JPS582798A - Method of decontaminating equipment contaminated with radioactive material - Google Patents

Method of decontaminating equipment contaminated with radioactive material

Info

Publication number
JPS582798A
JPS582798A JP10064981A JP10064981A JPS582798A JP S582798 A JPS582798 A JP S582798A JP 10064981 A JP10064981 A JP 10064981A JP 10064981 A JP10064981 A JP 10064981A JP S582798 A JPS582798 A JP S582798A
Authority
JP
Japan
Prior art keywords
sodium
temperature
decontamination
equipment
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10064981A
Other languages
Japanese (ja)
Inventor
宮地 延吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10064981A priority Critical patent/JPS582798A/en
Priority to EP82105586A priority patent/EP0071020A3/en
Publication of JPS582798A publication Critical patent/JPS582798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子カプラント、の−次系の機器、配管等のよ
7に、表面が放射性物質例えば”kh 、 ”Co 。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to atomic couplants, secondary equipment, piping, etc., which have a surface containing a radioactive substance such as "kh" or "Co."

”Co 、 ”Cr 、 ”iFe等の放射性核種で汚
染されてい、る機器や、、−東方法に−する。
equipment that is contaminated with radionuclides such as Co, Cr, and iFe.

高速増殖炉発電プ2.ントにおいては、運転中に燃料被
覆、管中炉心構造材が中性子照射を受けて放射性物質例
えば”CG 、 ’Ic0 、14Mnなどの長半減鶏
の放射性核種が多量に生成する。これらの放射性核種は
、炉心構造材や燃料被覆管材料の腐食壜どに伴ない冷却
材中へ溶出する。
Fast breeder reactor power plant2. During operation, the fuel cladding and tube core structural materials are irradiated with neutrons, producing large amounts of radioactive substances such as long-half-life radionuclides such as CG, Ic0, and 14Mn. , elutes into the coolant due to corroded core structural materials and fuel cladding materials.

冷却材中へ溶出したこれらの放射性被11杜、冷却材と
共に1次冷却系内を流れてiるうちに1次冷却系の機器
や配管の表面に沈着する。これらの放射性l1lIIl
は原子炉の保守9点検や修理の作業者の放射線被曝の原
因となる。
These radioactive substances eluted into the coolant flow together with the coolant in the primary cooling system and deposit on the surfaces of the equipment and pipes of the primary cooling system. These radioactive l1lllll
can cause radiation exposure to workers performing maintenance, inspection, and repair of nuclear reactors.

例えば、実証−規模の大塵高速増殖炉の場合を考えると
、運転開始後2〜3年目にして主要機器中配管近傍の放
射線強度が10 Vノトゲン/時間位になると予想され
ている。
For example, in the case of a demonstration-scale large-dust fast breeder reactor, it is expected that the radiation intensity near the pipes in the main equipment will reach about 10 V notogen/hour two to three years after the start of operation.

このため、補修時には、この様な機IIImから放射性
核種を除去する必要がある。また、一部l!新すること
により不要となり九−SSをI11秦処分にする場合に
も、除染して、付着放射部の低減を計ることが重要であ
る。
Therefore, during repairs, it is necessary to remove radionuclides from such aircraft IIIm. Also, some l! Even when the 9-SS is disposed of as I11 Qin because it becomes unnecessary due to new construction, it is important to decontaminate it and reduce the amount of attached radiation.

一般に機S類に、付着して−る放射性物質の除染方法と
しては、(1)表面、をプツシ等でこする方法、(2)
超音波による洗浄、(3)化学除染などがあげられる。
In general, methods for decontaminating radioactive substances attached to Class S machines include (1) rubbing the surface with a pusher, (2)
Examples include ultrasonic cleaning and (3) chemical decontamination.

500℃以上という高温の金属ナトリクム冷却材中で用
いる高速増殖炉の一次系の機器の除染、を考え九場合、
表面に付着している放射性物質は機器材料の*IiK単
に付着しているにとどまらず材料の □内部へ拡散した
9粒界等へ浸透し走りしている丸め水蒸気洗浄、アルコ
ール洗浄による除染ではほとんど!#!lIlおれない
。同様にブラシでこする方法や、超音波洗浄とい−)九
機櫨的方法ではほとんどこの丸め、高速増殖炉の一惨系
OSS類の除染方法として化学除染5、とシわけ硝酸、
す/酸、クエンl1lfkどによる酸洗浄の方法が研究
されてiる。
Considering the decontamination of the primary system equipment of fast breeder reactors used in high-temperature metallic sodium coolant of 500℃ or higher,
Radioactive substances attached to the surface of equipment materials are not only attached to equipment materials, but also penetrate into the grain boundaries of the materials.In decontamination by steam cleaning or alcohol cleaning, largely! #! I can't help it. Similarly, methods such as scrubbing with a brush and ultrasonic cleaning are used in most cases.
Acid cleaning methods using chlorine/acid, citric acid, etc. have been studied.

しかしこれらの化学的な除*については、8浪によす1
II141I#lIが強く腐食され橋*siの再使用か
で龜ないことのほか、大量の瘍液の処理等の問題があり
、41に大部機器の設備の除染への適用は多くの&1I
JIが伴なう。
However, regarding these chemical removals,
II141I #lI is strongly corroded, making it impossible to reuse the bridge*si, and there are also problems such as processing large amounts of tumor fluid.
Accompanied by JI.

まえ、高速増殖−の1次冷却系には冷却材として使用さ
れて−る金属す) IJウムは水中化学洗浄く反応する
ため、これらの除染VCTo九つでは十分に金属す、ト
リウムの洗浄を行なりてからでなければ除染作業できな
い。
The metal used as a coolant in the primary cooling system of the rapid growth reactor reacts with chemical cleaning in water, so these nine decontamination VCTos are sufficient to clean the metal and thorium. Decontamination work cannot begin until after this has been carried out.

このため、現在、軽水炉発電プランで開発がすすめられ
ている様に、原子炉のグ2/トの一部又は全体を除染す
るというシステム除染は上記の化学洗浄の方法では不可
能でおる。
For this reason, system decontamination that decontaminates part or the whole of the reactor, as currently being developed in the light water reactor power generation plan, is not possible using the above chemical cleaning method. .

この発明紘、高速増殖炉の1惨冷却系の機6類rc付着
する放射性資質例えば’MO,”Co 、 ”Co 、
 ”Cr。
In this invention, the radioactive substances attached to the cooling system of the fast breeder reactor, such as 'MO, 'Co, 'Co,
“Cr.

69F@9等の放射性核種の除染を遠隔でかつ、機器材
料が酸洗浄の場合のように腐食率れず除染し九機器の再
使用も可能で番る九め有効に利用でき、人手をかけずに
容易に放射性1質の除染を行なえる#東方法を提供する
ことta的とする。
Decontamination of radioactive nuclides such as 69F@9 can be performed remotely, and the equipment materials are decontaminated without the corrosion rate that occurs when cleaning with acid.It is also possible to reuse the equipment, making it more effective and requiring less manpower. Our objective is to provide a method that can easily decontaminate radioactive substances without applying any heat.

本実@紘、金−ナトリウム循S装置の最も高温になる部
分に被−条体を収納するタンクを設けζζに除染を行な
゛う機at挿入し金属ナトリウムを    5、循環さ
せる。すると、被−条体の1m!面に付着している放射
性物質はどんどん金属す゛トリウム中K11l出するの
で金属ナトリウム温度の低一部分でこれらを析出、除去
すゐことによシ除粂を行なうことが出来る方法で参る。
Honji @Hiro: A tank for storing the striped material is installed in the highest temperature part of the gold-sodium circulation system, and a decontamination machine is inserted into ζζ to circulate metallic sodium. Then, the length of the covered body is 1m! Since the radioactive substances adhering to the surface are gradually released from the metal sodium, we will use a method that can remove the husk by precipitating and removing them at a low temperature of the metal sodium.

   :・ 以下本発明の一負施例につ−て詳細K111羽する。   :・ A negative example of the present invention will be described in detail below.

11111i111は本発明の実施例を示す。図中1線
ステンレス等よりなる容器であ〕上部は7ツンジ2によ
υ書!@構造となりでいる。この容器の下部に被除染体
を置く台3が設けられて−る。一台10上には被除染体
4が置かれて−る。これは7ツンジ2よ)出し入れされ
る。容lIlは上部にお−て、パイプSにより鴎交換l
I6を経て再びパイプBKよυト2ツブIFII7Km
!@されている。このトラップ容器7はステ/レス等よ
pなゐ容器の中に金属のメf’ Y &ヤラクζりング
等を充填し九ものであυ゛   I 外側KjIL満8が備えてありファン8によシ凰を送り
トラップ容1B7を冷却する様になっている。このトラ
ップ容@7はパイプ5によりポツプ10.熱交゛換器6
.加熱器9を−て再び容器1に接続され金属ナトリクム
oli’s装置を形成して−る。
11111i111 shows an embodiment of the present invention. In the figure, it is a container made of 1-wire stainless steel, etc.] The upper part is written as 7 Tsunji 2! @ structure. A table 3 on which objects to be decontaminated are placed is provided at the bottom of this container. An object 4 to be decontaminated is placed on one of the machines 10. This is 7Tsunji 2) It is put in and taken out. The capacity is at the top, and the pipe S is used to exchange the hook.
After passing I6, go to Pipe BK again υto 2 tubes IFII 7km
! @ is being done. This trap container 7 is a container similar to that of a station/resistance, etc., and is filled with metal metal rings, etc. It is designed to send a filter to cool the trap volume 1B7. This trap capacity @7 is filled with a pop-up 10 by pipe 5. Heat exchanger 6
.. The heater 9 is connected again to the container 1 to form a metal sodium oli's device.

を九、タンク1はパルプ10を介してパイプIIKよ〕
ドレンタ/り12に接続されている。13.15は金属
ナトリ9ムでl)装置停止時は循環系の金属ナトリウム
13は゛ドレ″ンタンク12にドレンされる。
9, tank 1 is connected to pipe IIK through pulp 10]
It is connected to the drainer/receptor 12. 13.15 is the metal sodium 9.l) When the apparatus is stopped, the metal sodium 13 in the circulation system is drained into the "drain" tank 12.

14.16はそれぞれのタンクのカバーガスでh〉アル
ゴンガスが充填されている。
14.16 is the cover gas for each tank, which is filled with h>argon gas.

フラレジ2からタンクl内へ被除染機器を挿入し九のち
7ランジ2.?*閉にし、1111!置の゛ガースを図
示していないカバーガスめ供給排気系により排気したの
ち、パルプ10 t IIけてドレンタンタ稔内のナト
リウム15を遍量循壌装置内に充填する。
Insert the equipment to be decontaminated from the flage 2 into the tank 1, and then 7 lunges 2. ? *Close and 1111! After evacuating the existing gas through a cover gas supply/exhaust system (not shown), the pulp 10 t II is filled with sodium 15 in the drain tanker into the uniform circulation device.

そののちポンプ10を作動さ讐循場装−内を金属ナトリ
ウムを一既定の流量を流れる様に七ッ卜する。
Thereafter, the pump 10 is activated to pump sodium metal through the circulation system at a predetermined flow rate.

そののち、7アン8.加電119tl1節し、金属ナト
リクム循積系の温度条件をセットする。メンタ1内の温
度は高い方が早(除動が出来る。この丸め通常はタン1
1の部分を@OOυ又はこれ以上、トラップ7の部分の
温度を400t)あたI4る様にする。ζO状態で一定
の時間保つ。
After that, 7 Ann 8. Apply electricity at 119tl1 and set the temperature conditions of the metal sodium circulation system. The higher the temperature inside Menta 1, the faster it can be removed.
The temperature of the part 1 of the trap 7 is increased to 400 t) by @OOυ or more. Maintain the ζO state for a certain period of time.

この場合、タンク1の下部から加熱SSに高温に加熱さ
れ丸金属ナトリクムが流入して来る。この金属す計すウ
ムは被除染体40表面を接触しながら上部へ流れる閣に
機器材料の表面の組成を溶解させる。このliK同時に
表面に付着して−る放射性核種を411出する。11出
したこれらの放射性−質は上部から配管5を経て熱交換
器6で冷却されながらトラップ7に送シこまれ9る。そ
して再びこの中で冷却される。
In this case, round metallic sodium heated to a high temperature by the heating SS flows from the lower part of the tank 1. This metal powder flows upward while contacting the surface of the object 40 to be decontaminated, dissolving the composition of the surface of the equipment material. At the same time, the liK emits 411 radionuclides attached to the surface. These ejected radioactive substances are sent from the upper part through a pipe 5 to a trap 7 while being cooled by a heat exchanger 6. It is then cooled down again.

ナトリクム中におけるFe、Cr、Mn、Co等OSS
度は低温の方が高温の場合より小さくなる。この九め容
器lにおいて溶出され九これらの金属元素はトラップ中
のメッシ晶上に析出する。この時、同時に放射性物質も
析出、除去される。金属不純物や放射性物質が析出され
、少なくなった金属ナトリウムはポンプ1G、熱交換I
S6を経て加熱1I19で昇温されて再びタンクIKも
どされる。
OSS such as Fe, Cr, Mn, Co, etc. in sodium
The temperature is smaller at low temperatures than at high temperatures. These metal elements eluted in this container 1 are deposited on mesh crystals in the trap. At this time, radioactive substances are also precipitated and removed. Metal impurities and radioactive substances are precipitated, and the reduced amount of metallic sodium is pumped to pump 1G and heat exchanger I.
After passing through S6, the temperature is raised in heating 1I19 and returned to the tank IK again.

以上のむとが〈9返されて次第に被除染体の表面の放射
性物質・は除去され、トラップ7KII収される。
As the above waste is returned, the radioactive substances on the surface of the object to be decontaminated are gradually removed and collected in the trap 7KII.

一定の時間が経過したならば、パ、ルプ10を開いて金
属ナトリウム13をすべてドレンタンク12に収納した
のち、−ンクlを常温に冷却し九〇ちフランジ2を關け
て被除染体を取り出す。
After a certain period of time has elapsed, open the tank 10 and store all the metal sodium 13 in the drain tank 12, then cool the tank 1 to room temperature and close the flange 2 to remove the object to be decontaminated. Take out.

本発明の方法による除染の効果の大小は除染中のタンク
1.トラップ7の温[条件ヤ金属ナトリウム中の酸素不
純物濃度、除染時間に依存するが1例を示せば、タンク
1の温度を600℃、トラップ部7を400℃、金属す
lツム中のS!素一度を10ppmの場合、240時間
の除染を行ったところ’Mnについては85%、5ac
O,IOC,にライては80%、llc、については9
0%、Feに関して社89%の除染が出来た。
The magnitude of the decontamination effect by the method of the present invention is as follows: 1. The temperature of the trap 7 [conditions] depends on the oxygen impurity concentration in the metal sodium and the decontamination time, but to give an example, the temperature of the tank 1 is 600°C, the trap part 7 is 400°C, and the S in the metal sodium is ! When the elemental concentration was 10 ppm, decontamination for 240 hours resulted in 85% of Mn and 5ac.
80% for O, IOC, 9 for LLC
0%, and 89% decontamination was achieved regarding Fe.

この除染はす) IJりム温度が高いほど短時間で出来
るという傾向を示している。
This decontamination tends to be completed in a shorter time as the IJ rim temperature is higher.

本発明は従来のようKl!などの洗浄液を使用破ず、高
速増殖炉の冷却材と同じ金属ナトリクム中に浸しておく
だけで容易に効率よく除染が出来ろ。
The present invention is similar to the conventional Kl! Decontamination can be easily and efficiently carried out without using any cleaning solution such as by simply immersing it in metallic sodium, the same coolant used in fast breeder reactors.

これは人手がかからないで容易に除染を行えるはか9で
なく機器を腐食さ娘たシ、い丸めることもな−、この丸
めメインテナンス後の機器の再使用においてもきわめて
有利となる。
This not only allows for easy decontamination without requiring much manpower, but also prevents equipment from being corroded and rolled up, which is extremely advantageous in reusing the equipment after maintenance.

ま九本発明の方法はきわめて簡単な操作でできるため遠
隔操作に適してかり作業者の被曝の低減化にも大きく貢
献すゐことができる。
Furthermore, since the method of the present invention can be performed with extremely simple operation, it is suitable for remote control and can greatly contribute to reducing the radiation exposure of workers.

本発明は、高速−の−次系の機器類の除染に@もれるも
ので線なく軽水炉や再処理施設における放射能汚染機器
の除染にも有効である。
The present invention is effective not only for decontaminating high-speed secondary equipment, but also for decontaminating radioactively contaminated equipment in light water reactors and reprocessing facilities.

l・・・夕 ンク。l... Evening.

4・・・放射性物質で汚染され九機器(被除染体)。4...9 equipment contaminated with radioactive materials (objects to be decontaminated).

6・・・熱交換器。6... Heat exchanger.

7・・・トラップ容器。7... Trap container.

9・・・加熱器。9... Heater.

第1I1 51st I1 5

Claims (1)

【特許請求の範囲】[Claims] 金属ナトリウムを循禰踏に温度差を設け、この循!路内
の高温、部の金属ナトリウム中に表面が放射性物質で汚
染されている機器を配置して前記金属ナトリウムと接触
させ、この金属ナトリウム中に前記放射性物質を溶出さ
せ、前記循穢路内の低温部に一岬瘍出し九放射性物質を
析出することを轡−とする放射、Ik物質で汚染さ、れ
た機器の除染方法。
This circulation is created by creating a temperature difference while circulating metallic sodium! A device whose surface is contaminated with a radioactive substance is placed in the high-temperature metal sodium in the circulation path and brought into contact with the metal sodium, and the radioactive substance is eluted into the metal sodium. A method of decontaminating equipment contaminated with radiation and Ik substances, which involves depositing radioactive substances in low-temperature areas.
JP10064981A 1981-06-30 1981-06-30 Method of decontaminating equipment contaminated with radioactive material Pending JPS582798A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10064981A JPS582798A (en) 1981-06-30 1981-06-30 Method of decontaminating equipment contaminated with radioactive material
EP82105586A EP0071020A3 (en) 1981-06-30 1982-06-24 Method for removing radioactive material from devices and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064981A JPS582798A (en) 1981-06-30 1981-06-30 Method of decontaminating equipment contaminated with radioactive material

Publications (1)

Publication Number Publication Date
JPS582798A true JPS582798A (en) 1983-01-08

Family

ID=14279666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064981A Pending JPS582798A (en) 1981-06-30 1981-06-30 Method of decontaminating equipment contaminated with radioactive material

Country Status (1)

Country Link
JP (1) JPS582798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348198A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348198A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device

Similar Documents

Publication Publication Date Title
Park et al. Chemical decontamination design for NPP decommissioning and considerations on its methodology
JPS582798A (en) Method of decontaminating equipment contaminated with radioactive material
JPS5879196A (en) Method of controlling radioactive ion adhesion
RU2459297C1 (en) Method of cleaning and decontaminating reactor circuit equipment with liquid-metal lead-bismuth heat carrier
Matausek et al. Current activities on improving storage conditions of the research reactor'RA'spent fuel
US20220102019A1 (en) Chemical decontamination method
Bouilly et al. SUPERPHENIX Dismantling-Status and lessons learned
Wille et al. Chemical decontamination with the CORD UV process: principle and field experience
Peretz et al. Removal of uranium and salt from the Molten Salt Reactor Experiment
JPS582796A (en) Device and method of decontaminating equipment contaminated with radioactive material
Poskas et al. Preliminary radiological characterisation of the main circulation circuit at Ignalina NPP for decommissioning purposes
JPS5860296A (en) Method of removing cobalt of light water reactor
Kamahori et al. STATUS OF DECOMMISSIONING OF OHI NUCLEAR POWER PLANT UNITS 1 AND 2
Guidez et al. The Dismantling
Peretz Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory
JPS6029920B2 (en) How to decontaminate surfaces contaminated with radioactive materials
Matausek Proper disposal of irradiated fuel as the first step towards deciding the RA research reactor future
Act SODIUM REMOVAL METHODS
EP0071020A2 (en) Method for removing radioactive material from devices and apparatus therefor
Campbell Decontamination of the Homogeneous Reactor Experiment
Rajan et al. Sodium removal & decontamination process and decommissioning considerations for the PFBR components
Menzenhauer et al. Experience with cleaning of sodium-wetted components and decontamination at Nuclear Research Centre Karlsruhe
Pancer et al. APPR-1 RESEARCH AND DEVELOPMENT PROGRAM DECONTAMINATION PROGRAM. TASK II. VOLUME III. RECOMMENDED PROCEDURE FOR DECONTAMINATION OF A STAINLESS STEEL STEAM GENERATOR
Rudolph et al. Laboratory tests in support of the MSRE reactive gas removal system
JPS6078390A (en) Low radioactivity boiling-water type nuclear power plant