JP2017227446A - Chemical decontamination method for pressurized water type nuclear power plants - Google Patents

Chemical decontamination method for pressurized water type nuclear power plants Download PDF

Info

Publication number
JP2017227446A
JP2017227446A JP2016121369A JP2016121369A JP2017227446A JP 2017227446 A JP2017227446 A JP 2017227446A JP 2016121369 A JP2016121369 A JP 2016121369A JP 2016121369 A JP2016121369 A JP 2016121369A JP 2017227446 A JP2017227446 A JP 2017227446A
Authority
JP
Japan
Prior art keywords
decontamination
cooling system
primary cooling
nuclear power
pressurized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016121369A
Other languages
Japanese (ja)
Other versions
JP6773463B2 (en
Inventor
太郎 金丸
Taro Kanamaru
太郎 金丸
洋美 青井
Hiromi Aoi
洋美 青井
矢板 由美
Yumi Yaita
由美 矢板
孝次 根岸
Koji Negishi
孝次 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016121369A priority Critical patent/JP6773463B2/en
Publication of JP2017227446A publication Critical patent/JP2017227446A/en
Application granted granted Critical
Publication of JP6773463B2 publication Critical patent/JP6773463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemical decontamination method for pressurized water type nuclear power plants by which nuclear reactor cooling systems contaminated with radioactive substance can be efficiently decontaminated according to a reactor decommissioning plan.SOLUTION: By a chemical decontamination method for pressurized water type nuclear power plants in which a primary cooling system 51, a residual heat removing system 52 and a chemical volume control system 53 are connected to one another via plural boundary valves 10, 20 and 30, all the boundary valves 10 and 20 connected to the primary cooling system 51 are set at least to closure, and decontaminating agent is caused to circulate in the primary cooling system 51.SELECTED DRAWING: Figure 3

Description

本発明の実施形態は、加圧水型原子力発電プラントの原子炉冷却系に付着した放射性物質を化学除染する方法に関する。   Embodiments of the present invention relate to a method for chemically decontaminating radioactive materials attached to a reactor cooling system of a pressurized water nuclear power plant.

近年、耐用年数を迎える原子力発電プラントが増加しており、今後は廃止措置を行う原子力発電プラントの増加が見込まれている。廃止措置では最終的に原子力プラントを解体するが、その前段として、廃止措置作業員の被爆低減や解体で生じる廃棄物の線量低減の目的で、冷却系統の化学除染を行う。   In recent years, the number of nuclear power plants that have reached the end of their useful lives has increased, and in the future, the number of nuclear power plants that will be decommissioned is expected to increase. In the decommissioning, the nuclear power plant is finally demolished, but as the first step, chemical decontamination of the cooling system is carried out for the purpose of reducing the exposure of decommissioning workers and reducing the dose of waste generated by the demolition.

特開平4−276596号公報JP-A-4-276596

原子力プラントの廃止措置の計画では、冷却系統の化学除染は冷却系等を複数区画に分けて行うよう計画されことがある。例えば、廃止措置の計画において、線量が高い区画は一定期間放置し、線量が下がってから解体し撤去するよう計画されることがある。この場合、化学除染と解体との期間が開きすぎて、放置期間中に不純物が再蓄積しないよう、化学除染は冷却系統一括で行われるのではなく、各区画の解体のタイミングにあわせて各区画の化学除染が計画される。   In nuclear power plant decommissioning plans, chemical decontamination of cooling systems may be planned to be performed by dividing the cooling system into multiple sections. For example, in a decommissioning plan, it may be planned to leave a high-dose section for a certain period of time and then dismantle and remove it after the dose has dropped. In this case, chemical decontamination is not performed in the cooling system at the same time so that the period of chemical decontamination and dismantling is too long and impurities do not re-accumulate during the standing period. Chemical decontamination of each section is planned.

また、例えば、冷却系統の汚染状況によっては、高線量部位と低線量部位を一括で化学除染することにより、化学除染時に低線量部位が汚染されることが懸念される場合がある。   Further, for example, depending on the contamination status of the cooling system, there may be a concern that the low-dose site is contaminated at the time of chemical decontamination by collectively decontaminating the high-dose site and the low-dose site.

このように、原子力プラントの廃止措置の計画では、特定の区画を特定のタイミングで除染することが求められるため、原子炉冷却系の必要な箇所のみを化学除染することができる化学除染方法があれば、廃止措置計画を効率的に進めることができる。   In this way, decommissioning plans for nuclear power plants require decontamination of specific sections at specific times, so chemical decontamination that can only chemically decontaminate only the necessary parts of the reactor cooling system. If there is a way, decommissioning plans can be promoted efficiently.

本発明の実施形態はこのような事情を考慮してなされたもので、原子炉冷却系のうち、必要な箇所のみを化学除染することができる加圧水型原子力発電プラントの化学除染方法を提供することを目的とする。   Embodiments of the present invention have been made in view of such circumstances, and provide a chemical decontamination method for a pressurized water nuclear power plant capable of chemically decontaminating only necessary portions of a reactor cooling system. The purpose is to do.

実施形態に係る加圧水型原子力発電プラントの化学除染方法は、原子炉溶器、ポンプ、加圧器及、蒸気発生器を備え、原子炉容器で加熱された冷却材を蒸気発生器に循環させる一次冷却系と、原子炉容器における加熱を停止した後に冷却材を予め定められた温度まで低下させる余熱除去系と、冷却材のほう酸濃度調整及び保有量調整の機能を担う化学体積制御系と、が複数の境界弁を介して相互に接続し合う加圧水型原子力発電プラントの化学除染方法であって、一次冷却系と接続する境界弁の全てを少なくとも閉止に設定して、一次冷却系において除染剤を循環させるものとする。   A chemical decontamination method for a pressurized water nuclear power plant according to an embodiment includes a reactor melter, a pump, a pressurizer, and a steam generator, and a primary that circulates a coolant heated in the reactor vessel to the steam generator. A cooling system, a residual heat removal system that lowers the coolant to a predetermined temperature after heating in the reactor vessel is stopped, and a chemical volume control system that is responsible for adjusting the boric acid concentration and holding amount of the coolant. A chemical decontamination method for pressurized water nuclear power plants that are connected to each other via a plurality of boundary valves, in which all boundary valves connected to the primary cooling system are set to at least closed, and decontamination is performed in the primary cooling system. The agent shall be circulated.

本発明の実施形態により、放射性物質が付着した原子炉冷却系を、廃止措置計画の計画に沿って効率的に除染することができる加圧水型原子力発電プラントの化学除染方法が提供される。   According to an embodiment of the present invention, a chemical decontamination method for a pressurized water nuclear power plant is provided that can efficiently decontaminate a reactor cooling system to which a radioactive substance is attached in accordance with a plan of a decommissioning plan.

加圧水型原子力発電プラントの原子炉冷却系の構成を示す構成図。The block diagram which shows the structure of the reactor cooling system of a pressurized water nuclear power plant. (A)は本発明の実施形態に係る加圧水型原子力発電プラントの除染方法において規定される除染区分と除染範囲を示す表、(B)は本発明の実施形態に係る加圧水型原子力発電プラントの除染方法において、各除染範囲に含まれる各機器の除染パターンを示す表。(A) is a table | surface which shows the decontamination classification and decontamination range prescribed | regulated in the decontamination method of the pressurized water nuclear power plant which concerns on embodiment of this invention, (B) is pressurized water nuclear power generation which concerns on embodiment of this invention. The table | surface which shows the decontamination pattern of each apparatus contained in each decontamination range in the decontamination method of a plant. 実施形態に係る加圧水型原子力発電プラントの除染方法が適用される原子炉冷却系の除染範囲1を示す図。The figure which shows the decontamination range 1 of the reactor cooling system to which the decontamination method of the pressurized water nuclear power plant which concerns on embodiment is applied. 実施形態に係る加圧水型原子力発電プラントの除染方法が適用される原子炉冷却系の除染範囲2を示す図。The figure which shows the decontamination range 2 of the reactor cooling system to which the decontamination method of the pressurized water nuclear power plant which concerns on embodiment is applied. 実施形態に係る加圧水型原子力発電プラントの除染方法が適用される原子炉冷却系の除染範囲3を示す図。The figure which shows the decontamination range 3 of the reactor cooling system to which the decontamination method of the pressurized water nuclear power plant which concerns on embodiment is applied. 実施形態に係る加圧水型原子力発電プラントの除染方法が適用される原子炉冷却系の除染範囲4を示す図。The figure which shows the decontamination range 4 of the reactor cooling system to which the decontamination method of the pressurized water nuclear power plant which concerns on embodiment is applied. 実施形態に係る加圧水型原子力発電プラントの除染方法が適用される原子炉冷却系の除染範囲5,6,7を示す図。The figure which shows the decontamination range 5, 6, 7 of the reactor cooling system to which the decontamination method of the pressurized water nuclear power plant which concerns on embodiment is applied. (A)は配管が接続する機器の部分拡大図、(B)は機器を配管から隔離する方法の説明図、(C)は機器を隔離した後に配管をバイパスする方法の説明図。(A) is the elements on larger scale of the apparatus which piping connects, (B) is explanatory drawing of the method of isolating equipment from piping, (C) is explanatory drawing of the method of bypassing piping after isolating equipment.

以下、本発明の実施形態を添付図面に基づいて説明する。
本発明の実施形態に係る加圧水型原子力発電プラントの化学除染方法の説明に入る前に、加圧水型原子力発電プラントの原子炉冷却系の説明を行う。
図1に示すように加圧水型原子力発電プラントの原子炉冷却系60は、一次冷却系51と、余熱除去系52と、化学体積制御系53といった系統を含んで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
Prior to the description of the chemical decontamination method for a pressurized water nuclear power plant according to an embodiment of the present invention, the reactor cooling system of the pressurized water nuclear power plant will be described.
As shown in FIG. 1, the reactor cooling system 60 of the pressurized water nuclear power plant includes a system such as a primary cooling system 51, a residual heat removal system 52, and a chemical volume control system 53.

そして、一次冷却系51と余熱除去系52とは第1の境界弁10(10A,10B,10C)を介して相互に接続し合い、一次冷却系51と化学体積制御系53とは第2の境界弁20(20A,20B,20C)を介して相互に接続し合い、余熱除去系52と化学体積制御系53とは第3の境界弁30を介して相互に接続し合う。   The primary cooling system 51 and the residual heat removal system 52 are connected to each other via the first boundary valve 10 (10A, 10B, 10C), and the primary cooling system 51 and the chemical volume control system 53 are connected to each other. The residual heat removal system 52 and the chemical volume control system 53 are connected to each other via the third boundary valve 30. The boundary heat 20 and the chemical volume control system 53 are connected to each other via the boundary valve 20 (20 </ b> A, 20 </ b> B, 20 </ b> C).

一次冷却系51は、原子炉容器1で加熱された冷却材(軽水)を蒸気発生器3A,3Bに循環させる配管2A,2Bと、この冷却材に循環するための動力を付与するポンプ4A,4Bとから構成されている。
なお、図1の一次冷却系51は、A,Bの二系統の場合を例示しているが、単系統もしくは三系統以上から構成される場合もある。
The primary cooling system 51 includes pipes 2A and 2B that circulate the coolant (light water) heated in the reactor vessel 1 to the steam generators 3A and 3B, and a pump 4A that applies power for circulating the coolant. 4B.
In addition, although the primary cooling system 51 of FIG. 1 has illustrated the case of 2 systems of A and B, it may be comprised from a single system or 3 systems or more.

ここで、符号に付記される“A”の添え字は、一次冷却系51のA系統から他の系統に送出される冷却材が、通過する部材であることを意味する。
また符号に付記される“B”の添え字は、一次冷却系51のB系統から他の系統に送出される冷却材が、通過するものであることを意味する。
また符号に付記される“C”の添え字は、他の系統から一次冷却系51のA系統及びB系統のいずれかに帰還する冷却材が、通過するものであることを意味する。
また符号に付記される“D”の添え字は、余熱除去系52から化学体積制御系53に送出される冷却材が、通過するものであることを意味する。
Here, the suffix “A” added to the reference sign means that the coolant sent from the A system of the primary cooling system 51 to the other system is a member that passes therethrough.
The subscript “B” added to the reference sign means that the coolant sent from the B system of the primary cooling system 51 to the other system passes.
Further, the suffix “C” added to the reference sign means that the coolant returning from one of the other systems to either the A system or the B system of the primary cooling system 51 passes.
The suffix “D” added to the reference sign means that the coolant sent from the residual heat removal system 52 to the chemical volume control system 53 passes therethrough.

配管2A,2Bからは、A,B両系統ともに、ポンプ4A、4Bの下流側から加圧器5へ向かう配管6A,6Bが分岐している。
これら分岐配管6A,6Bは、それぞれ開閉弁7A、7Bを経由した後に互いに合流し、加圧器5に接続される。
From both the pipes 2A and 2B, pipes 6A and 6B from the downstream sides of the pumps 4A and 4B to the pressurizer 5 are branched in both systems A and B.
The branch pipes 6A and 6B are joined together after passing through the on-off valves 7A and 7B, respectively, and connected to the pressurizer 5.

この加圧器5は、開閉弁7Cを経由した後に、A系統の配管2Aのみに対し、原子炉容器1及び蒸気発生器3Aの間に接続する。
このように設置される加圧器5は、配管2A,2B及び原子炉容器1を循環する冷却材を、沸騰しないよう高温高圧状態に維持するものである。
The pressurizer 5 is connected between the reactor vessel 1 and the steam generator 3A only for the piping 2A of the A system after passing through the on-off valve 7C.
The pressurizer 5 installed in this way maintains the coolant circulating through the pipes 2A and 2B and the reactor vessel 1 in a high temperature and high pressure state so as not to boil.

このように構成される一次冷却系51は、原子炉容器1内の炉心における核分裂による反応熱を、冷却材の循環により蒸気発生器3A,3Bに伝達するものである。プラント運転中において一次冷却系51は、常に高温高圧の冷却材にさらされる環境におかれている。このため一次冷却系51は、余熱除去系52および化学体積制御系53と比較して、冷却材に接する配管および機器内面に、放射性の金属腐食生成物が最も多く付着すると考えられる。   The primary cooling system 51 configured as described above transmits reaction heat caused by nuclear fission in the core in the reactor vessel 1 to the steam generators 3A and 3B by circulation of the coolant. During the plant operation, the primary cooling system 51 is always in an environment where it is exposed to a high-temperature and high-pressure coolant. Therefore, it is considered that the primary cooling system 51 has the most radioactive metal corrosion products attached to the piping and the inner surface of the equipment in contact with the coolant as compared with the residual heat removal system 52 and the chemical volume control system 53.

余熱除去系52は、原子炉容器1及び蒸気発生器3A,3Bの間に挟まれる配管2A,2Bから分岐する配管9A,9Bから始まる。そして分岐配管9A,9Bは、第1の境界弁10A、10B、ポンプ11A,11B、熱交換器12A,12Bを経由した後に互いに合流し、第1の境界弁10Cを経由し、B系統の配管2Bのポンプ4Bの下流へ戻される。なお熱交換器12A、12Bの前後に接続される配管には前後弁14A,14B,15A,15Bが配置されている。   The residual heat removal system 52 starts with pipes 9A and 9B branched from the pipes 2A and 2B sandwiched between the reactor vessel 1 and the steam generators 3A and 3B. The branch pipes 9A and 9B are merged with each other after passing through the first boundary valves 10A and 10B, the pumps 11A and 11B, and the heat exchangers 12A and 12B. It is returned downstream of the 2B pump 4B. In addition, front and rear valves 14A, 14B, 15A, and 15B are arranged on the pipes connected before and after the heat exchangers 12A and 12B.

このように構成される余熱除去系52は、原子炉容器1の炉心の核分裂反応を停止させた後も発生する崩壊熱および顕熱を、除去する機能を有する。
余熱除去系52は、プラントの運転を停止させた後に、一次冷却系51を循環する冷却材の温度を、所定の時間内に所定の温度まで下げる機能を有している。
配管2A,2Bから余熱除去系52に冷却材が抽出される箇所は、原子炉容器1と蒸気発生器3A,3Bとの間に位置し高温である。
このため余熱除去系52には、一次冷却系51程ではないものの、放射性の金属腐食生成物が比較的多く付着すると考えられる。
The residual heat removal system 52 configured as described above has a function of removing decay heat and sensible heat generated even after the nuclear fission reaction of the reactor vessel 1 is stopped.
The residual heat removal system 52 has a function of lowering the temperature of the coolant circulating in the primary cooling system 51 to a predetermined temperature within a predetermined time after stopping the operation of the plant.
The place where the coolant is extracted from the pipes 2A and 2B to the residual heat removal system 52 is located between the reactor vessel 1 and the steam generators 3A and 3B and is at a high temperature.
For this reason, it is considered that a relatively large amount of radioactive metal corrosion products adhere to the residual heat removal system 52, although not as much as the primary cooling system 51.

化学体積制御系53は、一次冷却系51のA系統から分岐する配管16A、一次冷却系51のB系統から分岐する配管16B及び余熱除去系52のA系統から分岐する配管16Dから始まる。そして、最終的に化学体積制御系53は、配管16Cが、一次冷却系51のB系統の配管2Bのポンプ4Bの下流に戻って終わる。   The chemical volume control system 53 starts with a pipe 16A branched from the A system of the primary cooling system 51, a pipe 16B branched from the B system of the primary cooling system 51, and a pipe 16D branched from the A system of the residual heat removal system 52. Finally, the chemical volume control system 53 ends with the piping 16C returning to the downstream of the pump 4B of the piping 2B of the B system of the primary cooling system 51.

分岐配管16Aは、蒸気発生器3A及びポンプ4Aに挟まれる配管2Aの経路上に始端が接続されている。
分岐配管16Bは、蒸気発生器3B及びポンプ4Bに挟まれる配管2Bの経路上に始端が接続されている。
分岐配管16Dは、余熱除去系52の熱交換器12A及びその下流側の前後弁15Aに挟まれる分岐配管9Aの経路上に始端が接続されている。
The branch pipe 16A has a starting end connected to the path of the pipe 2A sandwiched between the steam generator 3A and the pump 4A.
The branch pipe 16B has a starting end connected to the path of the pipe 2B sandwiched between the steam generator 3B and the pump 4B.
The branch pipe 16D has a start end connected to the path of the branch pipe 9A sandwiched between the heat exchanger 12A of the residual heat removal system 52 and the front and rear valves 15A downstream thereof.

分岐配管16Aは、第2の境界弁20A、再生熱交換器19の管側、開閉弁25、さらに非再生熱交換器21を経由して、体積制御タンク17に至る。
分岐配管16Bは、第2の境界弁20B、余剰抽出水熱交換器22及び封水熱交換器23を経由して体積制御タンク17に至る。
分岐配管16Dは、第3の境界弁30を経由して、非再生熱交換器21の上流側で分岐配管16Aと合流し、体積制御タンク17に至る。
The branch pipe 16A reaches the volume control tank 17 via the second boundary valve 20A, the pipe side of the regenerative heat exchanger 19, the on-off valve 25, and the non-regenerative heat exchanger 21.
The branch pipe 16 </ b> B reaches the volume control tank 17 via the second boundary valve 20 </ b> B, the excess extraction water heat exchanger 22, and the sealed water heat exchanger 23.
The branch pipe 16 </ b> D joins the branch pipe 16 </ b> A on the upstream side of the non-regenerative heat exchanger 21 via the third boundary valve 30 and reaches the volume control tank 17.

体積制御タンク17からは、充填ポンプ24及び再生熱交換器19の胴側を経由する戻り配管16Cが、B系統の配管2Bのポンプ4Bの下流側に接続する。
この戻り配管16Cにおいて、再生熱交換器19胴側の上流には開閉弁26が設けられ、さらにその下流には第2の境界弁20Cが設けられている。
From the volume control tank 17, a return pipe 16C passing through the filling pump 24 and the trunk side of the regenerative heat exchanger 19 is connected to the downstream side of the pump 4B of the B system pipe 2B.
In the return pipe 16C, an on-off valve 26 is provided upstream of the regenerative heat exchanger 19 body side, and a second boundary valve 20C is further provided downstream thereof.

このように構成される化学体積制御系53は、冷却材の浄化(不純物・核分裂生成物・金属腐食生成物などの除去)、一次冷却系51に対する冷却材の充填補給、反応度制御のための冷却材のほう酸濃度調整、及び、冷却材の保有量調整・維持等の機能を発揮する。
配管2A,2Bから化学体積制御系53に冷却材が抽出される箇所は、蒸気発生器3A,3Bとポンプ4A,4Bとの間に位置し低温である。
しかしプラント運転中において、一次冷却系51と化学体積制御系53との間で頻繁に冷却材の流入/流出が繰り返されるため、化学体積制御系53は、一次冷却系51程ではないものの、放射性の金属腐食生成物が比較的多く付着すると考えられる。
The chemical volume control system 53 configured as described above is for purification of coolant (removal of impurities, fission products, metal corrosion products, etc.), filling of the coolant to the primary cooling system 51, and reactivity control. It performs functions such as adjusting the boric acid concentration of the coolant and adjusting and maintaining the amount of coolant retained.
The place where the coolant is extracted from the pipes 2A and 2B to the chemical volume control system 53 is located between the steam generators 3A and 3B and the pumps 4A and 4B and is at a low temperature.
However, since the inflow / outflow of the coolant is frequently repeated between the primary cooling system 51 and the chemical volume control system 53 during the plant operation, the chemical volume control system 53 is not as radioactive as the primary cooling system 51, but is radioactive. It is thought that a relatively large amount of metal corrosion products adhere.

次に、図2に基づいて実施形態に係る化学除染方法が適用される加圧水型原子力発電プラントの原子炉冷却系60(適宜、図1参照)の除染区分および除染範囲を説明する。
原子炉冷却系60の除染区分は、第1の境界弁10、第2の境界弁20及び第3の境界弁30で仕切られる一次冷却系51,余熱除去系52,化学体積制御系53を図2において大区分に設定し、この大区分をさらに細かくした小区分を設定する。
なお、図2における小区分の設定は、配管上に配置される機器毎に設定されているが、一定範囲の配管のみ、又は弁を含む一定範囲の配管を設定する場合もある。
Next, a decontamination section and a decontamination range of the reactor cooling system 60 (see FIG. 1 as appropriate) of the pressurized water nuclear power plant to which the chemical decontamination method according to the embodiment is applied will be described based on FIG.
The decontamination section of the reactor cooling system 60 includes a primary cooling system 51, a residual heat removal system 52, and a chemical volume control system 53 partitioned by the first boundary valve 10, the second boundary valve 20, and the third boundary valve 30. In FIG. 2, a large section is set, and a small section is set by further subdividing the large section.
2 is set for each device arranged on the pipe, there may be a case where only a certain range of pipes or a certain range of pipes including valves is set.

図2で設定した除染範囲1,2,3,4,5,6,7に対応する、加圧水型原子力発電プラントの原子炉冷却系60の領域を、図3,4,5,6,7に表す。   The region of the reactor cooling system 60 of the pressurized water nuclear power plant corresponding to the decontamination range 1, 2, 3, 4, 5, 6, 7 set in FIG. Expressed in

なお、化学除染は例えば酸化反応と還元反応を交互に行う方法で実施される。化学除染に使用する化学薬品は、還元剤および酸化剤である。還元剤の代表例としては、ジカルボン酸、特にシュウ酸が挙げられる。また酸化剤の代表例としては、過マンガン酸、過マンガン酸カリ、過酸化水素、オゾン等が挙げられる。   In addition, chemical decontamination is implemented by the method of performing an oxidation reaction and a reduction reaction alternately, for example. The chemicals used for chemical decontamination are reducing agents and oxidizing agents. Representative examples of the reducing agent include dicarboxylic acids, particularly oxalic acid. Representative examples of the oxidizing agent include permanganic acid, potassium permanganate, hydrogen peroxide, ozone and the like.

原子力発電プラントの原子炉冷却系は各系統や部位ごとに線量が異なるため、原子炉冷却系を一括して化学除染する場合、高線量部位の化学除染よって低線量部位が汚染されることがある。そのため、各系統や各部位を所望の線量に低減させるために、複数回にわたって全系統を除染する必要が生じる場合がある。   Since the reactor cooling system of nuclear power plants has different doses for each system and site, when the reactor cooling system is subjected to chemical decontamination in a batch, the low-dose site is contaminated by chemical decontamination of the high-dose site. There is. Therefore, in order to reduce each system and each part to a desired dose, it may be necessary to decontaminate all systems multiple times.

一方、本実施形態においては、化学除染を系統や部位ごとに行うことができる。化学除染による再汚染を防ぐことができるため、複数回にわたって全系統を除染する必要が無く、廃止措置計画に沿って効率よく化学除染を行うことができる。   On the other hand, in this embodiment, chemical decontamination can be performed for each system or site. Since recontamination due to chemical decontamination can be prevented, it is not necessary to decontaminate all systems multiple times, and chemical decontamination can be performed efficiently according to the decommissioning plan.

また、系統や部位によっては、化学除染によって線量を低減させるよりも、しばらく放置して線量を低下させる方が効率的な場合がある。そのため廃止措置計画においても、特定範囲のみの化学除染を要する場合がある。本実施形態においては、化学除染を系統や部位ごとに行うことができる。そのため、廃止措置計画に沿って効率的よく化学除染を行うことができる。   Also, depending on the system or part, it may be more efficient to leave it for a while and reduce the dose than to reduce the dose by chemical decontamination. For this reason, decontamination plans may require chemical decontamination only for specific areas. In this embodiment, chemical decontamination can be performed for each system or part. Therefore, chemical decontamination can be performed efficiently according to the decommissioning plan.

例えば、廃止措置において、一次冷却系に設けられた蒸気発生器は特に線量が高いため、しばらく放置して線量が低減してから廃止措置及び化学除染を行うことが要求される。その場合、蒸気発生器を一次系から分離させ、蒸気発生器以外の一次系を化学除染することで、蒸気発生器のために一次冷却系全体、ひいては廃止措置工程全体を遅延させることなく効率的に化学除染及び廃止措置を行うことができる。   For example, in the decommissioning, since the steam generator provided in the primary cooling system has a particularly high dose, it is required that the decommissioning and chemical decontamination be performed after the dose is reduced after being left for a while. In that case, by separating the steam generator from the primary system and chemically decontaminating the primary system other than the steam generator, the efficiency of the steam generator can be improved without delaying the entire primary cooling system and thus the entire decommissioning process. Chemical decontamination and decommissioning.

(第1実施形態)
図3に示す原子炉冷却系に設定した除染範囲1(図2(A)(B)参照)に基づいて化学除染方法の第1実施形態を説明する。まず、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。さらに、加圧器5に対する開閉弁7A,7B,7Cを閉止し、さらに原子炉容器1の内部において配管2A,2Bの開口をバイパス治具28により連結する。これにより、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bが除染範囲1として設定され、除染剤を循環させることにより、これらが一括して除染される。これは、図2(B)において除染パターン(イ)に該当する。ここで、除染範囲に含まれる各機器及び各部位が、除染範囲内で隔離されることなく除染される除染方法を範囲内一括除染Xと呼称する。
(First embodiment)
A first embodiment of the chemical decontamination method will be described based on the decontamination range 1 (see FIGS. 2A and 2B) set in the reactor cooling system shown in FIG. First, all the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Further, the on-off valves 7A, 7B and 7C for the pressurizer 5 are closed, and the openings of the pipes 2A and 2B are connected by the bypass jig 28 inside the reactor vessel 1. Thereby, the piping 2A, 2B of the primary cooling system 51, the pumps 4A, 4B and the steam generators 3A, 3B are set as the decontamination range 1, and these are decontaminated collectively by circulating the decontamination agent. The This corresponds to the decontamination pattern (A) in FIG. Here, the decontamination method in which each device and each part included in the decontamination range is decontaminated without being isolated within the decontamination range is referred to as “in-range collective decontamination X”.

なお、加圧器5、その前後配管6A,6B,6C及び原子炉容器1は、閉止した上述の開閉弁7A,7B,7C及びバイパス治具28の機能により、除染範囲から隔離されている。同様に、余熱除去系52及び化学体積制御系53も除染範囲から隔離されている。
なお、除染範囲から隔離する方法は、境界弁の閉止設定に限定されることはなく、隔離治具の使用、又は配管の切断により実施することもできる。
The pressurizer 5, its front and rear pipes 6 </ b> A, 6 </ b> B, 6 </ b> C and the reactor vessel 1 are isolated from the decontamination range by the functions of the above-described on-off valves 7 </ b> A, 7 </ b> B, 7 </ b> C and the bypass jig 28. Similarly, the residual heat removal system 52 and the chemical volume control system 53 are also isolated from the decontamination range.
In addition, the method of isolating from the decontamination range is not limited to the closing setting of the boundary valve, and can be implemented by using an isolating jig or cutting a pipe.

ポンプ4A,4B及び蒸気発生器3A,3Bは原子力プラントの中でも特に線量の高い箇所である。廃止措置の計画において、汚染レベルの低い部分の再汚染のリスクを最小限にとどめるために、ポンプ4A,4B及び蒸気発生器3A,3Bを限定して除染することが望まれる場合がある。除染パターン(イ)は、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bをそのほかの部分から隔離して化学洗浄することができる。そのため、再汚染された箇所のために再度除染をする機会を低減させることができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   The pumps 4A and 4B and the steam generators 3A and 3B are particularly high dose locations in the nuclear power plant. In a decommissioning plan, it may be desirable to decontaminate the pumps 4A, 4B and steam generators 3A, 3B in a limited manner to minimize the risk of recontamination of the low contamination level. The decontamination pattern (A) can be chemically cleaned by separating the pipes 2A and 2B, the pumps 4A and 4B, and the steam generators 3A and 3B of the primary cooling system 51 from other portions. Therefore, it is possible to reduce the chance of decontamination again for the recontaminated part, and it is possible to efficiently proceed with the decommissioning of the nuclear power plant according to the plan.

(第2実施形態)
図3に示す原子炉冷却系に設定した除染範囲1(図2参照)に基づいて化学除染方法の第2実施形態を説明する。
第2実施形態では、第1実施形態に記載した除染を実施した後に、蒸気発生器3A,3Bを一次冷却系51の配管2A,2Bからを隔離し、蒸気発生器3A,3Bを単独で除染する。これは、図2(b)において除染パターン(ロ)に該当する。以下、除染範囲内一括除染Xを行った後に、除染範囲に含まれる各機器や各部位の一部を隔離し、さらに単独で除染する除染方法を、一括除染後単独除染Yと呼称する。一括除染後単独除染Yにおいて、1回目の除染(範囲内一括除染Xに相当)を第1除染、第1除染に続いて一部の機器や部位に対して行う単独除染を第2除染と呼称する。
(Second Embodiment)
A second embodiment of the chemical decontamination method will be described based on the decontamination range 1 (see FIG. 2) set in the reactor cooling system shown in FIG.
In the second embodiment, after the decontamination described in the first embodiment is performed, the steam generators 3A and 3B are isolated from the pipes 2A and 2B of the primary cooling system 51, and the steam generators 3A and 3B are independently used. Decontaminate. This corresponds to the decontamination pattern (b) in FIG. Hereinafter, after performing batch decontamination X within the decontamination range, each decontamination method and parts of each part are isolated and further decontamination is performed separately after batch decontamination. This is referred to as dye Y. In single decontamination Y after collective decontamination, the first decontamination (corresponding to in-range collective decontamination X) is carried out for the first decontamination, followed by the first decontamination for some devices and parts The dyeing is called second decontamination.

図8に基づいて、第2除染の手順について説明する。図8(A)及び(B)において、機器31は、第2除染で単独除染される対象の機器であり、ここでは蒸気発生器2A,2Bであるものとする。
図8(A)は第2除染前の状態であり、機器31の入口32及び出口33のそれぞれに、配管2,2が、アダプタ管35,35を仲介して接続している状態を示している。図8(B)は、機器31に単独除染用の循環路40を取り付けた状態を示している。この循環路40は、隔離する機器31における冷却材の入口32側と出口33側とを閉ループで接続し、洗浄剤を循環させるものである。
Based on FIG. 8, the procedure of 2nd decontamination is demonstrated. 8A and 8B, the device 31 is a device to be decontaminated solely by the second decontamination, and here, it is assumed to be the steam generators 2A and 2B.
FIG. 8A shows a state before the second decontamination, in which the pipes 2 and 2 are connected to the inlet 32 and the outlet 33 of the device 31 through the adapter pipes 35 and 35, respectively. ing. FIG. 8B shows a state where a circulation path 40 for single decontamination is attached to the device 31. This circulation path 40 connects the coolant inlet 32 side and the outlet 33 side of the device 31 to be isolated in a closed loop, and circulates the cleaning agent.

この循環路40は、除染剤のタンク41と、このタンク41から除染剤を送出路43に送出させるポンプ42と、この送出路43の先端が固定され機器の入口32側の開口を封止して除染剤を機器31に送り込む第1封止版44と、機器の出口33側の開口を封止して機器31を通過した除染剤を帰還路46を介してタンク41に帰還させる第2封止版45と、から構成されている。   The circulation path 40 includes a decontamination tank 41, a pump 42 for sending the decontamination agent from the tank 41 to the delivery path 43, and the tip of the delivery path 43 is fixed to seal the opening on the inlet 32 side of the device. The first sealing plate 44 that stops and feeds the decontamination agent to the device 31 and the decontamination agent that has passed through the device 31 after sealing the opening on the outlet 33 side of the device are returned to the tank 41 via the return path 46. And a second sealing plate 45 to be made.

機器31を単独で除染する場合、アダプタ管35,35を取り外して、機器の入口32側の開口及び出口33側の開口に対し、それぞれ第1封止版44及び第2封止版45をとりつける。なお、配管2の開口にも、漏液を防止するために封止版36,36それぞれ設ける。   When the device 31 is decontaminated alone, the adapter pipes 35 and 35 are removed, and the first sealing plate 44 and the second sealing plate 45 are respectively attached to the opening on the inlet 32 side and the opening on the outlet 33 side of the device. Attach. Note that sealing plates 36 and 36 are also provided at the opening of the pipe 2 to prevent leakage.

このように第2除染対象となる機器31に対し、単独除染用の循環路40を取り付けた後、ポンプ42を起動させ、タンク41と機器31との間で除染剤を循環させる。なお、機器31を隔離する方法としては、図8(B)に例示する方法に限定されるものでなく、機器31の上流側及び下流側の直近に配置されている弁を利用する方法、接続する配管を切断して行う方法等、が挙げられる。   As described above, after the circulation path 40 for single decontamination is attached to the device 31 to be second decontaminated, the pump 42 is activated and the decontamination agent is circulated between the tank 41 and the device 31. Note that the method of isolating the device 31 is not limited to the method illustrated in FIG. 8B, and a method of using a valve disposed immediately upstream and downstream of the device 31, connection And a method of cutting the piping to be performed.

蒸気発生器3A,3Bの機器は、複雑な形状を有するため、配管2A,2Bとの一括洗浄では、単純形状の配管と比較して除染効率が低い場合がある。また、蒸気発生器3A,3Bは、材質の一部にニッケル基合金材が用いられており、その他大部分の箇所に用いられるステンレス材とは異なる除染挙動を示す場合がある。そのため、廃止措置の計画において、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bを一括で除染した後、蒸気発生器3A,3Bを単独で除染することが望まれる場合がある。   Since the devices of the steam generators 3A and 3B have a complicated shape, the decontamination efficiency may be lower in the collective cleaning with the pipes 2A and 2B than the simple-shaped pipe. Further, the steam generators 3A and 3B use nickel-based alloy material as a part of the material, and may exhibit a decontamination behavior different from the stainless steel used in most other places. Therefore, in the decommissioning plan, the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, and the steam generators 3A and 3B should be decontaminated at once, and then the steam generators 3A and 3B should be decontaminated alone. May be desired.

除染パターン(ロ)では、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bを一括で除染した後、蒸気発生器3A,3Bを単独で除染することができる。そのため、除染範囲1を化学除染することができ、かつ、蒸気発生器の除染条件を最適化することができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (b), the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, and the steam generators 3A and 3B are decontaminated at once, and then the steam generators 3A and 3B are decontaminated independently. Can do. Therefore, the decontamination range 1 can be chemically decontaminated, the decontamination conditions of the steam generator can be optimized, and the decommissioning of the nuclear power plant can proceed efficiently according to the plan. is there.

(第3実施形態)
図3に示す原子炉冷却系に設定した除染範囲1(図2(A)、(B)参照)に基づいて化学除染方法の第3実施形態を説明する。
第3実施形態では、第1実施形態と同様に、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。さらに、加圧器5に対する開閉弁7A,7B,7Cを閉止し、さらに原子炉容器1の内部において配管2A,2Bの開口をバイパス治具28により連結する。
第3実施形態では、除染剤を循環させる前に、引き続いて蒸気発生器3A,3Bの各々を図8(B)の機器31のように隔離する。さらに図8(C)に示すように、これら蒸気発生器3A,3Bを隔離した後に分離した二つの配管2,2の開口を、バイパス配管48の両端に接続し、両者を連結させる。
(Third embodiment)
A third embodiment of the chemical decontamination method will be described based on the decontamination range 1 (see FIGS. 2A and 2B) set in the reactor cooling system shown in FIG.
In the third embodiment, as in the first embodiment, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Further, the on-off valves 7A, 7B and 7C for the pressurizer 5 are closed, and the openings of the pipes 2A and 2B are connected by the bypass jig 28 inside the reactor vessel 1.
In the third embodiment, before the decontamination agent is circulated, each of the steam generators 3A and 3B is subsequently isolated like the device 31 of FIG. 8B. Further, as shown in FIG. 8C, the openings of the two pipes 2 and 2 separated after isolating the steam generators 3A and 3B are connected to both ends of the bypass pipe 48, and both are connected.

そして、蒸気発生器3A,3Bを隔離してバイパス配管48で連結した一次冷却系51に対し、除染剤を投入し、ポンプ4A,4Bを起動してこれを循環させ、配管2A,2B及びポンプ4A,4Bを除染する。
配管2A,2B及びポンプ4A,4Bの除染後、隔離した蒸気発生器3A,3Bの除染を実施する(図8(B)参照)。これは、図2(b)において除染パターン(ハ)に該当する。ここで、除染範囲に含まれる各機器や各部位を隔離して各々を単独で除染する除染方法を、範囲内単独除染Z(一括除染後単独除染Yの第2除染に該当)と呼称する。なお、除染する順番は逆であってもよく、蒸気発生器3A,3Bを除染した後に配管2A,2B及びポンプ4A,4Bの除染を行ってもよい。
Then, a decontaminating agent is introduced into the primary cooling system 51 that isolates the steam generators 3A and 3B and is connected by the bypass pipe 48, starts the pumps 4A and 4B, circulates them, and the pipes 2A and 2B and Pumps 4A and 4B are decontaminated.
After the pipes 2A and 2B and the pumps 4A and 4B are decontaminated, the isolated steam generators 3A and 3B are decontaminated (see FIG. 8B). This corresponds to the decontamination pattern (c) in FIG. Here, the decontamination method of isolating each device and each part included in the decontamination range and decontaminating each of them independently is the single decontamination Z within the range (the second decontamination of single decontamination Y after collective decontamination) Corresponding). The order of decontamination may be reversed, and the pipes 2A and 2B and the pumps 4A and 4B may be decontaminated after the steam generators 3A and 3B are decontaminated.

蒸気発生器3A,3Bは冷却系の中でも特に線量が高い部分であり、また、形状が複雑であり、構成材料が他の部分とは異なる。そのため、化学除染時に配管2A,2B及びポンプ4A,4Bが蒸気発生器3A,3Bによって汚染されることを防ぎ、また、蒸気発生器3A,3Bの除染条件を最適化するために、廃止措置の計画において、一次冷却系51の配管2A,2B及びポンプ4A,4Bと蒸気発生器3A,3Bをそれぞれ単独で除染することが望まれる場合がある。   The steam generators 3A and 3B are portions having a particularly high dose in the cooling system, are complicated in shape, and have different constituent materials from other portions. Therefore, it is abolished to prevent the pipes 2A and 2B and the pumps 4A and 4B from being contaminated by the steam generators 3A and 3B at the time of chemical decontamination, and to optimize the decontamination conditions of the steam generators 3A and 3B. In the planning of measures, it may be desired to decontaminate the pipes 2A and 2B of the primary cooling system 51 and the pumps 4A and 4B and the steam generators 3A and 3B, respectively.

除染パターン(ハ)では、次冷却系51の配管2A,2B及びポンプ4A,4Bと蒸気発生器3A,3Bをそれぞれ単独で除染することができる。そのため、配管2A,2B及びポンプ4A,4Bが蒸気発生器3A,3Bによって汚染されることを防ぎ、また、蒸気発生器3A,3Bの除染条件を最適化することができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (C), the pipes 2A and 2B and the pumps 4A and 4B and the steam generators 3A and 3B of the next cooling system 51 can be decontaminated independently. Therefore, it is possible to prevent the pipes 2A and 2B and the pumps 4A and 4B from being contaminated by the steam generators 3A and 3B, and to optimize the decontamination conditions of the steam generators 3A and 3B. It is possible to proceed efficiently according to the plan.

これまでにおいて図3に示す除染範囲1に適用する実施形態について説明してきた。
第1実施形態から第3実施形態で説明した範囲内一括除染X、一括除染後単独除染Y、範囲内単独除染Zは、図4に示す除染範囲2(図2(A)参照)対しても適用することができる。除染範囲2における範囲内一括除染X、一括除染後単独除染Y、範囲内単独除染Zはそれぞれ、図2(B)における除染パターン(ニ)、(ホ)、(へ)に該当する。
So far, the embodiment applied to the decontamination range 1 shown in FIG. 3 has been described.
In-range collective decontamination X, single collective decontamination Y after collective decontamination, and in-range single decontamination Z described in the first to third embodiments are the decontamination range 2 shown in FIG. 4 (FIG. 2A). (See also). In-range collective decontamination X in decontamination range 2, single decontamination Y after collective decontamination, and in-range single decontamination Z are decontamination patterns (d), (e), (f) in FIG. It corresponds to.

除染範囲2は以下のように設定される。図4に示すように、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。さらに原子炉容器1の内部において配管2A,2Bの開口をバイパス治具28により連結する。なお、加圧器5に対する開閉弁7A,7B,7Cは開放する。これにより、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bに加えて加圧器5が除染範囲2として設定される。   The decontamination range 2 is set as follows. As shown in FIG. 4, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Further, the openings of the pipes 2 </ b> A and 2 </ b> B are connected by the bypass jig 28 in the reactor vessel 1. The on-off valves 7A, 7B and 7C for the pressurizer 5 are opened. As a result, the pressurizer 5 is set as the decontamination range 2 in addition to the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, and the steam generators 3A and 3B.

除染範囲2における範囲内一括除染Xは、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3B及び加圧器5が隔離されることなく一括して除染されることで実施される。
原子炉容器は原子力プラントの中でも特に容量が大きい構成であり、化学除染の際には多量の洗浄液が必要となる。そのため、廃止措置の計画において、一次冷却系を化学除染する際、除染液量を低減させるために、一次冷却系の内、原炉容器1以外の構成を一括して除染することが望まれる場合がある。
The in-range collective decontamination X in the decontamination range 2 is decontaminated in a lump without isolating the pipes 2A and 2B, the pumps 4A and 4B, the steam generators 3A and 3B, and the pressurizer 5 of the primary cooling system 51. It is carried out by doing.
The reactor vessel has a particularly large capacity among nuclear power plants, and a large amount of cleaning liquid is required for chemical decontamination. Therefore, in the decommissioning plan, when the primary cooling system is chemically decontaminated, in order to reduce the amount of the decontamination solution, the components other than the reactor vessel 1 in the primary cooling system may be decontaminated in a batch. May be desired.

除染パターン(ニ)は、一次冷却系の内、原炉容器1以外の構成を一括して除染することができる。そのため、一次系冷却系の化学除染に必要な除染液量を低減させることができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。
除染範囲2における一括除染後単独除染Yは、第1除染として除染範囲2を範囲内一括除染Xした後に、第2除染として蒸気発生器3A,3Bのみを除染することで実施される。第2除染は図8(A)(B)と同様に行われ、蒸気発生器3A,3Bはそれぞれ、他の機器から隔離された後、単独で除染される。
The decontamination pattern (d) can decontaminate components other than the primary reactor vessel 1 in the primary cooling system. Therefore, the amount of decontamination solution necessary for chemical decontamination of the primary cooling system can be reduced, and the decommissioning of the nuclear power plant can be advanced efficiently according to the plan.
The single decontamination Y after the collective decontamination in the decontamination range 2 decontaminates only the steam generators 3A and 3B as the second decontamination after the decontamination range 2 in the range as a first decontamination X. It is carried out. The second decontamination is performed in the same manner as in FIGS. 8A and 8B, and the steam generators 3A and 3B are each decontaminated after being isolated from other devices.

廃止措置の計画において、一次冷却系を化学除染する際、除染液量を低減させるために、一次冷却系の原炉容器1以外の構成を一括して除染することが望まれる場合がある。かつ、形状が複雑で構成材料が特殊な蒸気発生器3A,3Bの除染条件を最適化するため、廃止措置の計画において、蒸気発生器3A,3Bを単独で除染することが望まれる場合がある。   In the decommissioning plan, when the primary cooling system is chemically decontaminated, it may be desired to decontaminate all components other than the primary cooling system reactor vessel 1 in order to reduce the amount of decontamination solution. is there. In addition, in order to optimize the decontamination conditions of the steam generators 3A and 3B with complicated shapes and special constituent materials, it is desired to decontaminate the steam generators 3A and 3B alone in the decommissioning plan. There is.

除染パターン(ホ)では、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bを一括で除染した後、蒸気発生器3A,3Bを単独で除染することができる。そのため、一次冷却系の原炉容器1以外の構成を一括して除染することができ、かつ、蒸気発生器の除染条件を最適化することができるため、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (e), the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, and the steam generators 3A and 3B are decontaminated at once, and then the steam generators 3A and 3B are decontaminated independently. Can do. Therefore, it is possible to decontaminate the components other than the primary cooling system reactor vessel 1 in a batch and optimize the decontamination conditions of the steam generator. Along the way.

除染範囲2における範囲内単独除染Zは、まず、図8(B)で説明したように、ポンプ4A,4B、蒸気発生器3A,3B及び加圧器5をそれぞれに隔離する。その後、図8(C)に示すように、蒸気発生器3A,3Bの上流側配管及び下流側配管をバイパス配管で連結させる。同様に加圧器5の上流側配管及び下流側配管もバイパス配管で連結させる。そして、一次冷却系51の配管2A,2B及びポンプ4A,4Bとバイパス配管で構成された循環経路に除染液を投入し除染を行う。その後、蒸気発生器3A,3B及び加圧器5にそれぞれ循環ポンプを接続し、単独除染を順に行う。一次冷却系51の配管2A,2B及びポンプ4A,4Bの除染、蒸気発生器3A,3Bの除染、及び加圧器5の除染を行う順番は、任意である。蒸気発生器3A,3Bの除染を行った後に、一次冷却系51の配管2A,2B及びポンプ4A,4Bの除染を行い、最後に加圧器5の除染を行うものとしても良い。   In the in-range single decontamination Z in the decontamination range 2, the pumps 4A and 4B, the steam generators 3A and 3B, and the pressurizer 5 are first isolated from each other as described with reference to FIG. Then, as shown to FIG. 8 (C), the upstream piping and downstream piping of steam generator 3A, 3B are connected by bypass piping. Similarly, the upstream side pipe and the downstream side pipe of the pressurizer 5 are connected by a bypass pipe. Then, decontamination is performed by introducing the decontamination liquid into the circulation path constituted by the pipes 2A and 2B of the primary cooling system 51 and the pumps 4A and 4B and the bypass pipe. Thereafter, circulation pumps are connected to the steam generators 3A and 3B and the pressurizer 5, respectively, and single decontamination is sequentially performed. The order of performing the decontamination of the pipes 2A and 2B and the pumps 4A and 4B of the primary cooling system 51, the decontamination of the steam generators 3A and 3B, and the decontamination of the pressurizer 5 is arbitrary. After decontamination of the steam generators 3A and 3B, the pipes 2A and 2B of the primary cooling system 51 and the pumps 4A and 4B may be decontaminated, and finally the depressurizer 5 may be decontaminated.

原炉容器は一次冷却系の中で特に容量が大きな構成である。また、蒸気発生器3A,3B及び加圧器は冷却系の中でも特に線量が高い部分である。また、加圧器5の蒸気発生器と同様に形状が複雑である。そのため、除染液の循環量を低減させ、かつ、化学除染時に配管2A,2B及びポンプ4A,4Bが蒸気発生器3A,3Bや加圧器によって汚染されることを防ぎ、かつ、蒸気発生器3A,3B及び加圧器5の除染条件をそれぞれ最適化するために、廃止措置の計画において、除染範囲から原炉容器を除外し、一次冷却系51の配管2A,2Bとポンプ4A,4B、蒸気発生器3A,3B及び加圧器5をそれぞれ単独で除染することが望まれる場合がある。   The reactor vessel has a particularly large capacity in the primary cooling system. In addition, the steam generators 3A and 3B and the pressurizer are particularly high dose portions in the cooling system. Moreover, the shape is complicated like the steam generator of the pressurizer 5. Therefore, the circulation amount of the decontamination liquid is reduced, and the pipes 2A and 2B and the pumps 4A and 4B are prevented from being contaminated by the steam generators 3A and 3B and the pressurizer at the time of chemical decontamination, and the steam generator In order to optimize the decontamination conditions of 3A and 3B and the pressurizer 5, the reactor vessel is excluded from the decontamination range in the decommissioning plan, and the piping 2A and 2B of the primary cooling system 51 and the pumps 4A and 4B In some cases, it may be desirable to decontaminate the steam generators 3A, 3B and the pressurizer 5 independently.

除染パターン(へ)では、次冷却系51の配管2A,2Bとポンプ4A,4B、蒸気発生器3A,3B、及び加圧器5をそれぞれ単独で除染することができる。そのため、配管2A,2B及びポンプ4A,4Bが蒸気発生器3A,3Bや加圧器によって汚染されることを防ぎ、また、蒸気発生器3A,3B及び加圧器5の除染条件をそれぞれ最適化することができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (f), the pipes 2A and 2B of the next cooling system 51 and the pumps 4A and 4B, the steam generators 3A and 3B, and the pressurizer 5 can be decontaminated independently. Therefore, the piping 2A, 2B and the pumps 4A, 4B are prevented from being contaminated by the steam generators 3A, 3B and the pressurizer, and the decontamination conditions of the steam generators 3A, 3B and the pressurizer 5 are optimized. It is possible to proceed with decommissioning of nuclear power plants efficiently according to the plan.

第1実施形態と第2実施形態で説明した範囲内一括除染X、一括除染後単独除染Yは、図5に示す除染範囲3(図2(a)参照)対しても適用することができる。除染範囲3における範囲内一括除染X、一括除染後単独除染Yはそれぞれ、図2(b)における除染パターン(ト)、(チ)に該当する。   The in-range collective decontamination X and the single decontamination Y after collective decontamination described in the first and second embodiments are also applied to the decontamination range 3 shown in FIG. 5 (see FIG. 2A). be able to. The in-range collective decontamination X in the decontamination range 3 and the single decontamination Y after the collective decontamination correspond to the decontamination patterns (G) and (H) in FIG.

除染範囲3は以下のように設定される。図5に示すように、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定し、加圧器5に対する開閉弁7A,7B,7Cを閉止する。なお、原子炉容器1の内部において配管2A,2Bの開口は連結しない(バイパス治具28を用いない)。これにより、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3Bに加えて原子炉容器1が除染範囲3として設定される。   The decontamination range 3 is set as follows. As shown in FIG. 5, all of the boundary valves (first boundary valve 10 and second boundary valve 20) connected to the primary cooling system 51 are set to be closed, and the on-off valves 7A, 7B, and 7C for the pressurizer 5 are set. Close. Note that the openings of the pipes 2A and 2B are not connected inside the reactor vessel 1 (the bypass jig 28 is not used). Thereby, in addition to the piping 2A, 2B of the primary cooling system 51, the pumps 4A, 4B, and the steam generators 3A, 3B, the reactor vessel 1 is set as the decontamination range 3.

除染範囲3における範囲内一括除染Xは、一次冷却系51の配管2A,2B、ポンプ4A,4B、蒸気発生器3A,3B、及び原子炉容器1が隔離されることなく一括して除染されることで実施される。   The in-range collective decontamination X in the decontamination range 3 is performed by removing the piping 2A, 2B, the pumps 4A, 4B, the steam generators 3A, 3B, and the reactor vessel 1 of the primary cooling system 51 without being isolated. It is carried out by being dyed.

加圧器は一次冷却系を構成する他の機器や配管よりも上方向に突出しているため、加圧器はそのほかの構成に比べて汚染が軽度であることが多い。そのため、廃止措置の計画において、一次冷却系を化学除染する際に加圧工程を省き、加圧器5以外の構成を一括して除染することが望まれる場合がある。除染パターン(ト)は、一次冷却系の内、加圧器5以外の構成を一括して除染することができる。そのため、加圧に必要な工程や機器を省略することができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   Since the pressurizer protrudes upward from other devices and pipes constituting the primary cooling system, the pressurizer is often less contaminated than other configurations. Therefore, in a plan for decommissioning, it may be desired to decontaminate components other than the pressurizer 5 at once by omitting the pressurizing step when chemically decontaminating the primary cooling system. The decontamination pattern (g) can decontaminate components other than the pressurizer 5 in the primary cooling system. Therefore, it is possible to omit processes and equipment necessary for pressurization, and it is possible to efficiently proceed with decommissioning of the nuclear power plant according to the plan.

除染範囲3における一括除染後単独除染Yは、第1除染として除染範囲3を範囲内一括除染Xした後に、第2除染として蒸気発生器3A,3Bのみを除染することで実施される。第2除染は図8(A)(B)と同様に行われ、蒸気発生器3A,3Bはそれぞれ、他の機器から隔離された後、単独で除染される。   The single decontamination Y after collective decontamination in the decontamination range 3 decontaminates only the steam generators 3A and 3B as the second decontamination after the decontamination range 3 within the range is decontaminated X as the first decontamination. It is carried out. The second decontamination is performed in the same manner as in FIGS. 8A and 8B, and the steam generators 3A and 3B are each decontaminated after being isolated from other devices.

廃止措置の計画において、一次冷却系を化学除染する際、加圧に必要な工程や機器を省略するために、一次冷却系の加圧器5以外の構成を一括して除染することが望まれる場合がある。かつ、形状が複雑で構成材料が特殊な蒸気発生器3A,3Bの除染条件を最適化するため、廃止措置の計画において、蒸気発生器3A,3Bを単独で除染することが望まれる場合がある。   In the decommissioning plan, when the primary cooling system is chemically decontaminated, it is desirable to decontaminate all components other than the primary cooling system pressurizer 5 in order to omit the steps and equipment necessary for pressurization. May be. In addition, in order to optimize the decontamination conditions of the steam generators 3A and 3B with complicated shapes and special constituent materials, it is desired to decontaminate the steam generators 3A and 3B alone in the decommissioning plan. There is.

除染パターン(チ)では、一次冷却系51の配管2A,2B、ポンプ4A,4B、蒸気発生器3A,3B及び原子炉容器1を一括で除染した後、蒸気発生器3A,3Bを単独で除染することができる。そのため、一次冷却系の加圧器5以外の構成を一括して除染することができ、かつ、蒸気発生器の除染条件を最適化することができるため、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (h), the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, the steam generators 3A and 3B, and the reactor vessel 1 are decontaminated in a lump, and then the steam generators 3A and 3B are used alone. Can be decontaminated. As a result, the components other than the primary cooling system pressurizer 5 can be decontaminated in a batch, and the decontamination conditions of the steam generator can be optimized. It is possible to proceed efficiently.

また、第1実施形態と第2実施形態で説明した範囲内一括除染X、一括除染後単独除染Yは、図6に示す除染範囲4(図2(a)参照)に対しても適用することができる。除染範囲4における範囲内一括除染X、一括除染後単独除染Yはそれぞれ、図2(b)における除染パターン(リ)、(ヌ)に該当する。   Further, the in-range collective decontamination X and the single decontamination Y after collective decontamination described in the first and second embodiments are for the decontamination range 4 shown in FIG. 6 (see FIG. 2A). Can also be applied. The in-range collective decontamination X in the decontamination range 4 and the single decontamination Y after collective decontamination correspond to the decontamination patterns (L) and (N) in FIG.

除染範囲4は以下のように設定される。図6に示すように、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定し、加圧器5に対する開閉弁7A,7B,7Cを開放する。また、原子炉容器1の内部において配管2A,2Bの開口は連結しない(バイパス治具28を用いない)。これにより、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3B、加圧器5及び原子炉容器1が除染範囲4として設定される。   The decontamination range 4 is set as follows. As shown in FIG. 6, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed, and the on-off valves 7A, 7B, 7C for the pressurizer 5 are set. Is released. Further, the openings of the pipes 2A and 2B are not connected inside the reactor vessel 1 (the bypass jig 28 is not used). Thereby, the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, the steam generators 3A and 3B, the pressurizer 5 and the reactor vessel 1 are set as the decontamination range 4.

除染範囲4における範囲内一括除染Xは、一次冷却系51の配管2A,2B、ポンプ4A,4B及び蒸気発生器3A,3B、加圧器5及び原子炉容器1が隔離されることなく一括して除染されることで実施される。   The in-range collective decontamination X in the decontamination range 4 is performed without the piping 2A, 2B, the pumps 4A, 4B, the steam generators 3A, 3B, the pressurizer 5 and the reactor vessel 1 of the primary cooling system 51 being isolated. And then decontaminated.

一次冷却系全体である除染範囲4は、余熱除去系52及び化学体積制御系53と比較して線量が高い系統である。一次冷却系51、余熱除去系52及び化学体積制御系53を一括で化学洗浄する場合、一次冷却系51により余熱除去系52及び化学体積制御系53が汚染させる可能性がる。そのため、廃止措置の計画において、一次冷却系51により余熱除去系52及び化学体積制御系53が汚染されるリスクを最小限にとどめるために、一次冷却系51に限定して除染することが望まれる場合がある。除染パターン(リ)は、一次冷却系51を構成する配管2A,2B、ポンプ4A,4B、蒸気発生器3A,3B、加圧器及び原子炉圧力容器1を余熱除去系52及び化学体積制御系53から隔離して化学洗浄することができる。そのため、余熱除去系52及び化学体積制御系53の再汚染を抑制することができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   The decontamination range 4 that is the entire primary cooling system is a system with a higher dose than the residual heat removal system 52 and the chemical volume control system 53. When the primary cooling system 51, the residual heat removal system 52, and the chemical volume control system 53 are chemically cleaned at once, the residual heat removal system 52 and the chemical volume control system 53 may be contaminated by the primary cooling system 51. Therefore, in the plan for decommissioning, in order to minimize the risk of contamination of the residual heat removal system 52 and the chemical volume control system 53 by the primary cooling system 51, decontamination should be limited to the primary cooling system 51. May be. The decontamination pattern (re) is composed of the piping 2A, 2B, the pumps 4A, 4B, the steam generators 3A, 3B, the pressurizer and the reactor pressure vessel 1 constituting the primary cooling system 51, the residual heat removal system 52 and the chemical volume control system Chemical cleaning can be performed separately from 53. Therefore, recontamination of the residual heat removal system 52 and the chemical volume control system 53 can be suppressed, and the decommissioning of the nuclear power plant can be efficiently advanced according to the plan.

除染範囲3における一括除染後単独除染Yは、第1除染として除染範囲4を範囲内一括除染Xした後に、第2除染として蒸気発生器3A,3B及び加圧器5をそれぞれ単独に除染することで実施される。第2除染は図8(A)(B)と同様に行われ、蒸気発生器3A,3B及び加圧器5はそれぞれ、他の機器から隔離された後、単独で除染される。蒸気発生器3A,3B及び加圧器5をそれぞれ単独に除染される順序は任意であり。第1除染の後であれば、加圧器の単独除染を蒸気発生器3A,3Bの単独除染よりも前に行っても良い。   The single decontamination Y after collective decontamination in the decontamination range 3 is performed after the decontamination range 4 is collectively decontaminated X as the first decontamination and then the steam generators 3A and 3B and the pressurizer 5 are used as the second decontamination It is carried out by decontamination each independently. The second decontamination is performed in the same manner as in FIGS. 8A and 8B, and the steam generators 3A and 3B and the pressurizer 5 are each decontaminated after being isolated from other devices. The order in which the steam generators 3A and 3B and the pressurizer 5 are decontaminated independently is arbitrary. If it is after the 1st decontamination, you may perform independent decontamination of a pressurizer before independent decontamination of the steam generators 3A and 3B.

形状が比較的複雑な蒸気発生器と加圧器は比較的複雑な形状をしており、十分な除染効果を得るためには、それぞれの除染条件を最適化する必要がある場合がる。そのため、廃止措置の計画において、除染範囲4を一括して除染した後、蒸気発生器3A,3B及び加圧機5をそれぞれ単独で除染することが望まれる場合がある。   Steam generators and pressurizers having relatively complex shapes have relatively complex shapes, and in order to obtain a sufficient decontamination effect, it may be necessary to optimize the respective decontamination conditions. For this reason, in the decommissioning plan, it may be desired to decontaminate the steam generators 3A and 3B and the pressurizer 5 independently after decontamination of the decontamination range 4 collectively.

除染パターン(ヌ)では、一次冷却系51の配管2A,2B、ポンプ4A,4B、蒸気発生器3A,3B、加圧器5及び原子炉容器1を一括で除染した後、蒸気発生器3A,3B及び加圧器5を単独で除染することができる。そのため、一次冷却系全体を迅速に除染し、かつ、蒸気発生器3A,3B及び加圧器5の除染効果を高めることができ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the decontamination pattern (nu), the pipes 2A and 2B of the primary cooling system 51, the pumps 4A and 4B, the steam generators 3A and 3B, the pressurizer 5 and the reactor vessel 1 are collectively decontaminated, and then the steam generator 3A. 3B and pressurizer 5 can be decontaminated independently. Therefore, the entire primary cooling system can be quickly decontaminated, and the decontamination effect of the steam generators 3A and 3B and the pressurizer 5 can be enhanced, and the decommissioning of the nuclear power plant can be promoted efficiently according to the plan. Is possible.

(第4実施形態)
図7に示す原子炉冷却系に設定した除染範囲5(図2(a)参照)に基づいて化学除染方法の第4実施形態を説明する。
(Fourth embodiment)
A fourth embodiment of the chemical decontamination method will be described based on the decontamination range 5 (see FIG. 2A) set in the reactor cooling system shown in FIG.

第4実施形態では、第1実施形態と同様に、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。そして、化学体積制御系53の熱交換器19を配管から隔離して、単独除染用の循環路40(図8(B)参照)を取り付け、洗浄剤を循環させて単独で除染する。   In the fourth embodiment, as in the first embodiment, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Then, the heat exchanger 19 of the chemical volume control system 53 is isolated from the piping, and a single decontamination circuit 40 (see FIG. 8B) is attached, and the cleaning agent is circulated to decontaminate alone.

化学体積制御系53の熱交換器19においては、一次冷却系51から流入する高温高圧の冷却材が、最初に到達し急速に冷却される。このため、化学体積制御系53を構成する機器のなかにおいて、熱交換器19の汚染レベルが一番高くなることが多い。そのため、廃止措置の計画において、化学体積制御系53の熱交換器19を単独で除染することが望まれる場合がある。   In the heat exchanger 19 of the chemical volume control system 53, the high-temperature and high-pressure coolant flowing from the primary cooling system 51 reaches first and is rapidly cooled. For this reason, the contamination level of the heat exchanger 19 is often the highest among the devices constituting the chemical volume control system 53. Therefore, in the plan for decommissioning, it may be desired to decontaminate the heat exchanger 19 of the chemical volume control system 53 alone.

第4の実施形態では、化学体積制御系の熱交換器を単独で除染することができる。そのため、化学体積制御系の熱交換器の化学除染時に、より線量が低い部位を汚染することを防ぎ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the fourth embodiment, the chemical volume control system heat exchanger can be decontaminated independently. For this reason, it is possible to prevent contamination of a lower-dose part during chemical decontamination of a chemical volume control system heat exchanger, and to proceed with nuclear plant decommissioning efficiently according to the plan.

(第5実施形態)
図7に示す原子炉冷却系に設定した除染範囲6(図2(a)参照)に基づいて化学除染方法の第5実施形態を説明する。
第5実施形態では、第1実施形態と同様に、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。そして、余熱除去系52の熱交換器12Bを配管から隔離して、単独除染用の循環路40(図8(B)参照)を取り付け、洗浄剤を循環させて単独で除染する。なお図示を省略しているが熱交換器12Aに対しても同様に取り扱える。
(Fifth embodiment)
A fifth embodiment of the chemical decontamination method will be described based on the decontamination range 6 (see FIG. 2A) set in the reactor cooling system shown in FIG.
In the fifth embodiment, as in the first embodiment, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Then, the heat exchanger 12B of the residual heat removal system 52 is isolated from the pipe, and the circulation path 40 for single decontamination (see FIG. 8B) is attached, and the cleaning agent is circulated for decontamination alone. Although not shown, the heat exchanger 12A can be handled in the same manner.

余熱除去系52の熱交換器12A,12Bでは、一次冷却系51から流入する高温高圧の冷却材が急速に冷却される。このため、余熱除去系52を構成する機器のなかにおいて、熱交換器12A,12Bの汚染レベルが高いと考えられる。そのため、廃止措置の計画において、余熱除去系52の熱交換器12A,12Bを単独で除染することが望まれる場合がある。   In the heat exchangers 12A and 12B of the residual heat removal system 52, the high-temperature and high-pressure coolant flowing from the primary cooling system 51 is rapidly cooled. For this reason, in the apparatus which comprises the residual heat removal system 52, it is thought that the contamination level of heat exchanger 12A, 12B is high. Therefore, in the plan for decommissioning, it may be desired to decontaminate the heat exchangers 12A and 12B of the residual heat removal system 52 alone.

第5の実施形態では、余熱除去系52の熱交換器12A,12Bを単独で除染することができる。そのため、余熱除去系52の熱交換器12A,12Bの化学除染時に、より線量が低い部位を汚染することを防ぎ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である。   In the fifth embodiment, the heat exchangers 12A and 12B of the residual heat removal system 52 can be decontaminated independently. Therefore, at the time of chemical decontamination of the heat exchangers 12A and 12B of the residual heat removal system 52, it is possible to prevent contamination of a lower-dose part and efficiently proceed with the decommissioning of the nuclear power plant according to the plan. .

(第6実施形態)
図6に示す原子炉冷却系に設定した除染範囲7(図2(a)参照)に基づいて化学除染方法の第6実施形態を説明する。
第6実施形態では、第1実施形態と同様に、一次冷却系51と接続する境界弁の全て(第1の境界弁10、第2の境界弁20)を閉止に設定する。そして、余熱除去系52のポンプ11A及び熱交換器12Aを配管から隔離して、単独除染用の循環路40(図8(B)参照)を取り付け、洗浄剤を循環させて一括で除染する。なお図示を省略しているがポンプ11B及び熱交換器12Bに対しても同様に取り扱える。
(Sixth embodiment)
A sixth embodiment of the chemical decontamination method will be described based on a decontamination range 7 (see FIG. 2A) set in the reactor cooling system shown in FIG.
In the sixth embodiment, as in the first embodiment, all of the boundary valves connected to the primary cooling system 51 (the first boundary valve 10 and the second boundary valve 20) are set to be closed. Then, the pump 11A and the heat exchanger 12A of the residual heat removal system 52 are isolated from the pipe, and a single decontamination circuit 40 (see FIG. 8B) is attached, and the cleaning agent is circulated to collect the decontamination. To do. In addition, although illustration is abbreviate | omitted, it can handle similarly with respect to the pump 11B and the heat exchanger 12B.

余熱除去系52のポンプ11A,11B及び熱交換器12A,12Bでは、一次冷却系51から流入する高温高圧の冷却材が最初に到達し急速に冷却される。このため、余熱除去系52を構成する機器のなかにおいて、熱交換器12A,12Bと同様にポンプ11A,11Bの汚染レベルが高いと考えられる。そのため、廃止措置の計画において、余熱除去系52のポンプ11A,11B及び熱交換器12A,12Bをそれぞれ単独で除染することが望まれる場合がある。   In the pumps 11A and 11B and the heat exchangers 12A and 12B of the residual heat removal system 52, the high-temperature and high-pressure coolant flowing from the primary cooling system 51 first reaches and is rapidly cooled. For this reason, in the apparatus which comprises the residual heat removal system 52, it is thought that the contamination level of pump 11A, 11B is high similarly to heat exchanger 12A, 12B. Therefore, in the plan for decommissioning, it may be desired to decontaminate the pumps 11A and 11B and the heat exchangers 12A and 12B of the residual heat removal system 52 individually.

第5の実施形態では、余熱除去系52のポンプ11A,11B及び熱交換器12A,12Bをそれぞれ単独で除染することができる。そのため、余熱除去系52のポンプ11A,11B及び熱交換器12A,12Bの化学除染時に、より線量が低い部位を汚染することを防ぎ、原子力プラントの廃止措置を計画に沿って効率的に進めることが可能である   In the fifth embodiment, the pumps 11A and 11B and the heat exchangers 12A and 12B of the residual heat removal system 52 can be decontaminated independently. Therefore, at the time of chemical decontamination of the pumps 11A and 11B and the heat exchangers 12A and 12B of the residual heat removal system 52, it is possible to prevent contamination of the lower-dose part and efficiently proceed with the decommissioning of the nuclear power plant according to the plan. Is possible

上述した実施形態を組み合わせて実施するにあたり、一次冷却系51、余熱除去系52及び化学体積制御系53に対する除染作業の順番は、特に限定されない。
しかし、一次冷却系51の汚染レベルが、他の余熱除去系52及び化学体積制御系53よりも高いことを鑑みれば、化学体積制御系53及び余熱除去系52の少なくとも一方を先に除染して、使用済の除染液を一次冷却系51の洗浄に再利用することで、除染剤の使用量及び二次廃棄物の発生量の削減効果が期待できる。
In carrying out by combining the above-described embodiments, the order of decontamination work for the primary cooling system 51, the residual heat removal system 52, and the chemical volume control system 53 is not particularly limited.
However, considering that the contamination level of the primary cooling system 51 is higher than that of the other residual heat removal system 52 and the chemical volume control system 53, at least one of the chemical volume control system 53 and the residual heat removal system 52 is decontaminated first. In addition, by reusing the used decontamination solution for cleaning the primary cooling system 51, it is possible to expect an effect of reducing the amount of decontamination agent used and the amount of secondary waste generated.

ところで、上述した実施形態を組み合わせて実施しても、原子炉冷却系60において、除染範囲に含まれない配管、機器、弁等が存在する。
そこで、一次冷却系51に関する第1から第3の実施形態のうち少なくとも一つを実施した後に、第1の境界弁10及び第2の境界弁20のうち少なくとも一つを開放して、系統間をまたぐ除染を実施してもよい。
By the way, even if it implements combining the embodiment mentioned above, in the reactor cooling system 60, piping, an apparatus, a valve, etc. which are not included in the decontamination range exist.
Therefore, after implementing at least one of the first to third embodiments relating to the primary cooling system 51, at least one of the first boundary valve 10 and the second boundary valve 20 is opened, Decontamination may be carried out across the two.

以上述べた少なくともひとつの実施形態の加圧水型原子力発電プラントの化学除染方法によれば、余熱除去系と一次冷却系とを接続する第1の境界弁、並びに、化学体積制御系と一次冷却系とを接続する第2の境界弁の全てを閉止して、一次冷却系に除染剤を循環させることにより、廃止措置の計画にそって、放射性物質が付着した原子炉冷却系の汚染レベルを効率的に低減させることが可能となる。   According to the chemical decontamination method for a pressurized water nuclear power plant of at least one embodiment described above, the first boundary valve that connects the residual heat removal system and the primary cooling system, and the chemical volume control system and the primary cooling system. By closing all of the second boundary valves that connect to the primary cooling system and circulating the decontamination agent to the primary cooling system, the contamination level of the reactor cooling system with radioactive material attached can be reduced in accordance with the decommissioning plan. It becomes possible to reduce efficiently.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。また、図1、3〜7に示す構成は加圧水型原子力発電プラントの一例であり、加圧水型原子力発電プラントによっては取合い弁の箇所や場所はプラントにより多少異なることがある。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof. Moreover, the structure shown to FIG. 1, 3-7 is an example of a pressurized water nuclear power plant, and the location and place of a joint valve may differ somewhat with plants depending on a pressurized water nuclear power plant.

1…原子炉容器、2A,2B…一次冷却系の配管、3A,3B…蒸気発生器、4A,4B…一次冷却系のポンプ、5…加圧器、6A,6B,6C…加圧器の配管、7A,7B,7C…加圧器の開閉弁、9A,9B,9C…余熱除去系の分岐配管(配管)、10(10A,10B,10C)…第1の境界弁、11A,11B…余熱除去系のポンプ、12A,12B…余熱除去系の熱交換器、14A,15A…熱交換器の前後弁、16A,16B,16C,16D…化学体積制御系の分岐配管(配管)、17…体積制御タンク、19…再生熱交換器(熱交換器)、20(20A,20B,20C)…第2の境界弁、21…非再生熱交換器(熱交換器)、22…余剰抽出水熱交換器(熱交換器)、23…封水熱交換器(熱交換器)、24…充填ポンプ、25,26…開閉弁、28…バイパス治具、30…第3の境界弁、31…機器、32…入口、33…出口、35…アダプタ管、36…封止版、40…循環路、41…タンク、42…ポンプ、43…送出路、44…第1封止版,45…第2封止版、46…帰還路、48…バイパス配管、51…一次冷却系、52…余熱除去系、53…化学体積制御系、60…原子炉冷却系。 DESCRIPTION OF SYMBOLS 1 ... Reactor vessel, 2A, 2B ... Primary cooling system piping, 3A, 3B ... Steam generator, 4A, 4B ... Primary cooling system pump, 5 ... Pressurizer, 6A, 6B, 6C ... Pressurizer piping, 7A, 7B, 7C ... open / close valve of pressurizer, 9A, 9B, 9C ... branch pipe (piping) of residual heat removal system, 10 (10A, 10B, 10C) ... first boundary valve, 11A, 11B ... residual heat removal system 12A, 12B ... residual heat removal system heat exchanger, 14A, 15A ... front and rear valves of heat exchanger, 16A, 16B, 16C, 16D ... chemical volume control system branch piping (piping), 17 ... volume control tank , 19 ... Regenerative heat exchanger (heat exchanger), 20 (20A, 20B, 20C) ... Second boundary valve, 21 ... Non-regenerative heat exchanger (heat exchanger), 22 ... Excess extraction water heat exchanger ( Heat exchanger), 23 ... Sealed water heat exchanger (heat exchanger), 24 ... Filling pump , 25, 26 ... Open / close valve, 28 ... Bypass jig, 30 ... Third boundary valve, 31 ... Equipment, 32 ... Inlet, 33 ... Outlet, 35 ... Adapter pipe, 36 ... Sealed plate, 40 ... Circulation path, DESCRIPTION OF SYMBOLS 41 ... Tank, 42 ... Pump, 43 ... Delivery path, 44 ... 1st sealing plate, 45 ... 2nd sealing plate, 46 ... Return path, 48 ... Bypass piping, 51 ... Primary cooling system, 52 ... Residual heat removal system 53 ... Chemical volume control system, 60 ... Reactor cooling system.

Claims (13)

原子炉溶器、ポンプ、加圧器及、蒸気発生器を備え、前記原子炉容器で加熱された冷却材を前記蒸気発生器に循環させる一次冷却系と、
前記原子炉容器における加熱を停止した後に前記冷却材を予め定められた温度まで低下させる余熱除去系と、
前記冷却材のほう酸濃度調整及び保有量調整の機能を担う化学体積制御系と、が複数の境界弁を介して相互に接続し合う加圧水型原子力発電プラントの化学除染方法であって、
前記一次冷却系と接続する前記境界弁の全てを少なくとも閉止に設定して、前記一次冷却系において除染剤を循環させることを特徴とする加圧水型原子力発電プラントの化学除染方法。
A primary cooling system comprising a reactor melter, a pump, a pressurizer, and a steam generator, and circulating a coolant heated in the reactor vessel to the steam generator;
A residual heat removal system that reduces the coolant to a predetermined temperature after stopping heating in the reactor vessel;
A chemical volume control system responsible for boric acid concentration adjustment and holding amount adjustment of the coolant is a chemical decontamination method of a pressurized water nuclear power plant that is mutually connected through a plurality of boundary valves,
A chemical decontamination method for a pressurized water nuclear power plant, wherein all of the boundary valves connected to the primary cooling system are set to at least closed, and a decontamination agent is circulated in the primary cooling system.
前記加圧器に対する開閉弁を閉鎖した状態で、前記一次冷却系において前記除染剤を循環させることを特徴とする請求項1に記載の加圧水型原子力発電プラントの化学除染方法。   2. The chemical decontamination method for a pressurized water nuclear power plant according to claim 1, wherein the decontamination agent is circulated in the primary cooling system in a state in which an on-off valve for the pressurizer is closed. 前記原子炉容器の内部において開口する前記一次冷却系の配管を連結させるバイパス治具を取り付けてから、前記一次冷却系において前記除染剤を循環させることを特徴とする請求項2に記載の加圧水型原子力発電プラントの化学除染方法。   The pressurized water according to claim 2, wherein the decontamination agent is circulated in the primary cooling system after attaching a bypass jig that connects the piping of the primary cooling system that opens inside the reactor vessel. Chemical decontamination method for nuclear power plants. 前記原子炉容器の内部において開口する前記一次冷却系の配管を連結させるバイパス治具を取り付け、かつ、前記加圧器に対する開閉弁を開放した状態で、前記一次冷却系において前記除染剤を循環させることを特徴とする請求項1に記載の加圧水型原子力発電プラントの化学除染方法。   The decontaminating agent is circulated in the primary cooling system with a bypass jig connected to the piping of the primary cooling system that opens in the reactor vessel, and an open / close valve for the pressurizer is opened. The chemical decontamination method for a pressurized water nuclear power plant according to claim 1. 前記蒸気発生器に前記除染剤を循環させた後に、前記蒸気発生器を前記一次冷却系の配管から隔離して単独で除染することを特徴とする請求項2から請求項4のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   5. The method according to claim 2, wherein after the decontamination agent is circulated through the steam generator, the steam generator is isolated from the piping of the primary cooling system and decontaminated alone. 2. A chemical decontamination method for a pressurized water nuclear power plant according to item 1. 前記原子炉容器の内部において開口する前記一次冷却系の配管を連結させるバイパス治具を取り付け、前記加圧器に対する開閉弁を閉鎖し、前記蒸気発生器を前記一次冷却系の配管から隔離して前記配管を連結するバイパス配管を取り付けた後に、
前記一次冷却系において前記除染剤を循環させ、また、前記蒸気発生器を単独で除染することを特徴とする請求項1に記載の加圧水型原子力発電プラントの化学除染方法。
A bypass jig that connects the piping of the primary cooling system that opens inside the reactor vessel is attached, the on-off valve for the pressurizer is closed, and the steam generator is isolated from the piping of the primary cooling system. After installing the bypass piping connecting the piping,
2. The chemical decontamination method for a pressurized water nuclear power plant according to claim 1, wherein the decontamination agent is circulated in the primary cooling system, and the steam generator is decontaminated alone.
前記加圧器に対する開閉弁を閉鎖し、前記蒸気発生器を前記一次冷却系の配管から隔離して前記配管を連結するバイパス配管を取り付けた後に、
前記一次冷却系において前記除染剤を循環させ、また、前記蒸気発生器及び前記加圧器をそれぞれ単独で除染する請求項1に記載の加圧水型原子力発電プラントの化学除染方法。
After closing the on-off valve for the pressurizer and attaching the bypass pipe that connects the pipe to the steam generator in isolation from the primary cooling system pipe,
The chemical decontamination method for a pressurized water nuclear power plant according to claim 1, wherein the decontaminating agent is circulated in the primary cooling system, and the steam generator and the pressurizer are decontaminated independently.
前記蒸気発生器及び前記加圧器に前記除染剤を循環させた後に、前記加圧器に対する開閉弁を閉鎖し、前記蒸気発生器を前記一次冷却系の配管から隔離して、前記蒸気発生器及び前記加圧器をそれぞれ単独で除染する請求項1に記載の加圧水型原子力発電プラントの化学除染方法。   After circulating the decontamination agent to the steam generator and the pressurizer, the on-off valve for the pressurizer is closed, the steam generator is isolated from the piping of the primary cooling system, and the steam generator and The chemical decontamination method for a pressurized water nuclear power plant according to claim 1, wherein each of the pressurizers is decontaminated independently. 前記境界弁の全てを少なくとも閉止に設定して、前記化学体積制御系の熱交換器を配管から隔離して単独で除染する請求項1から請求項8のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   The pressurized water mold according to any one of claims 1 to 8, wherein all of the boundary valves are set to at least closed, and the heat exchanger of the chemical volume control system is isolated from the piping and is decontaminated alone. Chemical decontamination method for nuclear power plants. 前記境界弁の全てを少なくとも閉止に設定して、前記余熱除去系の熱交換器を配管から隔離して単独で除染する請求項1から請求項9のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   The pressurized water nuclear power according to any one of claims 1 to 9, wherein all of the boundary valves are set to at least closed, and the heat exchanger of the residual heat removal system is isolated from the piping and is decontaminated alone. Chemical decontamination method for power plants. 前記境界弁の全てを少なくとも閉止に設定して、前記余熱除去系のポンプ及び熱交換器を配管から隔離して一括して除染する請求項1から請求項10のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   11. The device according to claim 1, wherein all of the boundary valves are set to at least closed, and the pump and heat exchanger of the residual heat removal system are separated from the pipe and collectively decontaminated. Chemical decontamination method for pressurized water nuclear power plants. 前記隔離する対象機器における冷却材の入口側と出口側とを閉ループで接続し、前記洗浄剤を循環させる循環路を設置する請求項4から請求項11のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   The pressurized water nuclear power according to any one of claims 4 to 11, wherein a circulating path for circulating the cleaning agent is provided by connecting a coolant inlet side and an outlet side of the target device to be isolated in a closed loop. Chemical decontamination method for power plants. 前記化学体積制御系及び前記余熱除去系の少なくとも一方の除染に使用した除染液を前記一次冷却系の洗浄に再利用する請求項1から請求項12のいずれか1項に記載の加圧水型原子力発電プラントの化学除染方法。   The pressurized water mold according to any one of claims 1 to 12, wherein a decontamination liquid used for decontamination of at least one of the chemical volume control system and the residual heat removal system is reused for cleaning the primary cooling system. Chemical decontamination method for nuclear power plants.
JP2016121369A 2016-06-20 2016-06-20 Chemical decontamination method for pressurized water nuclear power plant Active JP6773463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121369A JP6773463B2 (en) 2016-06-20 2016-06-20 Chemical decontamination method for pressurized water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121369A JP6773463B2 (en) 2016-06-20 2016-06-20 Chemical decontamination method for pressurized water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2017227446A true JP2017227446A (en) 2017-12-28
JP6773463B2 JP6773463B2 (en) 2020-10-21

Family

ID=60891599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121369A Active JP6773463B2 (en) 2016-06-20 2016-06-20 Chemical decontamination method for pressurized water nuclear power plant

Country Status (1)

Country Link
JP (1) JP6773463B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467080B1 (en) * 2018-02-09 2019-02-06 株式会社東芝 Decontamination method and decontamination device
JP6470467B1 (en) * 2018-11-30 2019-02-13 株式会社東芝 Decontamination method
JP2019138899A (en) * 2019-01-07 2019-08-22 株式会社東芝 Decontamination execution method and decontamination execution device
KR20230141058A (en) * 2022-03-31 2023-10-10 한국수력원자력 주식회사 Decontamination bypass device of reactor vessel and decontamination method
WO2023195673A1 (en) * 2022-04-05 2023-10-12 한국수력원자력 주식회사 Method for controlling decontamination of heavy water nuclear power plant system
CN117558472A (en) * 2024-01-11 2024-02-13 深圳大学 Nuclear reactor cooling system and cooling control method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587095A (en) * 1978-12-26 1980-07-01 Tokyo Shibaura Electric Co Atomic power plant pipe test cleaning method
JPS608796A (en) * 1983-06-07 1985-01-17 ウエスチングハウス エレクトリック コ−ポレ−ション Method of decontaminating radioactivity of nuclear steam generator
JPH0282200A (en) * 1988-08-12 1990-03-22 Siemens Ag Method and device for decontaminating primary circuit of nuclear facility
US5089216A (en) * 1990-11-26 1992-02-18 Westinghouse Electric Corp. System for chemical decontamination of nuclear reactor primary systems
JPH09133784A (en) * 1995-11-07 1997-05-20 Hitachi Ltd Repair method for reactor primary piping
JP2000046989A (en) * 1998-07-24 2000-02-18 Toshiba Corp System isolation method for chemical decontamination
JP2001289992A (en) * 2000-04-07 2001-10-19 Toshiba Corp Washing method of nuclear power plant
JP2013117526A (en) * 2011-11-01 2013-06-13 Mitsubishi Heavy Ind Ltd Method for treating decontamination liquid
JP2013130565A (en) * 2011-11-24 2013-07-04 Hitachi-Ge Nuclear Energy Ltd Component of nuclear power plant, method for suppressing adhesion of radioactive nuclide to component of nuclear power plant, and film forming device for component of nuclear power plant
JP2016102727A (en) * 2014-11-28 2016-06-02 日立Geニュークリア・エナジー株式会社 Method for preventing adhesion of radioactive nuclide to carbon steel member of nuclear power plant, and film formation device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587095A (en) * 1978-12-26 1980-07-01 Tokyo Shibaura Electric Co Atomic power plant pipe test cleaning method
JPS608796A (en) * 1983-06-07 1985-01-17 ウエスチングハウス エレクトリック コ−ポレ−ション Method of decontaminating radioactivity of nuclear steam generator
US4963293A (en) * 1983-06-07 1990-10-16 Westinghouse Electric Corp. Flow control method for decontaminating radioactively contaminated nuclear steam generator
JPH0282200A (en) * 1988-08-12 1990-03-22 Siemens Ag Method and device for decontaminating primary circuit of nuclear facility
US5089216A (en) * 1990-11-26 1992-02-18 Westinghouse Electric Corp. System for chemical decontamination of nuclear reactor primary systems
JPH04276596A (en) * 1990-11-26 1992-10-01 Westinghouse Electric Corp <We> Method and apparatus for chemical decontamination of primary system of atomic reactor
JPH09133784A (en) * 1995-11-07 1997-05-20 Hitachi Ltd Repair method for reactor primary piping
JP2000046989A (en) * 1998-07-24 2000-02-18 Toshiba Corp System isolation method for chemical decontamination
JP2001289992A (en) * 2000-04-07 2001-10-19 Toshiba Corp Washing method of nuclear power plant
JP2013117526A (en) * 2011-11-01 2013-06-13 Mitsubishi Heavy Ind Ltd Method for treating decontamination liquid
JP2013130565A (en) * 2011-11-24 2013-07-04 Hitachi-Ge Nuclear Energy Ltd Component of nuclear power plant, method for suppressing adhesion of radioactive nuclide to component of nuclear power plant, and film forming device for component of nuclear power plant
JP2016102727A (en) * 2014-11-28 2016-06-02 日立Geニュークリア・エナジー株式会社 Method for preventing adhesion of radioactive nuclide to carbon steel member of nuclear power plant, and film formation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467080B1 (en) * 2018-02-09 2019-02-06 株式会社東芝 Decontamination method and decontamination device
JP2019138776A (en) * 2018-02-09 2019-08-22 株式会社東芝 Decontamination execution method and decontamination execution device
JP6470467B1 (en) * 2018-11-30 2019-02-13 株式会社東芝 Decontamination method
JP2019138894A (en) * 2018-11-30 2019-08-22 株式会社東芝 Decontamination execution method
JP2019138899A (en) * 2019-01-07 2019-08-22 株式会社東芝 Decontamination execution method and decontamination execution device
KR20230141058A (en) * 2022-03-31 2023-10-10 한국수력원자력 주식회사 Decontamination bypass device of reactor vessel and decontamination method
KR102649040B1 (en) * 2022-03-31 2024-03-18 한국수력원자력 주식회사 Decontamination bypass device of reactor vessel and decontamination method
WO2023195673A1 (en) * 2022-04-05 2023-10-12 한국수력원자력 주식회사 Method for controlling decontamination of heavy water nuclear power plant system
KR20230143412A (en) * 2022-04-05 2023-10-12 한국수력원자력 주식회사 Operation method for system decontamination of the Pressurized Heavy Water Reactor
KR102649041B1 (en) 2022-04-05 2024-03-18 한국수력원자력 주식회사 Operation method for system decontamination of the Pressurized Heavy Water Reactor
CN117558472A (en) * 2024-01-11 2024-02-13 深圳大学 Nuclear reactor cooling system and cooling control method thereof
CN117558472B (en) * 2024-01-11 2024-03-15 深圳大学 Nuclear reactor cooling system and cooling control method thereof

Also Published As

Publication number Publication date
JP6773463B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6773463B2 (en) Chemical decontamination method for pressurized water nuclear power plant
JP6270880B2 (en) Chemical decontamination method
JP2015052512A (en) Method for chemically decontaminating carbon steel member of nuclear power plant
JP6547224B2 (en) Chemical decontamination method
JP2017223524A (en) Chemical decontamination system and chemical decontamination method of reactor pressure vessel
JP6470467B1 (en) Decontamination method
JPH04276596A (en) Method and apparatus for chemical decontamination of primary system of atomic reactor
JP2007064634A (en) Method and device for chemical decontamination
JP6132474B2 (en) Waste liquid treatment method
JP2009175151A (en) Chemical enhancement of ultrasonic fuel cleaning
JP2011128090A (en) Nuclear power plant using kalina cycle
JP6132382B2 (en) Processing method of decontamination solution
Park et al. Chemical decontamination design for NPP decommissioning and considerations on its methodology
KR102482934B1 (en) System decontamination facilities
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JP6467080B1 (en) Decontamination method and decontamination device
JP2009109253A (en) Method and device for chemical decontamination
JP6359313B2 (en) Waste liquid treatment system and waste liquid treatment method
JP2013076620A (en) Decontamination method of reactor configuration member
JP2020160031A (en) Method for suppressing corrosion of carbon steel pipe
JP6901947B2 (en) Chemical decontamination method
LeSurf et al. Cost effectiveness of dilute chemical decontamination
Van den Dungen D and D of the Callisto PWR Loop as part of the Refurbishment of the BR2 Research Reactor-16168
JP6691800B2 (en) Nickel adhesion amount tester and nickel adhesion amount test method
VAN DEN DUNGEN THE DECOMMISSIONING OF A PWR EXPERIMENTAL FACILITY DURING THE REFURBISHMENT OF THE BR2 RESEARCH REACTOR

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201001

R150 Certificate of patent or registration of utility model

Ref document number: 6773463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150