に連通孔7
2を有して一対のスプリング73,74により図
示のごとくセンタリングされていて、両端に通路
58,59が開口する流体室75,76を形成し
ている。また第2切換弁V4には、スプール弁6
5が環状溝66,67間の連通を遮断したとき、
環状溝67すなわち圧力制御弁V3の流体室56
に付与される最高圧力を設定するパイロツトリリ
ーフ弁(以下、単にリリーフ弁という)77が並
列設置されている。
The operation of the second switching valve V4 is controlled by pressure fluid supplied through the pilot passages 21 and 22 to control the operation of the pressure control valve V3, and as shown in FIG. 57 includes pilot passages 21 and 22, a discharge passage 23, and a first load passage 26.
The branch path 51 of the second load path 27, the branch path 52 of the second load path 27, and the passages 58, 59, 6 communicating with the fluid chamber 56, respectively.
0, 61, 62, and 63 are provided, and an inner hole 64 through which the passages 58 to 63 are opened is provided, and a spool valve 65 is slidably inserted into the inner hole 64. The inner hole 64 has a passage 6 in the middle part.
Annular grooves 66, 6 with openings 0, 61, 62, 63
7, 68, and 69, both ends are formed with a large diameter, and both ends are closed by plugs 70, 71. The spool valve 65 has a communication hole 7 in the middle part.
2 and are centered by a pair of springs 73 and 74 as shown in the figure, forming fluid chambers 75 and 76 with passages 58 and 59 opening at both ends. Further, the second switching valve V4 includes a spool valve 6.
5 cuts off the communication between the annular grooves 66 and 67,
Annular groove 67 or fluid chamber 56 of pressure control valve V3
A pilot relief valve (hereinafter simply referred to as a relief valve) 77 is installed in parallel to set the maximum pressure applied to the valve.

上記のように構成した流体制御弁においては、
第2図のようにパイロツト切換弁V1が中立位置
にあつてパイロツト路20が両パイロツト路2
1,22に連通していると、流体ポンプPからの
圧力流体が流入路25、逆止弁41、パイロツト
路20,21,22を通してパイロツト室44,
45,46,47に導入され、ポペツト弁体3
7,38,39,40が流入路25と第1負荷路
26間、流入路25と第2負荷路27間、第1負
荷路26と流出路28陥、第2負荷路27と流出
路28間を全て遮断しているため、シリンダCの
ピストンは停止している。このときには、第2切
換弁V4の流体室75,76にもパイロツト路2
1,22を通して圧力流体が導入されるため、第
3図のようにスプール弁65はスプリング73,
74により図示位置に保持され、圧力制御弁V3
の流体室56は通路63、環状溝67、内孔6
4、環状溝66、排出路23を通してタンクTを
連通する。したがつて、このときには流入路25
内の圧力がスプリング55の力以上になると、ス
プール弁65が全ストローク摺動し、流入路25
内に吐出された圧力流体は全量流出路28にブリ
ードされ、流体ポンプPはアンロードとなる。
In the fluid control valve configured as above,
As shown in Fig. 2, when the pilot switching valve V1 is in the neutral position, the pilot passage 20 is connected to both pilot passages 2 and 2.
1 and 22, the pressure fluid from the fluid pump P passes through the inlet passage 25, the check valve 41, and the pilot passages 20, 21, and 22 to the pilot chambers 44,
45, 46, 47, and the poppet valve body 3
7, 38, 39, and 40 are between the inflow path 25 and the first load path 26, between the inflow path 25 and the second load path 27, between the first load path 26 and the outflow path 28, and between the second load path 27 and the outflow path 28. The piston of cylinder C is stopped because the gap is completely blocked. At this time, the pilot passage 2 is also connected to the fluid chambers 75 and 76 of the second switching valve V4.
Since pressure fluid is introduced through 1 and 22, the spool valve 65 has springs 73 and 22, as shown in FIG.
74 in the position shown, and the pressure control valve V3
The fluid chamber 56 includes a passage 63, an annular groove 67, and an inner hole 6.
4. The tank T is communicated through the annular groove 66 and the discharge passage 23. Therefore, at this time, the inflow path 25
When the internal pressure exceeds the force of the spring 55, the spool valve 65 slides the full stroke, and the inlet passage 25
The entire pressure fluid discharged into the chamber is bled to the outflow path 28, and the fluid pump P is unloaded.

この状態でパイロツト切換弁V1を右位置に切
換えると、パイロツト路21が排出路23に連通
し、パイロツト室44,47及び流体室75がタ
ンクTに連通する。このため、第1切換弁V2に
おいては、ポペツト弁体37が流入路25内の圧
力によつて押し開かれ得るようになるとともに、
ポペツト弁体40が第2負荷路27内の圧力によ
つて押し開かれ得るようになり、また第2切換弁
V4においては、スプール弁65が流体室75,
76の圧力差によりスプリング73に抗して摺動
し、環状溝66,67間が遮断されるとともに環
状溝67,68間が連通孔72を通して連通し、
第1負荷路26内の圧力が流体室56に付与され
てスプール弁50が第3図図示下方へ摺動し、流
入路25内の圧力がスプリング55の力と第1負
荷路26内の圧力の和に相当する圧力とされる。
したがつて、このときにはスプリング55の力と
第1負荷路26内の圧力の和に相当する圧力とさ
れた流入路25内の圧力流体が第1負荷路26を
通してシリンダCの一方の室に供給されるととも
に、シリンダCの他方の室から第2負荷路27を
通して排出される流体が流出路28を通してタン
クTに戻されて、シリンダCのピストンが右動す
る。この間、流入路25内の圧力はスプリング5
5の力と第1負荷路26内の圧力の和に相当する
圧力とされるため、流体ポンプPの不必要な高負
荷運転は避けられ、不要なエネルギ損失は無い。
また上記作動時において、第1負荷路26内の圧
力が上昇し、リリーフ弁77にて設定した圧力に
なると、リリーフ弁77が作動して固定絞り53
の作用下にて流体室56内の圧力流体がタンクT
に迅速かつ的確に排出されるため、スプール弁5
0が第3図図示上方(開方向)へ迅速に摺動して
流入路25内の圧力流体が的確に流出路28にブ
リードされ、流入路25内の圧力がリリーフ弁7
7にて設定した圧力以上にならない。したがつ
て、これによつても、流体ポンプPの不必要な高
負荷運転は避けられ、不要なエネルギ損失は生じ
無い。
When the pilot switching valve V1 is switched to the right position in this state, the pilot passage 21 is communicated with the discharge passage 23, and the pilot chambers 44, 47 and the fluid chamber 75 are communicated with the tank T. Therefore, in the first switching valve V2, the poppet valve body 37 can be pushed open by the pressure inside the inflow passage 25, and
The poppet valve body 40 can now be pushed open by the pressure in the second load path 27, and in the second switching valve V4, the spool valve 65 is connected to the fluid chamber 75,
76 slides against the spring 73, the annular grooves 66 and 67 are cut off, and the annular grooves 67 and 68 are communicated through the communication hole 72.
The pressure in the first load path 26 is applied to the fluid chamber 56 and the spool valve 50 slides downward in FIG. It is assumed that the pressure corresponds to the sum of
Therefore, at this time, the pressure fluid in the inlet passage 25 whose pressure corresponds to the sum of the force of the spring 55 and the pressure in the first load passage 26 is supplied to one chamber of the cylinder C through the first load passage 26. At the same time, the fluid discharged from the other chamber of the cylinder C through the second load path 27 is returned to the tank T through the outflow path 28, and the piston of the cylinder C moves to the right. During this time, the pressure inside the inflow channel 25 is reduced by the spring 5.
Since the pressure corresponds to the sum of the force of 5 and the pressure in the first load path 26, unnecessary high-load operation of the fluid pump P can be avoided, and there is no unnecessary energy loss.
Further, during the above operation, when the pressure in the first load path 26 increases and reaches the pressure set by the relief valve 77, the relief valve 77 operates and the fixed throttle 53
The pressure fluid in the fluid chamber 56 is transferred to the tank T under the action of
spool valve 5 for quick and accurate discharge.
0 quickly slides upward (in the opening direction) as shown in FIG.
The pressure will not exceed the pressure set in step 7. Therefore, this also avoids unnecessary high-load operation of the fluid pump P, and no unnecessary energy loss occurs.

次いで、パイロツト切換弁V1を中立位置に復
帰させると、パイロツト路21がパイロツト路2
0に連通し、パイロツト室44,47及び流体室
75に圧力流体が導入される。このため、第1切
換弁V2においては、ポペツト弁体37,40が
弁座33,36に着座して流入路25と第1負荷
路26間及び第2負荷路27と流出路28間を遮
断し、また第2切換弁V4においては、流体室7
5,76が同圧となつて、スプール弁65が図示
状態に復帰し、圧力制御弁V3の流体室56がタ
ンクTに連通する。従つて、流体ポンプPは再び
アンロードとなる。
Next, when the pilot switching valve V1 is returned to the neutral position, the pilot path 21 changes to the pilot path 2.
0, and pressure fluid is introduced into the pilot chambers 44, 47 and the fluid chamber 75. Therefore, in the first switching valve V2, the poppet valve bodies 37 and 40 are seated on the valve seats 33 and 36 to shut off between the inflow path 25 and the first load path 26 and between the second load path 27 and the outflow path 28. However, in the second switching valve V4, the fluid chamber 7
5 and 76 become the same pressure, the spool valve 65 returns to the illustrated state, and the fluid chamber 56 of the pressure control valve V3 communicates with the tank T. Therefore, the fluid pump P is unloaded again.

一方、パイロツト切換弁V1を左位置に切換え
ると、パイロツト路22が排出路23に連通し、
パイロツト室45,46及び流体室76がタンク
Tに連通する。このため、第1切換弁V2におい
ては、ポペツト弁体38が流入路25内の圧力に
よつて押し開かれ得るようになるとともに、ポペ
ツト弁体39が第1負荷路26内の圧力によつて
押し開かれ得るようになり、また第2切換弁V4
においては、スプール弁65が流体室75,76
の圧力差によりスプリング74に抗して摺動し、
環状溝66,69間が遮断されるとともに環状溝
67,68間が内孔64を通して連通し、第2負
荷路27内の圧力が流体室56に付与されてスプ
ール弁50が第3図図示下方へ摺動し、流入路2
5内の圧力がスプリング55の力と第2負荷路2
7内の圧力の和に相当する圧力とされる。したが
つて、このときにはスプリング55の力と第2負
荷路27内の圧力の和に相当する圧力とされた流
入路25内の圧力流体が第2負荷路27を通して
シリンダCの他方の室に供給されるとともに、シ
リンダCの一方の室から第1負荷路26を通して
排出される流体が流出路28を通してタンクTに
戻されて、シリンダCのピストンが左動する。こ
の間、流入路25内の圧力はスプリング55の力
と第2負荷路27内の圧力の和に相当する圧力と
されるため、流体ポンプPの不必要な高負荷運転
は避けられ、不要なエネルギ損失は無い。また上
記作動時において、第2負荷路27内の圧力が上
昇し、リリーフ弁77にて設定した圧力になる
と、リリーフ弁77が作動した固定絞り54の作
用下にて流体室56内の圧力流体がタンクTに迅
速かつ的確に排出されるため、スプール弁50が
第3図図示上方(開方向)へ迅速に摺動して流入
路25内の圧力流体が的確に流出路28にブリー
ドされ、流入路25内の圧力がリリーフ弁77に
て設定した圧力以上にならない。したがつて、こ
れによつても、流体ポンプPの不必要な高負荷運
転は避けられ、不要なエネルギ損失は生じ無い。
On the other hand, when the pilot switching valve V1 is switched to the left position, the pilot passage 22 communicates with the discharge passage 23,
Pilot chambers 45, 46 and fluid chamber 76 communicate with tank T. Therefore, in the first switching valve V2, the poppet valve body 38 can be pushed open by the pressure in the inflow passage 25, and the poppet valve body 39 can be pushed open by the pressure in the first load passage 26. It can be pushed open, and the second switching valve V4
In this case, the spool valve 65 is connected to the fluid chambers 75 and 76.
slides against the spring 74 due to the pressure difference,
The annular grooves 66 and 69 are cut off, and the annular grooves 67 and 68 are communicated through the inner hole 64, and the pressure in the second load path 27 is applied to the fluid chamber 56, causing the spool valve 50 to move downward in the third figure. Slide into the inflow channel 2
The pressure inside the spring 55 and the second load path 2
The pressure corresponds to the sum of the pressures within 7. Therefore, at this time, the pressure fluid in the inlet passage 25 whose pressure corresponds to the sum of the force of the spring 55 and the pressure in the second load passage 27 is supplied to the other chamber of the cylinder C through the second load passage 27. At the same time, the fluid discharged from one chamber of the cylinder C through the first load path 26 is returned to the tank T through the outflow path 28, and the piston of the cylinder C moves to the left. During this time, the pressure in the inflow path 25 is set to a pressure corresponding to the sum of the force of the spring 55 and the pressure in the second load path 27, so unnecessary high-load operation of the fluid pump P is avoided and unnecessary energy is saved. There is no loss. Further, during the above operation, when the pressure in the second load path 27 increases and reaches the pressure set by the relief valve 77, the pressure fluid in the fluid chamber 56 is is discharged into the tank T quickly and accurately, the spool valve 50 quickly slides upward (in the opening direction) as shown in FIG. The pressure in the inflow path 25 does not exceed the pressure set by the relief valve 77. Therefore, this also avoids unnecessary high-load operation of the fluid pump P, and no unnecessary energy loss occurs.

次いで、パイロツト切換弁V1を中立位置に復
帰させると、パイロツト路22がパイロツト路2
0に連通し、パイロツト室45,46及び流体室
76に圧力流体が導入される。このため、第1切
換弁V2においては、ポペツト弁体38,39が
弁座34,35に着座して流入路25と第2負荷
路27間及び第1負荷路26と流出路28間を遮
断し、また第2切換弁V4においては、流体室7
5,76が同圧となつて、スプール弁65が図示
状態に復帰し、圧力制御弁V3の流体室56がタ
ンクTに連通する。従つて、流体ポンプPは再び
アンロードとなる。
Next, when the pilot switching valve V1 is returned to the neutral position, the pilot path 22 changes to the pilot path 2.
0, and pressure fluid is introduced into the pilot chambers 45, 46 and the fluid chamber 76. Therefore, in the first switching valve V2, the poppet valve bodies 38 and 39 are seated on the valve seats 34 and 35 to block the inflow path 25 and the second load path 27 and between the first load path 26 and the outflow path 28. However, in the second switching valve V4, the fluid chamber 7
5 and 76 become the same pressure, the spool valve 65 returns to the illustrated state, and the fluid chamber 56 of the pressure control valve V3 communicates with the tank T. Therefore, the fluid pump P is unloaded again.

上記した一連の作動時において、負荷路26,
27に過負荷圧力が発生しても、該過負荷圧力は
逆止弁42,43とパイロツト路20,21,2
2を通してパイロツト室44,45,46,47
に導入されるため、ポペツト弁体37,38,3
9,40の離座作動によるシリンダCの誤差動は
防止される。
During the series of operations described above, the load path 26,
Even if an overload pressure occurs in the valve 27, the overload pressure is applied to the check valves 42, 43 and the pilot passages 20, 21, 2.
2 through the pilot chamber 44, 45, 46, 47
poppet valve bodies 37, 38, 3.
Error movement of the cylinder C due to the unseated operation of the cylinders 9 and 40 is prevented.

以上の実施例においては、単一のリリーフ弁7
7によつてシリンダC作動時における各負荷路2
6,27の最高圧力を設定したが、各負荷路2
6,27の最高圧力を別々に設定する必要がある
場合には、第4図及び第5図にて示したように、
第2切換弁V4に2個のリリーフ弁78,79を
並列設置して実施することも可能である。リリー
フ弁78は第1負荷路26の最高圧力を設定する
リリーフ弁であり、またリリーフ弁79は第2負
荷路27の最高圧力を設定するリリーフ弁であ
る。第4図及び第5図に示した流体制御弁のその
他の構成は上記実施例と同じであり、また作動も
上記実施例と実質的に同じであるため、同一符号
を付して説明する。
In the above embodiment, a single relief valve 7
7, each load path 2 when cylinder C is activated.
Although the maximum pressure of 6 and 27 was set, each load path 2
If it is necessary to set the maximum pressures of 6 and 27 separately, as shown in Figures 4 and 5,
It is also possible to install two relief valves 78 and 79 in parallel to the second switching valve V4. The relief valve 78 is a relief valve that sets the maximum pressure of the first load path 26, and the relief valve 79 is a relief valve that sets the maximum pressure of the second load path 27. The rest of the structure of the fluid control valve shown in FIGS. 4 and 5 is the same as that of the above embodiment, and the operation is also substantially the same as that of the above embodiment, so the same reference numerals will be used for explanation.

なお、上記各実施例において、ポペツト弁体3
7,38の摺動量を調整ねじによつて調整し得る
ように構成すれば、流体アクチユエータの入口側
にて流量を絞つて流体アクチユエータの作動速度
を調整することができ、またポペツト弁体39,
40の摺動量を調整ねじによつて調整し得るよう
に構成すれば、流体アクチユエータの出口側にて
流量を絞つて流体アクチユエータの作動速度を調
整することができる。
In addition, in each of the above embodiments, the poppet valve body 3
If the sliding amount of the poppet valve bodies 39 and 38 is configured to be adjustable using adjustment screws, the operating speed of the fluid actuator can be adjusted by restricting the flow rate on the inlet side of the fluid actuator, and the poppet valve body 39,
If the sliding amount of 40 is configured to be adjustable using an adjustment screw, the operating speed of the fluid actuator can be adjusted by restricting the flow rate on the outlet side of the fluid actuator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流体制御弁の一部を記号にて示
した断面図、第2図は本発明に係る流体制御弁の
一実施例を一部を記号にて示した断面図、第3図
は本発明に係る流体制御弁の第2図にて仮想線に
て囲んだ部分の断面図、第4図は本発明に係る流
体制御弁の他の実施例を一部を記号にて示した断
面図、第5図は本発明に係る流体制御弁の第4図
にて仮想線にて囲んだ部分の断面図である。 符号の説明 V1……パイロツト切換弁、V2
……第1切換弁、V3……圧力制御弁、V4……
第2切換弁、21……(第1)パイロツト路、2
2……(第2)パイロツト路、23……排出路、
25……流入路、26……第1負荷路、27……
第2負荷路、28……流出路、37……(第1)
ポペツト弁体、38……(第2)ポペツト弁体、
39……(第3)ポペツト弁体、40……(第
4)ポペツト弁体、50……スプール弁(圧力制
御弁の弁体)、53,54……絞り、56……流
体室、65……スプール弁(第2切換弁の弁体)、
77……パイロツトリリーフ弁。
FIG. 1 is a sectional view showing a part of a conventional fluid control valve with symbols, FIG. 2 is a sectional view of an embodiment of a fluid control valve according to the present invention, a part of which is shown with symbols. The figure is a cross-sectional view of a portion of the fluid control valve according to the present invention surrounded by imaginary lines in Figure 2, and Figure 4 shows another embodiment of the fluid control valve according to the present invention, part of which is shown by symbols. FIG. 5 is a sectional view of a portion of the fluid control valve according to the present invention surrounded by an imaginary line in FIG. 4. Explanation of symbols V1...Pilot switching valve, V2
...First switching valve, V3...Pressure control valve, V4...
Second switching valve, 21... (first) pilot path, 2
2... (second) pilot path, 23... discharge path,
25... Inflow path, 26... First load path, 27...
Second load path, 28... Outflow path, 37... (first)
Poppet valve body, 38... (second) poppet valve body,
39... (third) poppet valve body, 40... (fourth) poppet valve body, 50... spool valve (valve body of pressure control valve), 53, 54... throttle, 56... fluid chamber, 65 ...Spool valve (valve body of second switching valve),
77...Pilot relief valve.

Claims (1)

【特許請求の範囲】 1 流入路と第1負荷路間を連通遮断する第1ポ
ペツト弁体、流入路と第2負荷路間を連通遮断す
る第2ポペツト弁体、流出路と第1負荷路間を連
通遮断する第3ポペツト弁体、及び流出路と第2
負荷路間を連通遮断する第4ポペツト弁体を有
し、パイロツト切換弁によつて前記各ポペツト弁
体の背部に形成した各パイロツト室に圧力流体を
導くことにより前記流入路と第1負荷路間、流入
路と第2負荷路間、流出路と第1負荷路間、及び
流出路と第2負荷路間を遮断し、前記第1ポペツ
ト弁体及び第4ポペツト弁体の各パイロツト室内
に第1パイロツト路を通して圧力流体を導入しか
つ前記第2ポペツト弁体及び第3ポペツト弁体の
各パイロツト室内の流体を第2パイロツト路を通
して排出することにより前記流入路と第2負荷路
間及び流出路と第1負荷路間を連通させるととも
に前記流入路と第1負荷路間及び流出路と第2負
荷路間を遮断させ、また前記第2ポペツト弁体及
び第3ポペツト弁体の各パイロツト室内に第2パ
イロツト路を通して圧力流体を導入しかつ前記第
1ポペツト弁体及び第4ポペツト弁体の各パイロ
ツト室内の流体を第1パイロツト路を通して排出
することにより前記流入路と第1負荷路間及び流
出路と第2負荷路間を連通させるとともに前記流
入路と第2負荷路間及び流出路と第1負荷路間を
遮断させる第1切換弁と、 前記流入路と流出路間の連通を制御する弁体を
有し、該弁体の背部に形成した流体室内に付与さ
せる流体圧によつて前記流入路内の圧力を制御す
る圧力制御弁と、 該圧力制御弁の前記流体室を排出路、前記第1
負荷路又は前記第2負荷路に選択的に連通させる
弁体を有し、前記第1パイロツト路及び第2パイ
ロツト路を通して圧力流体が供給されたとき前記
流体室を排出路に連通させ、前記第1パイロツト
路を通して圧力流体が供給されたとき前記流体室
を第2負荷路に連通させ、前記第2パイロツト路
を通して圧力流体が供給されたとき前記流体室を
第1負荷路に連通させる第2切換弁と、 前記圧力制御弁の前記流体室に付与される最高
圧力を設定するパイロツトリリーフ弁及びこのパ
イロツトリリーフ弁のリリーフ作動時に前記流体
室への圧力流体の流入を制限する絞り を備えてなる流体制御弁。
[Claims] 1. A first poppet valve body that disconnects communication between the inflow path and the first load path, a second poppet valve body that disconnects communication between the inflow path and the second load path, and an outflow path and the first load path. a third poppet valve body that cuts off communication between the outflow passage and the second poppet valve;
It has a fourth poppet valve body that disconnects communication between the load passages, and a pilot switching valve guides pressure fluid to each pilot chamber formed at the back of each of the poppet valve bodies, thereby controlling the inflow passage and the first load passage. between the inflow passage and the second load passage, between the outflow passage and the first load passage, and between the outflow passage and the second load passage, and in each pilot chamber of the first poppet valve body and the fourth poppet valve body. By introducing pressure fluid through the first pilot passage and discharging the fluid in each pilot chamber of the second poppet valve element and the third poppet valve element through the second pilot passage, the fluid between the inflow passage and the second load passage and the outflow is established. The passageway and the first load passage are communicated with each other, and the inflow passage and the first load passage are isolated from each other, and the outflow passage and the second load passage are isolated from each other. By introducing pressure fluid through the second pilot passage and discharging the fluid in each pilot chamber of the first poppet valve element and the fourth poppet valve element through the first pilot passage, the flow between the inflow passage and the first load passage and a first switching valve that communicates between the outflow path and a second load path and blocks off between the inflow path and the second load path and between the outflow path and the first load path; and controlling communication between the inflow path and the outflow path. a pressure control valve that controls the pressure in the inflow path by fluid pressure applied in a fluid chamber formed at the back of the valve body; , said first
a valve body that selectively communicates with the load path or the second load path, which communicates the fluid chamber with the discharge path when pressure fluid is supplied through the first pilot path and the second pilot path; a second switch which communicates the fluid chamber with the second load path when pressure fluid is supplied through the first pilot path, and communicates the fluid chamber with the first load path when pressure fluid is supplied through the second pilot path; A fluid comprising: a valve; a pilot relief valve that sets a maximum pressure applied to the fluid chamber of the pressure control valve; and a throttle that restricts the flow of pressure fluid into the fluid chamber when the pilot relief valve operates for relief. control valve.
JP16372583A 1983-09-06 1983-09-06 Fluid control valve Granted JPS6057002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16372583A JPS6057002A (en) 1983-09-06 1983-09-06 Fluid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16372583A JPS6057002A (en) 1983-09-06 1983-09-06 Fluid control valve

Publications (2)

Publication Number Publication Date
JPS6057002A JPS6057002A (en) 1985-04-02
JPH0348361B2 true JPH0348361B2 (en) 1991-07-24

Family

ID=15779473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16372583A Granted JPS6057002A (en) 1983-09-06 1983-09-06 Fluid control valve

Country Status (1)

Country Link
JP (1) JPS6057002A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176203A (en) * 1988-12-28 1990-07-09 Honda Motor Co Ltd Oil passage switching device
JPH0353602U (en) * 1989-09-29 1991-05-23

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012488A (en) * 1973-06-05 1975-02-08
JPS5620805A (en) * 1979-07-26 1981-02-26 Toyooki Kogyo Co Ltd Fluid control system
JPS5640914A (en) * 1979-09-10 1981-04-17 Daikin Ind Ltd Flow rate control unit
JPS57107486A (en) * 1980-12-25 1982-07-03 Toyooki Kogyo Co Ltd Fluid control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012488A (en) * 1973-06-05 1975-02-08
JPS5620805A (en) * 1979-07-26 1981-02-26 Toyooki Kogyo Co Ltd Fluid control system
JPS5640914A (en) * 1979-09-10 1981-04-17 Daikin Ind Ltd Flow rate control unit
JPS57107486A (en) * 1980-12-25 1982-07-03 Toyooki Kogyo Co Ltd Fluid control valve

Also Published As

Publication number Publication date
JPS6057002A (en) 1985-04-02

Similar Documents

Publication Publication Date Title
JPH07151107A (en) Feedback poppet valve
JPH074403A (en) Liquid-operated control system for controlling liquid-operated actuator
US5535663A (en) Operating valve assembly with pressure compensation valve
JP3703265B2 (en) Hydraulic control device
JPH0348361B2 (en)
JP3264651B2 (en) Hydraulic control device
JP3708711B2 (en) Hydraulic control device
JPH0152601B2 (en)
JPH06229402A (en) Flow rate direction control valve device
JPS6113762Y2 (en)
JPH0375762B2 (en)
JPH0828506A (en) Pressure compensating valve
JPS6056922B2 (en) fluid control device
JPH0249361Y2 (en)
KR960006359B1 (en) Pilot check valve having low-velocity-return function
JP3731146B2 (en) Hydraulic control equipment for construction machinery
JP3725292B2 (en) Hydraulic control system
JPS6128882Y2 (en)
JPH07286602A (en) Pressure oil supply device
JPH0842508A (en) Pressure compensation valve
JPH051702A (en) Pressure control valve
JPH04258511A (en) Hydraulic control device
JPH0736081Y2 (en) Steam valve mechanism
JP2652791B2 (en) Flow control device
JPH0257779A (en) Poppet valve device