JPS582796A - Device and method of decontaminating equipment contaminated with radioactive material - Google Patents

Device and method of decontaminating equipment contaminated with radioactive material

Info

Publication number
JPS582796A
JPS582796A JP10064781A JP10064781A JPS582796A JP S582796 A JPS582796 A JP S582796A JP 10064781 A JP10064781 A JP 10064781A JP 10064781 A JP10064781 A JP 10064781A JP S582796 A JPS582796 A JP S582796A
Authority
JP
Japan
Prior art keywords
contaminated
container
decontamination
equipment
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10064781A
Other languages
Japanese (ja)
Inventor
宮地 延吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10064781A priority Critical patent/JPS582796A/en
Priority to EP82105586A priority patent/EP0071020A3/en
Publication of JPS582796A publication Critical patent/JPS582796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子カプラントの一次系の機器、配管等の表面
に付着し九放射性物質例えば54 Mn 4IE@の除
染を行なうことのできる放射性物質で汚染され九−器の
除染装置およびその方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to decontamination of radioactive substances, such as 54 Mn 4IE@, which adhere to the surfaces of primary system equipment and pipes of atomic couplants. Related to decontamination equipment and method.

^速増殖−発電プラントにお−ては、運転中に燃料被覆
管や炉心構造材が中性子照射を受けて、吟’fco、@
QCo、鴫◆、血などの長も滅期の放射性核種が多量に
生成する。これらの放射性核種は炉心構造材や燃料被覆
管材料の腐食などに伴な一冷却材中へ溶出する。
^Fast Breeder - In power plants, fuel cladding tubes and core structural materials are irradiated with neutrons during operation, causing
A large amount of radioactive nuclides such as QCo, 紫◆, and blood are produced. These radionuclides elute into the coolant due to corrosion of core structural materials and fuel cladding materials.

冷却材中へ放出された放射性核種は冷却材と共に一次冷
却系内を流れているうちに一次冷却系の暖器や配管表面
に沈着する。これらの放射性核種は、原子炉の保守1点
検や修理時の作業者の放射線被曝の匣内となる。
The radionuclides released into the coolant are deposited on the warmer and piping surfaces of the primary cooling system while flowing together with the coolant within the primary cooling system. These radionuclides become a source of radiation exposure for workers during nuclear reactor maintenance inspections and repairs.

例えば、実験炉規模の大型高速増殖−の場合を考えると
、運転開始後2〜3′年目にして主要m時や配管近傍の
放射線強度が10レントゲン/時間位になると予想され
ている。
For example, in the case of a large-scale fast breeder on the scale of an experimental reactor, it is predicted that the radiation intensity at the main m-hour and near the pipes will reach about 10 roentgen/hour 2 to 3' years after the start of operation.

このため補修時には、この様なmatsから放射性核種
を除去する必要がある。また、一部更新することにより
、不要となったIII器類を廃棄処分にする場合にも、
除染して付着放射能の低減を計ることが重要である。
Therefore, during repair, it is necessary to remove radionuclides from such mats. Also, when disposing of III equipment that is no longer needed due to partial updating,
It is important to decontaminate and reduce attached radioactivity.

ここで、 ”Mnは”F’e(np)”Mn、”Coは
58Nl(ip)58Co、60Coは”Co(nr)
60Coの核反応ニヨり生成する。
Here, "Mn" is "F'e (np)" Mn, "Co is 58Nl (ip) 58Co, 60Co is "Co (nr)
A nuclear reaction of 60Co produces nitrogen.

高速増殖炉の炉心構造材又は燃料被覆材としては、ステ
ンレスが使用される。この場合、Fe、Ni。
Stainless steel is used as the core structural material or fuel cladding material of fast breeder reactors. In this case, Fe, Ni.

Crが主成物であるコバルトは不純物として混入してい
るものである。この丸め、不純物であるコバルトの含有
緻を減らす事により60COの生成を減らす事が出来る
1ま九、一方、58COは主成分であるニッケルより生
成するものであるが58COの半減期が短い事やナトリ
ウム中への溶出が54Mnに比較し少ないことなどの丸
め、主l!機器、配管まわ抄の放射線強度に寄与する割
合としては少ない。一方、54Mnはステンレスの主要
成分である鉄より生成するものである上に、炉心の構造
材、被覆管などのステンレス材料からはナトリウム冷却
材中に溶出しやすいという性質もあり、−次系の機器、
配管の放射線源の大部分を占めるものであ抄、今後とも
低減化の方法のないものである。
Cobalt, whose main component is Cr, is mixed as an impurity. By reducing the content of cobalt, which is an impurity, it is possible to reduce the production of 60CO.On the other hand, 58CO is produced from nickel, which is the main component, but the half-life of 58CO is short. The main reason is that the elution into sodium is lower than that of 54Mn. The contribution to the radiation intensity of equipment and piping is small. On the other hand, 54Mn is produced from iron, which is the main component of stainless steel, and it also has the property of being easily eluted into the sodium coolant from stainless steel materials such as core structural materials and cladding tubes. device,
It accounts for the majority of radiation sources in piping, and there is no way to reduce it in the future.

以上の理由から高速炉の機器類の除染においては、54
Mnの除染が付着放射能の低減化の丸め、最も重要なも
のである。
For the above reasons, in the decontamination of fast reactor equipment, 54.
Decontamination of Mn is the most important step in reducing attached radioactivity.

一般に機器類に付着してでる放射性物質の除染方法とし
ては11)表面をブラシ等でこする方法、(2)超音波
による洗浄、(3)化学除染などが行われている。50
0υ以上という1116slの金属ナトリウム冷却材中
で用いる高速増殖炉の一次系の一部の除染を考えた場合
、amに付着している放射性物質は、fil器材料の表
面にJIK付着付着−るにとど鵞らず材料の内部へ拡散
したり1.粒界等へ浸透しえすしている丸め水蒸気、洗
浄、アルコール洗浄等によるナトリウムの除染に111
.ては iはtt aんど除染戸れな!。この丸め1.
当然のことながら上述のブラシで午する方法ヤ超章波洗
浄といり九機械的方法では除染することは出来ない。
Generally, methods for decontaminating radioactive substances adhering to equipment include 11) rubbing the surface with a brush, (2) cleaning with ultrasonic waves, and (3) chemical decontamination. 50
When considering the decontamination of a part of the primary system of a fast breeder reactor used in a 1116 sl metallic sodium coolant of 0υ or more, the radioactive substances attached to the am are JIK attached to the surface of the filter material. 1. Diffusion into the interior of the material. 111 for decontaminating sodium by washing, alcohol washing, etc., which has penetrated grain boundaries etc.
.. teha i is tt a and decontamination door! . This rounding 1.
Naturally, decontamination cannot be achieved by mechanical methods such as the above-mentioned brush cleaning method or ultra-chanical wave cleaning.

この丸め高速増殖炉の一次系II器類の除染方法として
、化学除染とシわけ硝酸、リン酸、クエン酸といった酸
洗浄の方法が研究されているが、このような化学的な除
染については薬液により、機器類が強く腐食され再使用
ができないことのほか大赦のa液の処理等の問題があり
、41に大ms器、設備の除染への適用は多くcims
が伴なう。
Chemical decontamination and washing with acids such as nitric acid, phosphoric acid, and citric acid are being researched as decontamination methods for the primary system II of rounded fast breeder reactors. In addition to the fact that the equipment is strongly corroded by the chemical solution and cannot be reused, there are also problems such as the treatment of A-liquid.
accompanies.

また、高速増殖炉の一次冷却系には冷却材として使用さ
れている金属ナトリウムは、水中化学洗浄に使用される
薬液とは水嵩を発生しながらはげしく反応するためこれ
らの除染にTo九うては十分にナトリウムの洗浄が行な
われなければならない。
In addition, metallic sodium, which is used as a coolant in the primary cooling system of fast breeder reactors, reacts violently with the chemical solution used for underwater chemical cleaning while generating water volume, making it extremely difficult to decontaminate these. must be thoroughly washed of sodium.

この丸め、現在軽水炉発電プラントで開発がすすめられ
ている様に、原子炉のプラントの一部又は全体を除染す
るようなシステム除染は上述し友化学洗浄による方法で
あっては実施不可能であり九。
In conclusion, as currently being developed for light water reactor power plants, system decontamination that decontaminates part or all of a nuclear reactor plant cannot be carried out using the above-mentioned friendly chemical cleaning method. And nine.

この発明は上述し九従来の欠点に鑑み為されたもので、
高速炉の冷却fil!器などのaS類に付着した特に5
4Mnのような主要放射性核種の除染を容易に行なうこ
とができ、人手のかからない適隔作業がOTaなもので
、しかもms類が腐食などで傷つけることなく除染する
ことから、その除染してメンテナンスを施した機器を幼
皐良く、再使用可能となるなどの優れ九放射性物質で汚
染され九機器の除染装置及びその方法を提供することを
目的とする。
This invention was made in view of the nine conventional drawbacks mentioned above.
Fast reactor cooling fil! Particularly 5 attached to aS such as utensils etc.
Decontamination of major radionuclides such as 4Mn can be easily carried out, OTa works at appropriate intervals without requiring manual labor, and it is possible to decontaminate MS without damaging it due to corrosion. The purpose of the present invention is to provide an apparatus and method for decontaminating equipment contaminated with radioactive substances, such that the equipment can be easily reused after maintenance.

この発明はそのamが例えば54M、などの放射性物質
で汚染されているmsを収納する容器内に金属ナトリウ
ムを充填し、この金属ナトリウムを好ましくは450℃
以上に加熱しながら流通させる流路内にニッケルもしく
はニッケルを主成分とする合金からなるゲッター材を配
置してなる放射性物質で汚染されている機器の除染装置
、および表面が放射性物質で汚染されている機器を金属
ナトリウム中に浸漬し、この金属ナトリウムを好ましく
は450″a以上に加熱しながら流動させて上記−器の
器の汚染されている放射性物質をこの金属ナトリウム中
に溶出させてニッケルもしくはニッケルを主成分とする
合金からなるゲッター材へ回収することを特徴とする放
射性物質で汚染された機器の除染方法でらる。
In this invention, metal sodium is filled into a container containing ms whose am is contaminated with a radioactive substance such as 54M, and the metal sodium is heated preferably to 450°C.
A decontamination device for equipment contaminated with radioactive substances, in which a getter material made of nickel or a nickel-based alloy is placed in a flow path that is heated and circulated, and whose surfaces are contaminated with radioactive substances. The contaminated equipment is immersed in metallic sodium, and the metallic sodium is fluidized while being heated to preferably 450"a or more, so that the contaminated radioactive substances in the vessel are eluted into the metallic sodium, and the nickel is leached into the metallic sodium. Alternatively, a method for decontaminating equipment contaminated with radioactive materials may be used, which is characterized by recovering nickel into a getter material made of an alloy containing nickel as a main component.

以下この発明の一実施例について詳細に説−する。第1
図はこの発明の実施例を示す放射性物質で汚染された機
器の除染装置を示めす全体図である。この除染装置はス
テンレス等で構成されている各器1内に金属ナトリウム
2を充填して7ランジ3で密閉し、この容器1内には下
方にニッケルゲッター材よ抄なる Mnの除妥装置4が
備えられ、その上方には液体の流通自在の台5が設けら
れており、この台5上には放射性物質の unが付着し
ている機器すなわち被除染t*6が載置されていて、容
器1の上部に充填されている金属ナトリウム2を流出さ
せる流出パイプ7を設け、下部に流出パイプ7から電磁
ポンプ8を介して容器1内に流入させる流入パイプ9を
設け、この流入パイプ9にはパルプ10を介して吸上げ
パイプ11が8Ffられ、このパイプ11の一端にはタ
ンク12が設けられて構成されている。なお容!s1に
充填されている金属す) IJりムの上部8には酸素と
接触して熱焼するのを防止する丸めのアルゴン(人r)
ガスのようなカバーガスが充満しである。同様にタンク
12内の金員ナトリウム14の上部空間15にもカバー
ガスが充填されている。
An embodiment of the present invention will be explained in detail below. 1st
The figure is an overall view showing an apparatus for decontaminating equipment contaminated with radioactive substances, showing an embodiment of the present invention. In this decontamination device, metal sodium 2 is filled in each container 1 made of stainless steel or the like and sealed with seven lunges 3, and inside this container 1 there is a Mn decontamination device made of nickel getter material at the bottom. 4, and above it is provided a table 5 through which liquid can freely flow, and on this table 5 is placed the equipment to be decontaminated, that is, the equipment to which the radioactive substance UN is attached. An outflow pipe 7 is provided at the top of the container 1 to allow the metal sodium 2 filled in the container 1 to flow out, and an inflow pipe 9 is provided at the bottom to allow the metal sodium 2 to flow into the container 1 from the outflow pipe 7 via the electromagnetic pump 8. 9 has a suction pipe 11 8Ff connected thereto via a pulp 10, and a tank 12 is provided at one end of this pipe 11. Naoyoshi! s1) The upper part 8 of the IJ rim is filled with rounded argon (person R) to prevent it from contacting oxygen and burning.
It is filled with a gas-like cover gas. Similarly, the space 15 above the sodium chloride 14 in the tank 12 is also filled with cover gas.

この装置は容1B1内の金属ナトリウム2を電磁ポンプ
8の動作によって電磁ポンプ8→眸入ハイグ9→除去装
置4→被除染体6→流出パイプγ→電磁ポンプ8に至る
流通路を循環させることによ妙、被除染体6の周囲に付
着している放射性物質を溶出させ、除去装置4で溶出し
た金属ナトリウム中の放射性物質を捕獲する。なお、こ
の装置の停止時には、mlナトリウム2は全べてタンク
12にドレンされていて、容器内の被除染体6は7ラン
ジ3を開閉して容a1の上部よ抄出し入れする、この装
置を操作する時は、まずフランク3を開けて容器l内(
、除染をしようとする機器類6を台5に上に挿入し九の
ち、7う/ジ3を閉める。そして図示されていない排気
系によ抄容Ill内を排気する。そしてパルプ10を−
けて、タンク12内の金員す) IJウム14を吸い上
げ、容器。
This device circulates the metal sodium 2 in the container 1B1 through the flow path leading to the electromagnetic pump 8 -> the intake pipe 9 -> the removal device 4 -> the object to be decontaminated 6 -> the outflow pipe γ -> the electromagnetic pump 8 by the operation of the electromagnetic pump 8. Particularly strangely, the radioactive substances attached around the object to be decontaminated 6 are eluted, and the radioactive substances in the metal sodium eluted by the removing device 4 are captured. Note that when this device is stopped, all the ml sodium 2 is drained into the tank 12, and the decontamination object 6 in the container is taken out from the top of the container a1 by opening and closing the 7-lunge 3. When operating the , first open the flank 3 and insert the inside of the container 1 (
Then, the equipment 6 to be decontaminated is inserted into the stand 5, and after that, the 7th room 3 is closed. Then, the inside of the paper chamber Ill is evacuated by an exhaust system (not shown). And pulp 10-
Then, suck up the IJum 14 in the tank 12 and pour it into the container.

内に金属ナトリウム2を充填する。一定量の金属ナトリ
ウムの充填が終るとパルプ10を閉める。
Fill the inside with metallic sodium 2. After filling a certain amount of metal sodium, the pulp 10 is closed.

次に8I!1の上部の空間13に図示されてぃ讐いカバ
ーガス供給系により常圧近くの圧力になるまテカバーガ
ス(入rガス)を供給する。
Next is 8I! A cover gas (input gas) is supplied to the space 13 in the upper part of the chamber 1 by a cover gas supply system shown in the figure until the pressure becomes close to normal pressure.

そして1図示・していない加熱装置によ)容器1内の’
1itsナトリウムの温度が450℃以上になる様に加
熱する。、450℃以上の所定の温度に昇温し九ら、ポ
ンプ8により金属ナトリウムを循環させる。
and 1) in the container 1 by means of a heating device (not shown).
Heat so that the temperature of 1its sodium becomes 450°C or higher. , the temperature is raised to a predetermined temperature of 450° C. or higher, and the pump 8 circulates metallic sodium.

この常態で一定の時間保つ、この時、被除染体6の表面
に付着している。’S4M、は除々にこの金属ナトリウ
ム中へ溶は出し、この54Mnを含む金−ナトリウムは
上部からパイプのポンプ8を経てSS1の下部へ注入さ
れそしてニッケルゲッターよ抄なる54M、除去装置4
を通過して容器上部へ流れる 54M、除去装置4を通
過する間に金属ナトリウム中の Mnはこの除去装置に
捕獲される。
It remains in this normal state for a certain period of time, and at this time it adheres to the surface of the object 6 to be decontaminated. 'S4M is gradually dissolved into this metal sodium, and this gold-sodium containing 54Mn is injected from the upper part through the pipe pump 8 to the lower part of SS1, and the nickel getter is removed by the 54M and removal device 4.
54M and flowing to the upper part of the container, Mn in the metallic sodium is captured by this removal device while passing through the removal device 4.

54Mnを゛除去され九ナトリウムは再び被除染体60
表面に付着して−る Mnを溶出する。このような動作
をある時間くり返しているうちに被除染体6に付着し九
 Mnは、除染され除去−置4にすべて回収される。
54Mn has been removed and the 9sodium is returned to the decontaminated body 60
Mn attached to the surface is eluted. While repeating such an operation for a certain period of time, the Mn that adheres to the object to be decontaminated 6 is decontaminated and all recovered in the removal station 4.

次に一定時間を経て、除染が終了し丸ならば。Next, after a certain period of time, the decontamination is complete and the circle is round.

パルプ10を用−て金属ナトリウム2をすべてタンク1
2に収納し九のち、41J11を常温に冷却し九のち、
72ンジ3を−けて被除染体・を取)出す、ここで54
Mno除去蛾置4は1第3図および第4図に各々示す様
にステンレスあるいはニツケル等の金属製の円筒16と
、との内11116の上下部に設けたメッシユ又は穴の
−いえプレートからなるふえ17.18と同筒1の中に
薄いニッケル板を巻いえ捕獲体19やニッケルよ)出来
九うンヒリングなどを充填した捕獲体20とを備え丸も
ので、円筒16の下部から上部へ金属ナトリウムが通過
する間にニッケルゲッター表面との接触面積を大きくす
る工夫を施すことにより、効率よく金目ナトリウム中の
54Inがニッケル材に捕集される様になっている。
Using pulp 10, all metal sodium 2 is transferred to tank 1.
After 9 days, 41J11 was cooled to room temperature and after 9 days,
72 Remove the object to be decontaminated by turning 3, at this point 54
As shown in Figs. 3 and 4, the Mno removal moth holder 4 consists of a cylinder 16 made of metal such as stainless steel or nickel, and a plate with mesh or holes provided at the top and bottom of the cylinder 11116. It is round and has a trap 19, which is made by wrapping a thin nickel plate in the same cylinder 1, and a trap 20 filled with a material such as nickel. By enlarging the contact area with the nickel getter surface while the sodium passes through, the 54In in the gold-metal sodium is efficiently collected on the nickel material.

なお1本発明による除汚の効果は、除染中の金属す) 
IJウムの温度や除染時間に依存するが、九とえば、 
54Mnで汚染され九8U8−304ででき九1lll
Iaの場合、550℃の金属ナトリウム加熱温度で、2
40時間の除染を行り九ところ85−の’t41#4峨
去された。除染は金属ナトリウムの温度が高いほど短時
間で出来るという傾向を示し、41に450℃以上から
効果的である。なお、   Mn除去装置4 4はく9返し長期にわ九や使用することが出来る。
Note that the decontamination effect of the present invention is limited to metals during decontamination.
It depends on the temperature of IJum and decontamination time, but for example,
91llll contaminated with 54Mn and made of 98U8-304
In the case of Ia, at a metal sodium heating temperature of 550°C, 2
After 40 hours of decontamination, 85 't41 #4 were removed. Decontamination tends to be completed in a shorter time as the temperature of sodium metal is higher, and it is effective at temperatures above 450°C. In addition, the Mn removal device 4 can be used repeatedly for a long period of time.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

前述の実施例においては、容7a1の中に Mn除去装
置4と被除染体6を収納していたが、第44 図に示すようfC,Mn除去装置4を別の容器21中に
設け、これらの容a1と別容!!21との。
In the above embodiment, the Mn removal device 4 and the object to be decontaminated 6 were housed in the container 7a1, but as shown in FIG. These are different from A1! ! With 21.

関をパイプ7.9、ポンプ8で接続することによりこれ
ら両者の間にナトリウム2を循環する事によシ同様な効
果が得られる。除去装置4は7ランジ22を取りはずし
て出し入れする。この方法は例えば第4図の中の容a1
を原子炉の一次系の容器に代えれば、この原子炉容器に
パイプ7.9、4 ポンプ8、容8B21、  Mn除去装置4よりなる装
置を増設することによ)原子炉プラント中の、汚−染機
器の一部又は全体を除染できる。すなわち。
A similar effect can be obtained by connecting the valve with a pipe 7.9 and a pump 8 and circulating sodium 2 between them. The removal device 4 is inserted and removed by removing the seven flange 22. This method can be used, for example, in case a1 in Figure 4.
If this is replaced with the reactor primary system vessel, by adding a device consisting of pipe 7.9, 4 pump 8, capacity 8B21, and Mn removal device 4 to this reactor vessel, the contamination in the reactor plant can be removed. - It is possible to decontaminate part or all of the contaminated equipment. Namely.

「システム除染」をも可能とするものである。It also enables "system decontamination."

以上詳述したように本発明によれば、従来のように酸な
どの洗浄液を使用せず、^遭増鳴炉の冷却材と同じ金属
ナトリウム中にしばらく浸して鼾〈だけで容易に効率よ
く機器に付着し九放射性物l 質を除染することが出来る。
As detailed above, according to the present invention, instead of using a cleaning solution such as acid as in the past, cleaning can be easily and efficiently done by simply immersing it in metallic sodium, the same coolant used in the sounding reactor, for a while. It can decontaminate nine radioactive substances attached to equipment.

これは人手がかからないで容易に行なえるばか砂でなく
機器を腐食させ九りしてぃ丸めることもない。このため
機器をメインテナンスし先後の再使用においてもきわめ
て有利となる。
This is easy to do without any manual effort, and it won't corrode the equipment or cause it to roll up into pieces. Therefore, it is extremely advantageous when maintaining the equipment and reusing it in the future.

!九本発明はきわめて簡単な操作でできる丸め遠隔操作
に適してお動作業者の被曝の低減化にも大きく貢献する
ことができる。
! 9. The present invention is suitable for rounded remote control, which is extremely simple to operate, and can greatly contribute to reducing the radiation exposure of operators.

4、riamom単*vi*   − 第1図は本発明の実施例を示す装置の構成図。4, riamom single *vi* - FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention.

@2図および113図は本発明で使用されるS4Mn#
去装置の形状を示す一部切欠斜視図、第4図は本発明の
他の実施例を示す装置の構成図である。
@Figures 2 and 113 are S4Mn# used in the present invention.
FIG. 4 is a partially cutaway perspective view showing the shape of the removing device, and FIG. 4 is a configuration diagram of the device showing another embodiment of the present invention.

1・・・容器、2・・・金属ナトリウム、4・・・除−
去装置、6・・・表面が放射性物質で汚染されている−
11(被除染体)、7・・・流出パイプ、8・・・電磁
ポンプ、9・・・流入パイプ。
1... Container, 2... Metallic sodium, 4... Excluding -
Equipment, 6...The surface is contaminated with radioactive substances.
11 (object to be decontaminated), 7... Outflow pipe, 8... Electromagnetic pump, 9... Inflow pipe.

第1図 /?  IaFigure 1 /? Ia

Claims (1)

【特許請求の範囲】 11)表面が放射性物質で汚染されている1IIllを
収納する容器と、この容器内に充填し丸金属ナトリウム
と、この金属ナトリウムを前記容器内を通して流通させ
る流動路と、この流動路内に配置したニッケルもしくは
ニッケルを主成分とする合金からなるゲッター材とを具
備し九ことを特徴とする放射性物質で汚染され九lll
1.の除染装置。 (2)ゲッター材を容器内の流動路に設は九ことを41
1黴とする特許請求の範囲第1頂紀軟の放射性物質で汚
染され九−器の除染装置。 (3)ゲッター材を容器外の流動路中に設は九ことを特
徴とする特許請求の範囲第1頂紀軟の放射性物質で汚染
され九損器の除染装置。 (4) fl dllナトリウムを容器内で450’C
以上に加熱する加熱装置を具備したことを特徴とする特
許請求の範囲第1項記載の放射性物質で汚染され九機器
の除染装置。 (5)表面が放射性物質で汚染されている機器を金属ナ
トリウム中に浸漬し、この金属ナトリウムを流動させて
前記機器の汚染されて−る放射性物質をこの金属ナトリ
ウム中KIII!出させてニッケル―しくはニッケルを
生成分とする合金からなるゲッター材へ回収することを
特徴とする放射性物質で汚染され九機器の除染方法。 (6)容器内を流通する金属ナトリウムを450”O以
−上に加熱することを特徴とする特許請求OwA囲第5
項記載の放射性物質÷汚染され九機器の除染方−法。
[Scope of Claims] 11) A container for storing 1IIII whose surface is contaminated with a radioactive substance, round metal sodium filled in the container, a flow path for circulating the metal sodium through the container, and a getter material made of nickel or an alloy containing nickel as a main component disposed in the flow path;
1. decontamination equipment. (2) Place the getter material in the flow path inside the container.
1. Claim 1: A decontamination device for molds contaminated with radioactive materials. (3) A decontamination device for a vessel contaminated with radioactive materials as claimed in claim 1, characterized in that a getter material is placed in a flow path outside the container. (4) Heat fl dll sodium at 450'C in a container.
A decontamination device for equipment contaminated with radioactive substances as set forth in claim 1, characterized in that it is equipped with a heating device that heats the equipment to a temperature higher than that of the previous claim. (5) A device whose surface is contaminated with radioactive material is immersed in metallic sodium, and the metallic sodium is allowed to flow to remove the contaminated radioactive material from the device into the metallic sodium. A decontamination method for equipment contaminated with radioactive materials, which is characterized by recovering the discharged material into a getter material made of nickel or an alloy containing nickel. (6) Patent claim OwA, Box 5, characterized in that the metallic sodium flowing in the container is heated to 450"O or more.
Decontamination method for radioactive substances ÷ contaminated equipment as described in Section 9.
JP10064781A 1981-06-30 1981-06-30 Device and method of decontaminating equipment contaminated with radioactive material Pending JPS582796A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10064781A JPS582796A (en) 1981-06-30 1981-06-30 Device and method of decontaminating equipment contaminated with radioactive material
EP82105586A EP0071020A3 (en) 1981-06-30 1982-06-24 Method for removing radioactive material from devices and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064781A JPS582796A (en) 1981-06-30 1981-06-30 Device and method of decontaminating equipment contaminated with radioactive material

Publications (1)

Publication Number Publication Date
JPS582796A true JPS582796A (en) 1983-01-08

Family

ID=14279611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064781A Pending JPS582796A (en) 1981-06-30 1981-06-30 Device and method of decontaminating equipment contaminated with radioactive material

Country Status (1)

Country Link
JP (1) JPS582796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085877A (en) * 1983-10-18 1985-05-15 トヨタ自動車株式会社 Striking-number control type torque control impact wrench
JPH0348198A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085877A (en) * 1983-10-18 1985-05-15 トヨタ自動車株式会社 Striking-number control type torque control impact wrench
JPH0325304B2 (en) * 1983-10-18 1991-04-05 Toyota Jidosha Kk
JPH0348198A (en) * 1989-07-17 1991-03-01 Hitachi Ltd Decontamination method and device for liquid metal cooled nuclear reactor equipment and nuclear reactor facility equipped with the device

Similar Documents

Publication Publication Date Title
TW493180B (en) Method of chemical decontamination
US4476047A (en) Process for treatment of oxide films prior to chemical cleaning
WO2011063355A2 (en) Iodine-125 production system and method
JPS582796A (en) Device and method of decontaminating equipment contaminated with radioactive material
TW200937449A (en) Chemical enhancement of ultrasonic fuel cleaning
JPH0453399B2 (en)
RU2459297C1 (en) Method of cleaning and decontaminating reactor circuit equipment with liquid-metal lead-bismuth heat carrier
JP7411502B2 (en) Chemical decontamination method for carbon steel parts of nuclear power plants
JPS582798A (en) Method of decontaminating equipment contaminated with radioactive material
US20220102019A1 (en) Chemical decontamination method
JPS582797A (en) Method of decontaminating equipment contaminated with radioactive material
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
EP0071020A2 (en) Method for removing radioactive material from devices and apparatus therefor
JPH0363599A (en) Processing method for dismantled body such as radio-actively contaminated equipment and its transportation container
JPS5988699A (en) Removal of radioactive substance attached to fuel assembly
Murray Modeling nuclear decontamination processes
Act SODIUM REMOVAL METHODS
Lamb Cesium‐137 Source Material for an Irradiator
Zegger et al. APPR-1 RESEARCH AND DEVELOPMENT PROGRAM DECONTAMINATION PROGRAM. TASK II. VOLUME I. CONTAMINATION AND DECONTAMINATION IN NUCLEAR POWER REACTORS
Remark Plant decontamination methods review.[PWR; BWR]
McPheeters et al. Experiments on cold-trap regeneration by NaH decomposition
Matausek Proper disposal of irradiated fuel as the first step towards deciding the RA research reactor future
Wells Radioactive decontamination by ultrasonics
Campbell Decontamination of the Homogeneous Reactor Experiment
Haubold et al. Status of sodium removal and component decontamination technology in the SNR programme