JPH0348198A - Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device - Google Patents
Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the deviceInfo
- Publication number
- JPH0348198A JPH0348198A JP18249189A JP18249189A JPH0348198A JP H0348198 A JPH0348198 A JP H0348198A JP 18249189 A JP18249189 A JP 18249189A JP 18249189 A JP18249189 A JP 18249189A JP H0348198 A JPH0348198 A JP H0348198A
- Authority
- JP
- Japan
- Prior art keywords
- liquid metal
- equipment
- decontamination
- nuclear reactor
- dissolution tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001338 liquidmetal Inorganic materials 0.000 title claims abstract description 102
- 238000005202 decontamination Methods 0.000 title claims description 100
- 238000004090 dissolution Methods 0.000 claims abstract description 47
- 239000000941 radioactive substance Substances 0.000 claims abstract description 23
- 239000002826 coolant Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 6
- 239000000356 contaminant Substances 0.000 claims abstract 4
- 230000003588 decontaminative effect Effects 0.000 claims description 90
- 238000001816 cooling Methods 0.000 claims description 28
- 238000010828 elution Methods 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000012857 radioactive material Substances 0.000 claims 2
- 238000011109 contamination Methods 0.000 claims 1
- 238000004043 dyeing Methods 0.000 claims 1
- 230000007717 exclusion Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 43
- 239000001301 oxygen Substances 0.000 abstract description 43
- 229910052760 oxygen Inorganic materials 0.000 abstract description 43
- 238000005260 corrosion Methods 0.000 abstract description 20
- 230000007797 corrosion Effects 0.000 abstract description 20
- 230000002285 radioactive effect Effects 0.000 abstract description 15
- 239000012535 impurity Substances 0.000 abstract description 7
- 239000011261 inert gas Substances 0.000 abstract description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 58
- 229910052708 sodium Inorganic materials 0.000 description 58
- 239000011734 sodium Substances 0.000 description 58
- 239000000047 product Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000009390 chemical decontamination Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- -1 composed of nickel Chemical compound 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は液体金属冷却型原子炉機器の除染方法及び除染
装置に係り、特に、放射性物質で汚染された機器の液体
金属接液面を効率的に除去するに好適な除染方法及び装
置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a decontamination method and a decontamination device for liquid metal cooled nuclear reactor equipment, and in particular, to a decontamination method and a decontamination device for liquid metal cooled nuclear reactor equipment, and in particular, for decontamination of liquid metal wetted surfaces of equipment contaminated with radioactive substances. The present invention relates to a decontamination method and device suitable for efficiently removing.
[従来の技術]
原子炉の一種である軽水炉では、一次冷却材中の放射性
腐食生成物が、機器の一次冷却材接液面に酸化物として
付着することが知られている。従って、一次系機器の線
量率を低減するためには。[Prior Art] In light water reactors, which are a type of nuclear reactor, it is known that radioactive corrosion products in the primary coolant adhere as oxides to surfaces of equipment that come into contact with the primary coolant. Therefore, in order to reduce the dose rate of primary equipment.
機器表面に付着した放射性腐食生成物つまり機器表面の
酸化物を除去すればよいことになる。このため、軽水炉
における従来の除染技術では1機器の酸化物のみを溶解
し、母材のステンレス鋼は殆ど溶解しない弱酸性の除染
剤を使用して、機器自体を損傷させることなく表面酸化
物のみを溶解し取り除くようにしている。All that is required is to remove the radioactive corrosion products adhering to the equipment surface, that is, the oxides on the equipment surface. For this reason, conventional decontamination technology for light water reactors dissolves only the oxides in one piece of equipment, and uses a weakly acidic decontamination agent that hardly dissolves the stainless steel base material, allowing surface oxidation to occur without damaging the equipment itself. Only things are dissolved and removed.
これとは別に、化学薬品の除染剤を使用して機器表面に
付着した放射性腐食生成物を取り除く方法もある。An alternative method is to use chemical decontamination agents to remove radioactive corrosion products from equipment surfaces.
尚、従来技術に関連するものとして、■産業技術出版発
行「原子力施設における除染技術の実際と今後の技術課
題」がある。In addition, as related to conventional technology, there is ``Actual and future technical issues of decontamination technology in nuclear facilities'' published by Sangyo Gijutsu Publishing.
[発明が解決しようとする課M]
液体金属を冷却材とする原子炉装置では、その一次冷却
系機器の母材として、液体金属と共存性のよいステンレ
ス鋼が使用されている。従って。[Problem M to be Solved by the Invention] In nuclear reactor systems that use liquid metal as a coolant, stainless steel, which has good coexistence with liquid metal, is used as the base material of the primary cooling system equipment. Therefore.
上述した従来技術の様に、弱酸性の除染剤を使用する限
り1機器内体が除染剤で損傷することはほとんどない。As in the prior art described above, as long as a weakly acidic decontaminating agent is used, the internal body of a single device is rarely damaged by the decontaminating agent.
しかし、液体金属冷却型原子炉は、軽水炉と異なり、−
水冷却材の温度が高いために、その放射性腐食生成物は
機器表面に付着するのではなく、機器母材中に熱拡散し
てしまう、これが、液体金属冷却型原子炉装置における
放射性腐食生成物の蓄積の原因である0機器母材中に熱
拡散した放射性腐食生成物の実効的な侵入距離は、表面
から数μmといわれている。つまり、液体金属冷却型原
子炉装置の一次冷却系機器の除染を行う場合、機器母材
自体の表面を均一に溶解し削り取る必要がある。このた
め、軽水炉で使用する弱酸性の除染剤を使用する限り1
機器母材中に侵入した放射性腐食生成物を除染すること
は難しい。However, unlike light water reactors, liquid metal cooled reactors are -
Due to the high temperature of the water coolant, its radioactive corrosion products do not adhere to the equipment surface but are thermally diffused into the equipment base material. It is said that the effective penetration distance of radioactive corrosion products thermally diffused into the base material of the equipment, which is the cause of the accumulation of corrosion, is several μm from the surface. That is, when decontaminating the primary cooling system equipment of a liquid metal cooled nuclear reactor device, it is necessary to uniformly melt and scrape off the surface of the equipment base material itself. For this reason, as long as weakly acidic decontamination agents used in light water reactors are used,
It is difficult to decontaminate radioactive corrosion products that have entered the equipment base material.
弱酸性の除染剤の代わりに、強酸性の除染剤を使用すれ
ば、機器母材の表面を溶解することが可能となる。しか
し、反応が急速に起こるため、機器表面を均一に溶解す
ることが難しい。しかも。If a strong acid decontamination agent is used instead of a weak acid decontamination agent, it becomes possible to dissolve the surface of the equipment base material. However, because the reaction occurs rapidly, it is difficult to uniformly dissolve the surface of the device. Moreover.
機器の溶接部等に応力残留箇所があると、そこが選択的
に溶解してしまうという問題がある。If there is a stress residual area in a welded part of a device, there is a problem in that the area will be selectively melted.
化学除染で液体金属冷却型原子炉装置の一次冷却系機器
の除染を行う場合、除染することはできるが、除染剤の
主成分が水であるため、除染後の機器を一次冷却系に装
荷すると、機器に付着した残留水分が液体金属中で酸素
と水素に分解し、これらが不純物として働き機器の腐食
を速めてしまうという別の問題が生じる。更に、液体金
属冷却型原子炉装置では、一次冷却材中の不純物を除去
するためにコールドトラップが設けられているが、残留
水分の一次冷却系への持込みは、このコールドトラップ
の負荷を増大し、その寿命を短縮するという問題もある
。When chemical decontamination is used to decontaminate the primary cooling system equipment of liquid metal cooled nuclear reactors, it is possible to decontaminate the primary cooling system equipment, but since the main component of the decontamination agent is water, the equipment after decontamination must be When loaded into a cooling system, another problem arises: residual moisture on the equipment decomposes into oxygen and hydrogen in the liquid metal, which act as impurities and accelerate corrosion of the equipment. Furthermore, in liquid metal cooled nuclear reactor equipment, a cold trap is installed to remove impurities from the primary coolant, but bringing residual moisture into the primary cooling system increases the load on this cold trap. , there is also the problem of shortening its lifespan.
本発明の目的は、液体金属冷却型原子炉装置の一次冷却
系機器の表面を均一に溶解することができしかも残留水
分等の不純物を冷却材中に残すことのない除染方法及び
除染装置並びにこの除染装置を備える原子炉装置を提供
することにある。The object of the present invention is to provide a decontamination method and decontamination device that can uniformly dissolve the surface of the primary cooling system equipment of a liquid metal cooled nuclear reactor device and that does not leave impurities such as residual moisture in the coolant. Another object of the present invention is to provide a nuclear reactor system equipped with this decontamination device.
[課題を解決するための手段]
上記目的は、液体金属を冷却材として使用する原子炉の
機器を除染するにあたり、除染時に、循環する当該液体
金属中に含まれる酸素等の放射性物質溶出速度加速元素
濃度を高めることで、達成される。[Means for solving the problem] The above purpose is to prevent the elution of radioactive substances such as oxygen contained in the circulating liquid metal during decontamination when decontaminating nuclear reactor equipment that uses liquid metal as a coolant. This is achieved by increasing the rate-accelerating element concentration.
また、上記目的は、除染時に液体金属の温度を高めるこ
とでも、達成される。The above object can also be achieved by increasing the temperature of the liquid metal during decontamination.
また、上記目的は、除染時に液体金属の循環速度を速め
ることでも、達成される。The above objective can also be achieved by increasing the circulation rate of liquid metal during decontamination.
[作用コ
原子炉装置の通常運転時には、液体金属中に含まれる酸
素等放射性物質溶出速度加速元素の濃度を低くする。こ
れは、斯かる元素が液体金属中に含まれると、配管等の
一次冷却系機器の母材表面を削り、その肉厚が薄くなる
ためである。本発明では、従来問題となっている現象を
積極的に利用し、除染時に上記元素濃度を高めることで
、機器表面の溶解速度を速め、除染を行う、これにより
。[Operation] During normal operation of the nuclear reactor system, the concentration of elements that accelerate the elution rate of radioactive substances, such as oxygen, contained in the liquid metal is lowered. This is because when such elements are contained in the liquid metal, they scrape the surface of the base material of primary cooling system equipment such as piping, reducing its wall thickness. In the present invention, the phenomenon that has been a problem in the past is actively utilized and the concentration of the above elements is increased during decontamination to accelerate the dissolution rate on the surface of the equipment and decontaminate it.
機器表面は均一に削り取られ、しかも、実際に運転する
ときの液体金属を使用するため不都合を起こす不純物等
の残留や、機器の応力残留部の選択的溶解を回避するこ
とができる。The surface of the device is scraped uniformly, and since liquid metal is used during actual operation, it is possible to avoid residual impurities that cause problems during actual operation, and to avoid selective dissolution of stress-remaining parts of the device.
上述した元素の濃度を制御する場合、それ専用の濃度制
御装置を設けることでよい。また、循環させる液体金属
の温度をあげることで、当該元素濃度を高めることもで
きる。When controlling the concentration of the above-mentioned elements, a dedicated concentration control device may be provided. Furthermore, the concentration of the element can be increased by increasing the temperature of the liquid metal being circulated.
また、上述とは別に、−殻内現象として、循環する液体
金属の流速を速めると、該液体金属に接液する機器の減
肉が進むことが知られている。従って、斯かる現象を利
用して除染を行う場合は。In addition to the above, it is known that, as an in-shell phenomenon, when the flow rate of circulating liquid metal is increased, the thickness of equipment that comes into contact with the liquid metal progresses. Therefore, when performing decontamination using such a phenomenon.
除染時に循環速度を速めることでも1機器表面を均一に
溶解することが可能となる。以上述べた現象を組合せ、
除染時には、高濃度の上記元素を含む液体金属を高速に
循環させることで、更に効率的な除染が可能になる。By increasing the circulation speed during decontamination, it is possible to uniformly dissolve the surface of a single device. Combining the phenomena described above,
During decontamination, more efficient decontamination can be achieved by circulating liquid metal containing a high concentration of the above elements at high speed.
[実施例]
以下1本発明の好適な実施例を図面を参照して説明する
。[Embodiment] A preferred embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明の一実施例に係る除染装置の構成図で
ある。本実施例に係る除染装置は、溶解槽1と、該溶解
槽1内に入れた液体金属2を循環させるポンプ9と、液
体金属2の循環経路14゜15の途中に設けた濃度制御
装置6で成る。FIG. 1 is a configuration diagram of a decontamination apparatus according to an embodiment of the present invention. The decontamination device according to this embodiment includes a dissolution tank 1, a pump 9 for circulating the liquid metal 2 placed in the dissolution tank 1, and a concentration control device installed in the middle of the circulation path 14 and 15 for the liquid metal 2. It consists of 6.
溶解槽lの液体金属中には、少なくとも除染対象箇所全
部が埋没する様に除染対象機器3が浸漬される。使用す
る液体金属2は、除染対象機器3が実際に原子炉運転中
に接液する液体金属と同じ液体金属であることが好まし
く、本実施例では、液体ナトリウムを使用する。濃度制
御装置6は、液体ナトリウム2中に含まれる放射性物質
溶出速度加速元素、本実施例では酸素の濃度を制御する
ものである。The equipment 3 to be decontaminated is immersed in the liquid metal in the dissolution tank 1 so that at least the entire part to be decontaminated is buried. The liquid metal 2 used is preferably the same liquid metal as the liquid metal that the equipment 3 to be decontaminated actually comes into contact with during nuclear reactor operation, and in this embodiment, liquid sodium is used. The concentration control device 6 controls the concentration of a radioactive substance elution rate accelerating element contained in the liquid sodium 2, which is oxygen in this embodiment.
本実施例の除染装置は、上述した構成の他に、電源5に
て通電量が制御されるヒータ4が溶解槽1外周部に設け
られ、液体ナトリウム2の温度が一定となるように制御
される。また、濃度制御装置6外周部には冷却器7が設
けられ、液体ナトリウム中の酸素濃度が所定濃度となる
様に制御される。尚、除染装置の各構成機器、配管には
図示しない保温材が取り付けられ、液体ナトリウム2の
温度が低下しない様になっている。また、溶解槽1内の
液面の上部空間部にはアルゴン等の不活性ガスがカバー
ガスとして封入される。In addition to the above-described configuration, the decontamination apparatus of this embodiment is provided with a heater 4 on the outer periphery of the dissolution tank 1, the amount of which is controlled by a power source 5, and is controlled so that the temperature of the liquid sodium 2 is constant. be done. Further, a cooler 7 is provided on the outer periphery of the concentration control device 6, and the oxygen concentration in the liquid sodium is controlled to a predetermined concentration. Note that a heat insulating material (not shown) is attached to each component and piping of the decontamination apparatus to prevent the temperature of the liquid sodium 2 from decreasing. Further, an inert gas such as argon is sealed in the space above the liquid level in the dissolution tank 1 as a cover gas.
濃度制御装置6は、前述した様に、液体ナトリウム2中
に含まれる放射性物質溶出速度加速元素の濃度を制御す
るものであり、本実施例では、濃度制御装置6内の液体
ナトリウム2の温度を制御することで、元素濃度、本実
施例では酸素濃度を制御するものである。第2図は、こ
の濃度制御袋′I16の詳細構成図である。As mentioned above, the concentration control device 6 controls the concentration of the element that accelerates the elution rate of radioactive substances contained in the liquid sodium 2. In this embodiment, the temperature of the liquid sodium 2 in the concentration control device 6 is controlled. By controlling the element concentration, in this example, the oxygen concentration is controlled. FIG. 2 is a detailed configuration diagram of this concentration control bag 'I16.
第6図において、この実施例に係る濃度制御装置6は、
配管14を介して溶解槽1から流入する液体ナトリウム
2を滞留し酸素濃度制御を行い配管15を介して溶解槽
1に戻す容器6aを備えている。容器6a内の液体ナト
リウム2の液面の上部空間部(カバーガス部)22には
、酸素供給管8を通してバッファタンク16から酸素が
一定圧力で供給され、この酸素は、液面を通して、液体
ナトリウム2内に飽和溶解度まで溶解する。入口配管1
4は、カバーガス部22に開口し、該配管14から流入
した液体ナトリウム2は、該カバーガス部22の酸素中
を通って該酸素と十分に接触した後、液体ナトリウム2
の液面に落下する様になっている。カバーガス部22の
酸素圧力は圧力計17により測定され、圧力制御器18
はこの測定値に基づいて供給制御弁2oと放出制御弁1
9を制御し、バッファタンク16内の酸素圧力が一定に
なるように制御する。これにより、カバーガス部22の
酸素圧力が一定に制御される。In FIG. 6, the concentration control device 6 according to this embodiment is
A container 6a is provided for retaining liquid sodium 2 flowing from the dissolution tank 1 via a pipe 14, controlling the oxygen concentration, and returning it to the dissolution tank 1 via a pipe 15. Oxygen is supplied at a constant pressure from the buffer tank 16 through the oxygen supply pipe 8 to the space (cover gas) 22 above the liquid level of the liquid sodium 2 in the container 6a. 2 to saturation solubility. Inlet piping 1
4 opens into the cover gas section 22, and the liquid sodium 2 flowing from the pipe 14 passes through the oxygen in the cover gas section 22 and comes into sufficient contact with the oxygen, and then becomes the liquid sodium 2.
It looks like it will fall to the liquid level. The oxygen pressure in the cover gas section 22 is measured by a pressure gauge 17, and the pressure controller 18
is the supply control valve 2o and the release control valve 1 based on this measured value.
9 to keep the oxygen pressure in the buffer tank 16 constant. Thereby, the oxygen pressure in the cover gas section 22 is controlled to be constant.
第1図に示す冷却器7は、第2図では、容器6a外周囲
に設けられた冷却ジャケット10と、該冷却ジャケット
10に冷却ガスを送風するブロワ−11と、容器6a内
の液体ナトリウム2の温度を測定する温度計12と、該
測定aにより前記ブロワ−11の風量を制御し液体ナト
リウム2の温度を所定値にする温度制御器13で構成さ
れる。In FIG. 2, the cooler 7 shown in FIG. and a temperature controller 13 that controls the air flow rate of the blower 11 to maintain the temperature of the liquid sodium 2 at a predetermined value based on the measurement a.
この容器6a内の液体ナトリウム2の温度は、除染装置
内で酸素が析出しない温度のうち最も低い温度となるよ
うに制御される。The temperature of the liquid sodium 2 in the container 6a is controlled to be the lowest temperature at which oxygen does not precipitate within the decontamination device.
上述した構成の除染装置で、除染を行う場合、先ず、溶
解槽1の蓋を開けて除染対象機器3を溶解槽1内の液体
ナトリウム2中に浸漬させ、蓋をして溶解槽1内の上部
空間部に不活性ガスを充満させる。そして、ヒータ4と
冷却器7の夫々の温度設定を行う。そして、ポンプ9を
起動させ、酸素を高濃度に含む液体ナトリウム2を、溶
解槽1゜配管14.濃度制御装置6.配管15.ポンプ
9゜溶解槽1と循環させる。所要の期間この状態に置く
ことで、除染対象機器3の表面は、均一に溶解し、表面
に熱拡散している放射性腐食生成物は液体ナトリウム中
に溶出する。これにより、除染対象機器3の線量率は大
幅に減少する。When performing decontamination using the decontamination apparatus configured as described above, first, open the lid of the dissolution tank 1 and immerse the equipment 3 to be decontaminated in the liquid sodium 2 in the dissolution tank 1, then close the lid and leave the dissolution tank. The upper space in 1 is filled with inert gas. Then, the temperatures of the heater 4 and cooler 7 are set. Then, the pump 9 is started, and the liquid sodium 2 containing a high concentration of oxygen is pumped into the dissolving tank 1° piping 14. Concentration control device6. Piping 15. Circulate with pump 9° dissolution tank 1. By remaining in this state for a required period of time, the surface of the equipment 3 to be decontaminated is uniformly dissolved, and the radioactive corrosion products thermally diffused on the surface are eluted into the liquid sodium. As a result, the dose rate of the equipment 3 to be decontaminated is significantly reduced.
次に、上述した実施例により除染が進む原理を第3図と
第4図を使用して説明する。Next, the principle by which decontamination progresses according to the above-described embodiment will be explained using FIGS. 3 and 4.
第3図は、アール・エル・アイケルバーガーによって求
められた実験式(RoL、Eichelberger
;“The 5olubility of Oxyga
n 1nLiquid 5odiu+++:AReco
mended Expression”、 AI−AB
C−12685,1968)から算出たナトリウム中に
溶解する飽和酸素濃度の温度依存性を示すグラフである
。また、第4図は、液体ナトリウム中でのステンレス鋼
の溶解速度の酸素1度依存性をナトリウム温度をパラメ
ータとして示したグラフである(丸山他; 「高温ナト
リウム中におけるオーステナイトステンレス鋼の腐食速
度評価式J 、26,327(1984,)B本原子力
学会誌)。Figure 3 shows the empirical formula (RoL, Eichelberger) determined by R.L. Eichelberger.
;“The 5olility of Oxyga
n 1nLiquid 5odiu+++: AReco
“mended Expression”, AI-AB
FIG. In addition, Figure 4 is a graph showing the dependence of the dissolution rate of stainless steel in liquid sodium on 1 degree oxygen using the sodium temperature as a parameter (Maruyama et al., ``Evaluation of corrosion rate of austenitic stainless steel in high-temperature sodium''. Formula J, 26, 327 (1984,) B Journal of the Atomic Energy Society).
通常、液体ナトリウム冷却型高速炉では、原子炉運転中
の機器の腐食(機器の液体ナトリウム接液面での金属の
溶解)を防止するために、不純“物である液体ナトリウ
ム2中の酸素を捕獲・除去し、酸素濃度が数ppm以下
となるように制限している。本実施例では、この原理を
逆に利用し、除染時に上記腐食を促進させるため、除染
装置にて循環させる液体ナトリウム2中の酸素濃度を積
極的に増加させる。この第3図に示すグラフに従えば、
酸素濃度制御装置6での液体ナトリウム2の温度は、3
00℃以上に制御するのが好ましいことが分かる。Normally, in liquid sodium cooled fast reactors, in order to prevent corrosion of equipment during reactor operation (melting of metal on surfaces of equipment in contact with liquid sodium), oxygen in liquid sodium 2, an impurity, The oxygen concentration is captured and removed, and the oxygen concentration is limited to a few ppm or less.In this example, this principle is used in reverse, and in order to accelerate the corrosion mentioned above during decontamination, it is circulated in the decontamination equipment. Actively increase the oxygen concentration in liquid sodium 2. According to the graph shown in Figure 3,
The temperature of liquid sodium 2 in oxygen concentration control device 6 is 3
It can be seen that it is preferable to control the temperature to 00°C or higher.
除染装置での運転条件の一例を示すと、第3図と第4図
より、濃度制御装置6でのナトリウム温度を約480℃
にする。これにより、酸素濃度は約11000ppとな
る。そこで、溶解槽1の液体ナトリウム2の温度を約5
00℃とすると、ステンレス鋼の溶解速度は約4μm/
月となる。普通、放射性腐食生成物が金属母材中に熱拡
散する深さは数μm程度のため、この条件では、約2ケ
月程度で除染が終了する。また、酸素濃度を約1100
0ppとし、溶解槽1のナトリウム温度を約550℃に
すると、ステンレス鋼の溶解速度は約10μm/月とな
り、この場合は約1ケ月以下で除染が終了する。第3図
、第4図から、液体ナトリウムの温度を制御することで
溶解速度が分かるので、除染終了までの時間が分かる。An example of operating conditions in the decontamination equipment is shown in Figures 3 and 4, where the sodium temperature in the concentration control device 6 is set at approximately 480°C.
Make it. This results in an oxygen concentration of approximately 11,000 pp. Therefore, the temperature of liquid sodium 2 in dissolution tank 1 was set to about 5
At 00℃, the dissolution rate of stainless steel is approximately 4μm/
Becomes the moon. Normally, the depth at which radioactive corrosion products are thermally diffused into the metal base material is about several micrometers, so under these conditions, decontamination will be completed in about two months. Also, increase the oxygen concentration to about 1100
When the sodium temperature in the dissolving tank 1 is set to 0 pp and about 550° C., the dissolution rate of stainless steel is about 10 μm/month, and in this case, decontamination is completed in about one month or less. From FIGS. 3 and 4, the dissolution rate can be determined by controlling the temperature of liquid sodium, so the time required to complete decontamination can be determined.
尚、上述した実施例では、液体ナトリウムの温度を制御
することで、液体ナトリウム中の酸素濃度を制御したが
、本発明はこれに限定されるものではなく、他の方法で
酸素濃度を制御するものでもよいことはいうまでもない
。また、放射性物質溶解速度加速元素として、上記実施
例では酸素を使用したが、本発明はこれに限定されるも
のではなく、他の元素でも金属表面の溶解を促進する元
素であればそれを使用することができる。更に、本実施
例では、酸素濃度のみを変化させたが、例えば濃度制御
装置6の代わりに、ポンプ9の廃動制御を行って、循環
する液体ナトリウムの流速を制御することでも、機器の
除染を行うことができる。これは、液体ナトリウムの流
速が早けhばそれたけ該液体ナトリウムによって金属表
面の溶解する速度が早まるという現象が一般的にあるた
めである。従って、液体ナトリウムの循環速度を速め且
つ含有酸素量を高めることで、より除染の速度は向上す
る。In addition, in the above-mentioned example, the oxygen concentration in the liquid sodium was controlled by controlling the temperature of the liquid sodium, but the present invention is not limited to this, and the oxygen concentration may be controlled by other methods. Needless to say, anything is fine. Furthermore, although oxygen was used in the above embodiment as the element that accelerates the dissolution rate of radioactive substances, the present invention is not limited to this, and any other element may be used as long as it accelerates the dissolution of the metal surface. can do. Furthermore, in this embodiment, only the oxygen concentration was changed, but for example, instead of the concentration control device 6, the pump 9 can be deactivated to control the flow rate of the circulating liquid sodium. Can be dyed. This is because there is a general phenomenon that the higher the flow rate of liquid sodium, the faster the rate at which the metal surface is dissolved by the liquid sodium. Therefore, by increasing the circulation speed of liquid sodium and increasing the amount of oxygen contained, the speed of decontamination can be further improved.
第5図は、本発明の第2実施例に係る除染装置の構成図
である。本実施例に係る除染装置は、第1図で説明した
除染装置と基本的に同じであるが、本実施例の除染装置
は、液体ナトリウムの循環経路の途中に、トラップ21
を設けである点のみ異なる。例えば、第1図に示す除染
装置では、除染対象機器3から溶解した放射性腐食生成
物が液体ナトリウムと共に循環し、再び機器3に再付着
する可能性がある、また、放射性腐食生成物の液体ナト
リウム中の濃度が溶解が進むほど高くなって溶解速度を
低下させる虞もある。そこで、液体ナトリウム中に溶解
した放射性腐食生成物を捕集し、再付着や溶解速度の低
下を抑える目的で液体ナトリウムの循環経路に設けたの
が、トラップ21である。FIG. 5 is a configuration diagram of a decontamination apparatus according to a second embodiment of the present invention. The decontamination device according to this embodiment is basically the same as the decontamination device explained in FIG.
The only difference is that For example, in the decontamination equipment shown in FIG. There is also the possibility that the concentration in liquid sodium increases as dissolution progresses, reducing the dissolution rate. Therefore, the trap 21 is provided in the liquid sodium circulation path for the purpose of collecting the radioactive corrosion products dissolved in the liquid sodium and suppressing re-deposition and a decrease in the dissolution rate.
トラップ21には、放射性のコバルト60やマンガン5
4等の放射性腐食生成物を捕集する性能が高い、ニッケ
ルや、あるいはニッケルを主成分とする合金をメツシュ
状あるいは箔膜状にしたものを充填しである。このメツ
シュや箔膜は、その液体ナトリウムとの接液面積が、除
染対象機器及び除染機器の液体ナトリウムとの接液面積
の合計より十分広くなるようにするのが好ましい。これ
により、−旦液体ナトリウム中に溶解した放射性腐食生
成物が除染対象機器や除染装置に再付着する割合が極め
て低減され、除染に要する時間が短縮され、更には除染
対象機器の肉厚減少を少なくできる。Trap 21 contains radioactive cobalt-60 and manganese-5.
It is filled with a mesh or foil film made of nickel or an alloy mainly composed of nickel, which has a high ability to trap radioactive corrosion products such as No. 4. It is preferable that the area of the mesh or foil film in contact with the liquid sodium is sufficiently larger than the total area of the decontamination target equipment and the decontamination equipment in contact with the liquid sodium. As a result, the rate at which radioactive corrosion products once dissolved in liquid sodium re-adhere to decontamination target equipment and decontamination equipment is extremely reduced, reducing the time required for decontamination, and furthermore, Decrease in wall thickness can be reduced.
上述した各実施例は、除染装置を原子炉装置とは別個に
設けた例であり、この除染装置を使用する場合は、原子
炉装置を分解して除染対象機器を取り出して溶解槽lに
入れる必要がある。しかし、原子炉装置を分解すること
なく、その機器の除染を行うことができれば、より便利
な場合がある。Each of the above-mentioned embodiments is an example in which the decontamination equipment is provided separately from the reactor equipment, and when using this decontamination equipment, the reactor equipment is disassembled, the equipment to be decontaminated is taken out, and the decontamination equipment is removed from the melting tank. It is necessary to put it in l. However, it may be more convenient if the equipment can be decontaminated without disassembling the reactor equipment.
そこで、第6図に示す原子炉装置には、除染装置を原子
炉装置の一次冷却系に組み込んである。Therefore, in the nuclear reactor system shown in FIG. 6, a decontamination device is incorporated into the primary cooling system of the nuclear reactor system.
第6図に示す原子炉装置の原子炉23には、循環ポンプ
25と中間熱交換器26が接続されて一次冷却系が構成
され、原子炉23→循環ポンプ25→中間熱交換器26
→原子炉23と液体ナトリウムが循環ポンプ25にて循
環される。中間熱交換器26には、二次冷却系入口配管
27と出口配管28とが接続され、該二次冷却系を流れ
る媒体と一次冷却系を流れる液体ナトリウムとがこの中
間熱交換器26で熱交換を行うようになっている。A circulation pump 25 and an intermediate heat exchanger 26 are connected to the reactor 23 of the nuclear reactor system shown in FIG. 6 to constitute a primary cooling system, and the reactor 23→circulation pump 25→intermediate heat exchanger 26
→The reactor 23 and liquid sodium are circulated by the circulation pump 25. A secondary cooling system inlet pipe 27 and an outlet pipe 28 are connected to the intermediate heat exchanger 26, and the medium flowing through the secondary cooling system and the liquid sodium flowing through the primary cooling system are heated in this intermediate heat exchanger 26. The exchange is scheduled to take place.
本実施例における原子炉装置は、上記の循環ポンプ25
と中間熱交換器26の除染を行う除染装置が設けられて
いる。The nuclear reactor device in this embodiment has the above-mentioned circulation pump 25.
A decontamination device for decontaminating the intermediate heat exchanger 26 is provided.
この除染装置は、酸素濃度制御装置6とその前後に設け
たトラップ21及びコールドトラップ36を備え、循環
ポンプ25の入口配管と出口配管との間に該循環ポンプ
25と並列接続される様に。This decontamination device includes an oxygen concentration control device 6, a trap 21 and a cold trap 36 provided before and after the oxygen concentration control device 6, and is connected in parallel with the circulation pump 25 between the inlet pipe and the outlet pipe of the circulation pump 25. .
夫々、弁29.33及び弁30,31.34を介して接
続されている。また、この除染装置はポンプ9を備え、
該ポンプ9は一端が弁32.35を介して中間熱交換器
26の出口側−水冷却系配管に接続され、他端が、前記
トラップ21に接続されている。They are connected via valves 29.33 and 30, 31.34, respectively. In addition, this decontamination equipment is equipped with a pump 9,
The pump 9 has one end connected to the outlet side of the intermediate heat exchanger 26 and the water cooling system piping via valves 32 and 35, and the other end connected to the trap 21.
上述した構成において、循環ポンプ25を除染する場合
には、弁29を閉弁して弁33を開弁じ。In the above-described configuration, when decontaminating the circulation pump 25, the valve 29 is closed and the valve 33 is opened.
弁31を閉弁して弁30.34を開弁する。これにより
、循環ポンプ25.コールドトラップ36゜濃度制御装
置6.トラップ21の閉ループでなる液体ナトリウム循
環経路が構成される。そして、コールドトラップ36は
その温度を高めておき(コールドトラップ36の温度が
低いとコールドトラップ36に酸素が析出してしまう。Valve 31 is closed and valves 30, 34 are opened. As a result, the circulation pump 25. Cold trap 36° concentration control device 6. A liquid sodium circulation path consisting of a closed loop of traps 21 is configured. Then, the temperature of the cold trap 36 is raised (if the temperature of the cold trap 36 is low, oxygen will precipitate in the cold trap 36).
)、濃度制御装置6にて液体ナトリウム中の酸素濃度を
前述した実施例と同様に高め、循環ポンプ25にて該液
体ナトリウムを前記閉ループ中に循環される。), the concentration control device 6 increases the oxygen concentration in the liquid sodium in the same manner as in the embodiment described above, and the circulation pump 25 circulates the liquid sodium into the closed loop.
これにより、循環ポンプ25の液体ナトリウム接液面が
溶解され、溶出した放射性腐食生成物がトラップ21に
捕集される。この様にして除染が終了したあとは、濃度
制御装置6の機能を停止させ、コールドトラップ36の
冷却器37を作動させて該コールドトラップ36を冷却
する。これにより、前記閉ループを循環する液体ナトリ
ウム中の不純物としての酸素がコールドトラップ36に
捕集され、酸素濃度の高い液体ナトリウムが循環ポンプ
25から除去される。その後に、弁33.34を閉弁し
、弁29,30.31を開弁じて除染装置を一次冷却系
から切離し、原子炉装置を運転しても、液体ナトリウム
中の酸素濃度は低減されているので、運転に支障が生じ
ることはない。As a result, the liquid sodium contact surface of the circulation pump 25 is dissolved, and the eluted radioactive corrosion products are collected in the trap 21. After the decontamination is completed in this way, the function of the concentration control device 6 is stopped, and the cooler 37 of the cold trap 36 is activated to cool the cold trap 36. As a result, oxygen as an impurity in the liquid sodium circulating in the closed loop is collected in the cold trap 36, and liquid sodium with a high oxygen concentration is removed from the circulation pump 25. After that, even if valves 33 and 34 are closed and valves 29 and 30 and 31 are opened to disconnect the decontamination equipment from the primary cooling system and operate the reactor equipment, the oxygen concentration in the liquid sodium will not be reduced. Therefore, there is no problem with driving.
中間熱交換器26を除染する場合には、弁33゜30.
32を閉弁し、弁34,31.35を開弁する。これに
より、中間熱交換器26→ポンプ9→トラツプ21→濃
度制御装M6→コールドトラップ36→中間熱交換器2
6の閉ループが構成される。濃度制御装置6で液体ナト
リウム中の酸素濃度を高め、ポンプ9にて前記閉ループ
に液体ナトリウムを循環させると(このとき、コールド
トラップ36は前述と同様に温度を高めておく。)、中
間熱交換器26の液体ナトリウム接液面が溶解され、放
射性腐食生成物がトラップ21に捕獲される。除染後は
、前述と同様に液体ナトリウム中の酸素をコールドトラ
ップ36で除去した後、次冷却系から除染装置を切り離
す。When decontaminating the intermediate heat exchanger 26, the valves 33, 30.
32 is closed, and valves 34, 31, and 35 are opened. As a result, intermediate heat exchanger 26 → pump 9 → trap 21 → concentration control device M6 → cold trap 36 → intermediate heat exchanger 2
6 closed loops are constructed. When the concentration control device 6 increases the oxygen concentration in the liquid sodium and the pump 9 circulates the liquid sodium in the closed loop (at this time, the temperature of the cold trap 36 is raised in the same manner as described above), intermediate heat exchange occurs. The liquid sodium wetted surface of vessel 26 is dissolved and radioactive corrosion products are captured in trap 21. After decontamination, oxygen in the liquid sodium is removed by the cold trap 36 in the same manner as described above, and then the decontamination device is separated from the next cooling system.
尚、上述した例では、一次冷却系に流す液体ナトリウム
を利用して除染を行うので、除染後に液体ナトリウム中
の酸素をコールドトラップ36で除去する必要がある。In the example described above, since decontamination is performed using liquid sodium flowing into the primary cooling system, it is necessary to remove oxygen in the liquid sodium using the cold trap 36 after decontamination.
しかし、除染装置にコールドトラップ36を設ける代わ
りに、第6図には図示していない一次冷却系に元々備え
られているコールドトラップを利用してもよいことはい
うまでもない。従って、除染装置にコールドトラップは
必ずしも必要でない。また、トラップ21も必ずしも必
要ではない。また、酸素濃度を制御するのではなく、液
体ナトリウムの循環速度を早めることで除染する構成で
もあるいはこれと酸素濃度制御とを組み合わせて使用で
きることは前述した除染装置と同様である。However, it goes without saying that instead of providing the cold trap 36 in the decontamination device, a cold trap originally provided in the primary cooling system, which is not shown in FIG. 6, may be used. Therefore, a cold trap is not necessarily required in the decontamination equipment. Further, the trap 21 is not necessarily required. Further, as with the decontamination apparatus described above, it is possible to use a configuration in which decontamination is performed by increasing the circulation speed of liquid sodium, or in combination with oxygen concentration control, instead of controlling the oxygen concentration.
[発明の効果]
本発明によれば、溶解速度が化学洗浄に比へて穏やかな
ため、除染対象機器の金属母材を均一に溶解でき、且つ
、必要以上に機器母材を溶解してしまうこともない、ま
た、酸及び水を使用せず、除染対象機器が通常接する液
体金属と同じ液体金属で除染するので、溶接部等の応力
残留部が選択的に腐食されるというステンレス鋼の水中
腐食問題が生じることもない。更に、水を主媒体とする
除染剤を使用しないので、除染後に水分が残留すること
もなく、一次冷却系に水分を持ち込む心配もなくなる。[Effects of the Invention] According to the present invention, since the dissolution rate is slower than that of chemical cleaning, the metal base material of equipment to be decontaminated can be uniformly dissolved, and the equipment base material can be dissolved more than necessary. Stainless steel does not need to be stored away, and since it is decontaminated with the same liquid metal that equipment to be decontaminated normally comes into contact with without using acid or water, stress residual areas such as welds will selectively corrode. There is no problem of underwater corrosion of steel. Furthermore, since a decontamination agent whose main medium is water is not used, no moisture remains after decontamination, and there is no need to worry about moisture being brought into the primary cooling system.
従って、これを除去するコールドトラップの負荷が増大
するという問題も生じない。Therefore, there is no problem that the load on the cold trap that removes the cold trap increases.
第1図は本発明の第1実施例に係る除染装置の構成図、
第2図は第1図に示す濃度制御装置の詳I構成図、第3
図は液体ナトリウム中に溶解する飽和酸素濃度の温度依
存性を示すグラフ、第4図はステンレス鋼の溶解速度の
酸素濃度依存性を液体ナトリウム温度をパラメータとし
て示したグラフ、第5図は本発明の第2実施例に係る除
染装置の構成図、第6図は本発明の一実施例に係る原子
炉装置の一次冷却系の構成図である。
1・・・溶解槽、2・・・液体金属、3・・・除染対象
機器、6・・・濃度制御装置、8・・・放射性物質溶解
速度加速元素供給管、9・・・ポンプ、21・・・トラ
ップ、23・・・原子炉、25・・・循環ポンプ、26
・・・中間熱交換器、36・・・コールドトラップ。FIG. 1 is a configuration diagram of a decontamination device according to a first embodiment of the present invention,
Figure 2 is a detailed configuration diagram of the concentration control device shown in Figure 1;
The figure is a graph showing the temperature dependence of the saturated oxygen concentration dissolved in liquid sodium, Figure 4 is a graph showing the oxygen concentration dependence of the dissolution rate of stainless steel using liquid sodium temperature as a parameter, and Figure 5 is a graph showing the present invention. FIG. 6 is a block diagram of a primary cooling system of a nuclear reactor device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Dissolution tank, 2... Liquid metal, 3... Decontamination target equipment, 6... Concentration control device, 8... Radioactive substance dissolution rate accelerating element supply pipe, 9... Pump, 21... Trap, 23... Nuclear reactor, 25... Circulation pump, 26
...Intermediate heat exchanger, 36...Cold trap.
Claims (1)
された放射性物質を取り除く除染方法において、循環す
る液体金属の中に含まれる放射性物質溶出速度加速元素
濃度を除染時に高め、該放射性物質溶出速度加速元素に
て汚染原子炉機器表面の汚染物質を除去することを特徴
とする液体金属冷却型原子炉機器の除染方法。 2、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を取り除く除染方法において、循環す
る液体金属の温度を除染時に高め、この温度を高めた液
体金属を循環させることで汚染原子炉機器表面の汚染物
質を除去することを特徴とする液体金属冷却型原子炉機
器の除染方法。 3、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を取り除く除染方法において、循環す
る液体金属の循環速度を除染時に速め、速度を速めた液
体金属を循環させることで汚染原子炉機器表面の汚染物
質を除去することを特徴とする液体金属冷却型原子炉機
器の除染方法。 4、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を除去する除染装置において、除染対
象機器を収納する溶解槽と、該除染対象機器を収納した
前記溶解槽内に入れられる液体金属と、該溶解槽内の液
体金属を循環させるポンプと、前記液体金属の循環経路
の途中に設けられ該液体金属中に含まれる放射性物質溶
出速度加速元素の濃度を除染時に高める加速元素濃度制
御装置とを備えて成ることを特徴とする液体金属冷却型
原子炉機器の除染装置。 5、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を除去する除染装置において、除染対
象機器を収納する溶解槽と、該除染対象機器を収納した
前記溶解槽内に入れられる液体金属と、該溶解槽内の液
体金属を循環させるポンプと、除染時に前記液体金属の
温度を高める温度制御装置とを備えて成ることを特徴と
する液体金属冷却型原子炉機器の除染装置。 6、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を除去する除染装置において、除染対
象機器を収納する溶解槽と、該除染対象機器を収納した
前記溶解槽内に入れられる液体金属と、該溶解槽内の液
体金属を循環させるポンプと、除染時に前記液体金属の
循環速度を速める循環速度制御装置とを備えて成ること
を特徴とする液体金属冷却型原子炉機器の除染装置。 7、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を除去する除染装置において、除染対
象機器を収納する溶解槽と、該除染対象機器を収納した
前記溶解槽内に入れられる液体金属と、該溶解槽内の液
体金属を循環させるポンプと、前記液体金属の循環経路
の途中に設けられ該液体金属中に含まれる放射性物質溶
出速度加速元素の濃度を除染時に高める加速元素濃度制
御装置と除染時に前記液体金属の温度を高める温度制御
装置と除染時に前記液体金属の循環速度を速める循環速
度制御装置の3つの制御装置のうち少なくとも2つの制
御装置とを備えることを特徴とする液体金属冷却型原子
炉機器の除染装置。 8、液体金属冷却型原子炉機器の液体金属接液面に蓄積
された放射性物質を除去する除染装置において、除染対
象機器を収納する溶解槽と、該除染対象機器を収納した
前記溶解槽内に入れられる液体金属と、該溶解槽内の液
体金属を循環させるポンプと、前記液体金属の循環経路
の途中に設けられ該液体金属中に含まれる放射性物質溶
出速度加速元素の濃度を除染時に高める加速元素濃度制
御装置と、除染時に前記液体金属の温度を高める温度制
御装置と、除染時に前記液体金属の循環速度を速める循
環速度制御装置とを備えることを特徴とする液体金属冷
却型原子炉機器の除染装置。 9、請求項4乃至請求項8のいずれかにおいて、溶解槽
の前段あるいは後段に液体金属中に溶出した放射性物質
を捕獲するトラップを設けたことを特徴とする液体金属
冷却型原子炉機器の除染装置。 10、原子炉と、該原子炉の一次冷却材として液体金属
を使用する一次冷却系と、該一次冷却系の液体金属を循
環させる循環ポンプとを備える原子炉装置において、一
次冷却系の途中に設けられた機器の前後を遮断する手段
と、該手段にて遮断したときに該機器を含む液体金属の
閉ループを別に構成する液体金属経路と、該液体金属経
路の途中に設けられ前記機器の除染時に該経路の液体金
属中に含まれる放射性物質溶出速度加速元素の濃度を高
める加速元素濃度制御装置とを備えることを特徴とする
原子炉装置。 11、原子炉と、該原子炉の一次冷却材として液体金属
を使用する一次冷却系と、該一次冷却系の液体金属を循
環させる循環ポンプとを備える原子炉装置において、一
次冷却系の途中に設けられた機器の前後を遮断する手段
と、該手段にて遮断したときに該機器を含む液体金属の
閉ループを別に構成する液体金属経路と、該液体金属経
路の途中に設けられ前記機器の除染時に該経路の液体金
属中に含まれる放射性物質溶出速度加速元素の濃度を高
める加速元素濃度制御装置と、除染時に前記経路の液体
金属の温度を高める温度制御装置と除染時に前記経路ま
液体金属の循環速度を速める循環速度制御装置の2つの
制御装置のいずれか一方または両方を備えることを特徴
とする原子炉装置。 12、請求項10または請求項11において、前記の閉
ループ中に、溶出した放射性物質を捕獲するトラップを
設けることを特徴とする原子炉装置。[Claims] 1. In a decontamination method for removing radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, the concentration of elements that accelerate the elution rate of radioactive substances contained in circulating liquid metal. 1. A method for decontaminating liquid metal cooled nuclear reactor equipment, the method comprising: increasing the temperature during decontamination, and removing contaminants on the surface of contaminated reactor equipment using the element that accelerates the elution rate of radioactive substances. 2. In a decontamination method for removing radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, the temperature of the circulating liquid metal is increased during decontamination, and the liquid metal with this increased temperature is circulated. A decontamination method for liquid metal cooled nuclear reactor equipment, which is characterized by removing contaminants on the surface of contaminated nuclear reactor equipment. 3. In a decontamination method for removing radioactive materials accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, the circulation speed of the circulating liquid metal is increased during decontamination, and the accelerated liquid metal is circulated. A decontamination method for liquid metal cooled nuclear reactor equipment, which is characterized by removing contaminants on the surface of contaminated nuclear reactor equipment. 4. In a decontamination device that removes radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, there is a dissolution tank that houses the equipment to be decontaminated, and a dissolution tank that houses the equipment to be decontaminated. A liquid metal placed in a tank, a pump that circulates the liquid metal in the dissolution tank, and a pump that is installed in the middle of the circulation path of the liquid metal to remove the concentration of an element that accelerates the elution rate of radioactive substances contained in the liquid metal. 1. A decontamination device for liquid metal cooled nuclear reactor equipment, comprising: an accelerated element concentration control device that increases the concentration during contamination. 5. In a decontamination device that removes radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, there is a dissolution tank that houses the equipment to be decontaminated, and a dissolution tank that houses the equipment to be decontaminated. A liquid metal cooling type atom comprising: a liquid metal placed in a tank; a pump that circulates the liquid metal in the dissolution tank; and a temperature control device that increases the temperature of the liquid metal during decontamination. Decontamination equipment for furnace equipment. 6. In a decontamination device that removes radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, there is a dissolution tank that houses the equipment to be decontaminated, and a dissolution tank that houses the equipment to be decontaminated. Liquid metal cooling characterized by comprising: liquid metal placed in a tank; a pump that circulates the liquid metal in the dissolution tank; and a circulation speed control device that increases the circulation speed of the liquid metal during decontamination. Decontamination equipment for type nuclear reactor equipment. 7. In a decontamination device that removes radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, there is a dissolution tank that houses the equipment to be decontaminated, and a dissolution tank that houses the equipment to be decontaminated. A liquid metal placed in a tank, a pump that circulates the liquid metal in the dissolution tank, and a pump that is installed in the middle of the circulation path of the liquid metal to remove the concentration of an element that accelerates the elution rate of radioactive substances contained in the liquid metal. At least two of the following three control devices: an accelerated element concentration control device that increases the concentration during decontamination, a temperature control device that increases the temperature of the liquid metal during decontamination, and a circulation speed control device that increases the circulation speed of the liquid metal during decontamination. A decontamination device for liquid metal cooled nuclear reactor equipment, comprising: 8. In a decontamination device that removes radioactive substances accumulated on liquid metal contact surfaces of liquid metal cooled nuclear reactor equipment, there is a dissolution tank that houses equipment to be decontaminated, and a dissolution tank that houses the equipment to be decontaminated. A liquid metal placed in a tank, a pump that circulates the liquid metal in the dissolution tank, and a pump that is installed in the middle of the circulation path of the liquid metal to remove the concentration of an element that accelerates the elution rate of radioactive substances contained in the liquid metal. A liquid metal comprising: an accelerated element concentration control device that increases the concentration during decontamination; a temperature control device that increases the temperature of the liquid metal during decontamination; and a circulation speed control device that increases the circulation speed of the liquid metal during decontamination. Decontamination equipment for cooled nuclear reactor equipment. 9. Exclusion of liquid metal cooled nuclear reactor equipment according to any one of claims 4 to 8, characterized in that a trap for capturing radioactive substances eluted into the liquid metal is provided before or after the melting tank. Dyeing equipment. 10. In a nuclear reactor system comprising a nuclear reactor, a primary cooling system that uses liquid metal as the primary coolant of the reactor, and a circulation pump that circulates the liquid metal in the primary cooling system, in the middle of the primary cooling system. A means for cutting off the front and back of the equipment provided, a liquid metal path that separately constitutes a closed loop for the liquid metal including the equipment when the equipment is cut off by the means, and a liquid metal path provided in the middle of the liquid metal path for removing the equipment. 1. A nuclear reactor system comprising: an accelerating element concentration control device that increases the concentration of an element that accelerates the elution rate of radioactive substances contained in the liquid metal in the path during the oxidation process. 11. In a nuclear reactor system comprising a nuclear reactor, a primary cooling system that uses liquid metal as the primary coolant of the reactor, and a circulation pump that circulates the liquid metal in the primary cooling system, in the middle of the primary cooling system. A means for cutting off the front and back of the equipment provided, a liquid metal path that separately constitutes a closed loop for the liquid metal including the equipment when the equipment is cut off by the means, and a liquid metal path provided in the middle of the liquid metal path for removing the equipment. an accelerating element concentration control device that increases the concentration of a radioactive substance elution rate accelerating element contained in the liquid metal in the route during decontamination; a temperature control device that increases the temperature of the liquid metal in the route during decontamination; and a temperature control device that increases the temperature of the liquid metal in the route during decontamination. A nuclear reactor device comprising one or both of two control devices of a circulation speed control device that increases the circulation speed of liquid metal. 12. The nuclear reactor device according to claim 10 or 11, characterized in that a trap for capturing eluted radioactive material is provided in the closed loop.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1182491A JP2820963B2 (en) | 1989-07-17 | 1989-07-17 | Liquid metal cooled reactor equipment decontamination method and decontamination apparatus, and nuclear reactor apparatus equipped with this decontamination apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1182491A JP2820963B2 (en) | 1989-07-17 | 1989-07-17 | Liquid metal cooled reactor equipment decontamination method and decontamination apparatus, and nuclear reactor apparatus equipped with this decontamination apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0348198A true JPH0348198A (en) | 1991-03-01 |
JP2820963B2 JP2820963B2 (en) | 1998-11-05 |
Family
ID=16119214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1182491A Expired - Fee Related JP2820963B2 (en) | 1989-07-17 | 1989-07-17 | Liquid metal cooled reactor equipment decontamination method and decontamination apparatus, and nuclear reactor apparatus equipped with this decontamination apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2820963B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232436A (en) * | 1975-09-05 | 1977-03-11 | Shinkosumosu Denki Kk | Electric spark ignition type internal combustion engine |
JPS5526427A (en) * | 1978-08-14 | 1980-02-25 | Kao Corp | High-speed potential difference titration unit |
JPS582798A (en) * | 1981-06-30 | 1983-01-08 | 株式会社東芝 | Method of decontaminating equipment contaminated with radioactive material |
JPS582796A (en) * | 1981-06-30 | 1983-01-08 | 株式会社東芝 | Device and method of decontaminating equipment contaminated with radioactive material |
-
1989
- 1989-07-17 JP JP1182491A patent/JP2820963B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232436A (en) * | 1975-09-05 | 1977-03-11 | Shinkosumosu Denki Kk | Electric spark ignition type internal combustion engine |
JPS5526427A (en) * | 1978-08-14 | 1980-02-25 | Kao Corp | High-speed potential difference titration unit |
JPS582798A (en) * | 1981-06-30 | 1983-01-08 | 株式会社東芝 | Method of decontaminating equipment contaminated with radioactive material |
JPS582796A (en) * | 1981-06-30 | 1983-01-08 | 株式会社東芝 | Device and method of decontaminating equipment contaminated with radioactive material |
Also Published As
Publication number | Publication date |
---|---|
JP2820963B2 (en) | 1998-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0181192A1 (en) | Method of reducing radioactivity in nuclear plant | |
JP2017227446A (en) | Chemical decontamination method for pressurized water type nuclear power plants | |
JPS6323519B2 (en) | ||
JPH0348198A (en) | Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device | |
EP0133449B1 (en) | Method for decontamination of a nuclear steam generator | |
RU2459297C1 (en) | Method of cleaning and decontaminating reactor circuit equipment with liquid-metal lead-bismuth heat carrier | |
US4204911A (en) | Method and apparatus for removing iodine from a nuclear reactor coolant | |
US20170294242A1 (en) | In situ probe for measurement of liquidus temperature in a molten salt reactor | |
Borgstedt et al. | Corrosion of stainless steel in flowing PbLi eutectic | |
JP2003004894A (en) | Processing method for radioactive ion exchanger resin and its processing device | |
JP3874830B2 (en) | Decontamination method and decontamination system | |
Frano et al. | Application of PHADEC method for the decontamination of radioactive steam piping components of Caorso plant | |
JPH06256979A (en) | High-temperature argon purifying of metal or alloy made member and protective film layer | |
JP3769448B2 (en) | Liquid metal target system | |
EA029900B1 (en) | Method for inner-contour passivation of steel surfaces of nuclear reactor | |
JP2006322816A (en) | Reprocessing method for spent nuclear fuel | |
JP2019191075A (en) | Chemical decontamination method and chemical decontamination apparatus | |
Corcoran et al. | Decontamination and decommissioning of UK tritium facilities | |
Orlov et al. | State of development of the heavy coolant quality support and control system for NF BREST-OD-300 | |
JP4317737B2 (en) | Chemical decontamination method | |
US5019228A (en) | Electropolishing method for decontamination purposes | |
JP6691800B2 (en) | Nickel adhesion amount tester and nickel adhesion amount test method | |
Bouilly et al. | SUPERPHENIX Dismantling-Status and lessons learned | |
JPS5831560B2 (en) | Method and device for collecting radioactive impurities in liquid metal | |
JPS582798A (en) | Method of decontaminating equipment contaminated with radioactive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |