JPH0348155B2 - - Google Patents

Info

Publication number
JPH0348155B2
JPH0348155B2 JP57134447A JP13444782A JPH0348155B2 JP H0348155 B2 JPH0348155 B2 JP H0348155B2 JP 57134447 A JP57134447 A JP 57134447A JP 13444782 A JP13444782 A JP 13444782A JP H0348155 B2 JPH0348155 B2 JP H0348155B2
Authority
JP
Japan
Prior art keywords
copper
weight
rolling
roll
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57134447A
Other languages
Japanese (ja)
Other versions
JPS5874573A (en
Inventor
Naoharu Fujimori
Hiroshi Tsukada
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57134447A priority Critical patent/JPS5874573A/en
Priority to EP19820304036 priority patent/EP0100380B1/en
Publication of JPS5874573A publication Critical patent/JPS5874573A/en
Publication of JPH0348155B2 publication Critical patent/JPH0348155B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は銅および銅を主体とする合金線材の熱
間圧延ロール、ガイドロールに用いられる塑性加
工工具に関するものである。 従来、銅や銅合金用の塑性加工工具としては超
硬合金やダイズ鋼、高速度鋼等が用いられてい
る。しかしながら、線引きロールなどに代表され
る大量生産品の製造条件は、高精度化および経済
的要求から年々厳しくなり、それに伴つて塑性加
工工具としても耐熱性、耐摩耗性、耐衝撃性など
の向上が要求されている。そしてこれらの要求を
満足すべく超硬合金、ダイズ鋼や高速度鋼(ハイ
ス)などの分野においても日夜新しい材料の開発
が続けられているが、まだ上記の諸性能を十分具
備した材料は見い出されていない。 上述したように金属の塑性加工工具材料として
は、工具鋼等の鋼あるいは超硬合金が一般的であ
り、新しい塑性加工工具素材に対する動きを見て
も僅かな変更にしかすぎなかつた。 これに対してセラミツクは塑性加工用工具の材
料として最近注目されているが、その耐熱衝撃
性、耐衝撃性、脆性などの諸性質が前記した材料
に比較して劣るため、塑性加工工具の中でも応力
が小さいガイドロール等の分野において次第に利
用され初めているにすぎず、熱間圧延用ロールに
用いるという発想は殆どなされていないのが現状
である。 本発明者らは、永年に亘りセラミツク材料を塑
性加工工具素材として使用する可能性を検討した
結果、この発明に到達したものである。 即ち、この発明は窒化珪素系セラミツクスであ
つて、特にその空孔率が5%以下であり、かつ常
圧焼結法によつて得られる新しい塑性加工工具、
とくに熱間圧延用ロールあるいはガイドローラで
ある。そしてこれらは、従来の各種塑性加工工具
としての概念を打ち破つた革命的な変化をもたら
すものである。従来の塑性加工工具では、塑性加
工を行う金属によつてその寿命が異なり、例えば
銅や銅合金の場合被加工材との間によつて反応が
起こり、溶着現象が生じて表面層は溶着離脱の繰
り返し現象のため表面層の荒れ、または消耗が増
加してやがて寿命に至るのである。また、特に熱
間加工において、超硬合金やダイズ鋼では溶着離
脱の繰り返しによるスポーリングと呼ばれる剥離
現象や疲労現象による亀裂が発生しこれが致命傷
になる。 この溶着の繰り返しによるスポーリングは、銅
および銅合金線材用の熱間圧延ロールに特有な問
題であつて、その損傷のうちでも特に重要かつ特
殊な問題であるので詳細に説明する。特に、銅お
よび銅合金線材であつても、線引きダイスの場合
はむしろ摩耗や材料の噛込みまたは齧りつき等が
重要な問題であり溶着の繰り返しによるスポーリ
ングはそれほど深刻な問題とならない。 このような銅および銅合金等線材用の熱間圧延
ロールと線引きダイスの相異は、従来技術におい
て銅線材用の線引きダイスには超硬合金が好適に
使用されているにも拘わらず、熱間圧延ロールと
しては損耗が激しく使用に耐えず、寿命を犠牲に
してダイズ鋼が使用されていることからも理解で
きる。 銅および銅合金線材用の熱間圧延ロールのスポ
ーリング(表面の剥離)は、熱間圧延に特有なロ
ールと被圧延材との熱的、機関的および化学的な
相互作用によつて生ずる。 まず熱的作用は、ロール表面が被圧延材と周期
的に接触することを特徴とする。この点でダイス
の受ける定常的な熱的作用と相異する。ロールは
こうしてヒートサイクルを受けることによつて疲
労して、銅および銅合金の溶着との相互作用によ
つてスポーリングを生起しやすくなる。 機械的作用とは、ロール表面が高圧下力を受け
かつ被圧延材と高速度の接触状態下に置かれるこ
とを意味する。ここでは、ダイスの場合のように
摩耗がとりわけ重大な問題とはならない。 化学的作用とは、ロール表面の材質と被圧延材
との反応性の問題で、特に銅および銅合金の熱間
圧延の場合の挙動は極めて複雑である。 例えばSi3N4焼結体は熔融状態の銅または銅合
金とは反応性が低いことは公知である。しかるに
Si3N4焼結体製のロールで銅および銅合金線材を
熱間圧延すると、ロール表面に銅または銅合金が
激しく溶着乃至凝着してスポーリングが生じる。
これはSi3N4焼結体の熱間圧延での銅との反応性
が、熔融状態の銅との反応性とは全く別違のもの
であり、これからは類推できないことを意味す
る。 すなわち、銅および銅合金の熱間圧延ロールの
溶着によるスポーリングは、上記した熱的、機械
的および化学的な相互作用によつて生ずる複雑な
反応の結果である。本発明者らの研究によると、
Si3N4と銅線材との反応は銅線材が圧延過程で大
気、冷却水等によつて酸化膜を形成しており、
CuOとなつていることが一大要因であると結論づ
けられた。Si3N4とCuOとの反応性を大気中1050
℃までテストしたところ、急激な反応が確認され
ている。これらの実験の結果、本発明者等は銅お
よび銅合金線材の熱間圧延中の溶着によるスポー
リング現象を次のように考察した。 Si3N4のロール表面は、上記した熱的および機
械的作用のもとにCuOにより酸化されSiO2層を
生成する。このSiO2層がCuOに拡散することに
よつてSi3N4とCuOとの反応が進行する。特に
SiO2−CuOの共晶組織は比較的低温度で高い反
応性を示す。このため銅の溶着または凝着が進行
してスポーリングが起こる。 以上の如く、銅または銅合金の熱間圧延ロール
の溶着によるスポーリングは極めて特殊な現象で
あり、これを防止して長寿命のロールを提供する
ことは極めて困難であつた。 本発明は、特に上記の如き凝着によるスポーリ
ングを防止して、従来の超硬合金、ダンス鋼また
はハイスによる圧延ロール、ガイドロールの耐用
寿命を飛躍的に伸ばすことに成功したものであ
る。 その結果、従来の治工具の概念を変え、本発明
の工具は設備の一部と見なされ、例えば設備自体
の定期的な補修の管理で済むようになり、非生産
的な事態が全く無くなつたのである。 かかる銅および銅合金線材用の圧延ロール、ガ
イドロールに長寿命を示す本発明の工具材料は、
原料組成として、Si3N4の60重量%以上にAl2O3
および/またはAlNを1〜40重量%、SiO2を1
〜40重量%含有し、空孔率が5%以下である焼結
体であることが特徴であり、更にこれにMgOを
1〜5重量%含有してもよい。 上記Si3N4−Al2O3−AlN−SiO2系において、
焼結体中でよく知られている、 Si6(1−X/8)Al2/3×N(8−X)Ox の組成をもつサイアロン組成が主体になつている
と好ましい結果が得られる。これを主体として第
2相との混合物になつてもよい。 この発明に主材料として用いるSi3N4について
は、Si金属粉の成型体を窒化する反応焼結法と
Si3N4と添加剤とを混合して粉末冶金法にて作製
する2種の方法が知られている。ところが前者の
方法では空孔がどうしても10%以上残りこの発明
には不適当である。 また後者の方法においては添加剤を使用するた
めにこれによつて性質が大きく左右されることが
知られているが、必要な高強度と耐衝撃性を得る
のにはSi3N4が60重量%以上が必要であつた。
Al2O3、AlNおよびSiO2が1%以下では強度が不
十分であり、40%以上では強度が低く脆くなり、
耐摩耗性が低下するので好ましくない。 MgOは1〜5%の範囲で緻密な焼結体が得ら
れ空孔率が5%以下にしやすい。 種々の実験の結果、高温での圧延用ロール材と
してはAl2O3を25重量%、AlNを5重量%、SiO2
を8重量%含有せしめた焼結体からなる工具が最
も長寿命であることが判明した。空孔率が5%以
上になると、前述のスポーリングによる損耗が特
に高温の場合ひどくなり好ましくない。ただし、
使用条件がそれほど過酷でない領域では10%程度
まではそれほどの影響は無い。 Si3N4の結晶系はα型、β型のいずれでも効果
に差異がなく使用することができる。 次に実施例によつて説明する。 実施例 1 Si3N4に対し、Al2O3を20重量%、AlNを10重
量%、SiO2を5重量%を秤量してボールミルに
て充分に粉砕混合した。得られた粉末を成型した
のち、N2ガス雰囲気中で1650〜1850℃で4時間
焼結し、外径200mmφの圧延ロールを作製した。
(焼結体の空孔率は3%)そしてこの圧延ロール
を銅線材用仕上圧延ロールの第10段として使用し
た。その結果、寿命までの圧延量は2560tであつ
た。なお被圧延材の温度は500℃であり、従来使
用していた超型合金ロールでは350tであつた。 実施例 2〜4 Si3N4に対して、Al2O3を15重量%、AlNを5
重量%、SiO2を10重量%、MgOを3重量%を秤
量し、実施例1と同様の方法で焼結し、外径220
mmφの圧延ロールを作製した。焼結体の組成はそ
の90%がサイアロン組成であり、これとMgOを
含む第2相からなる混合物である空孔率は2.0%
であつた。 このロールを用いて圧延温度900℃、700℃、
500℃にて圧延を行い、ロールの寿命に至るまで
の圧延量および寿命原因を調べたところ第1表の
結果を得、900℃と700℃ではほぼ同等の圧延量で
寿命に達した。また500℃ではむしろ圧延量が減
少することがわかつた。比較ロールは実施例1と
同じ超硬合金である。
The present invention relates to a plastic working tool used for hot rolling rolls and guide rolls of copper and alloy wires mainly composed of copper. Conventionally, cemented carbide, soybean steel, high-speed steel, and the like have been used as plastic working tools for copper and copper alloys. However, the manufacturing conditions for mass-produced products such as wire-drawing rolls are becoming stricter year by year due to higher precision and economic demands, and along with this, plastic working tools are also required to have improved heat resistance, wear resistance, impact resistance, etc. is required. In order to meet these demands, new materials are being developed day and night in the fields of cemented carbide, soybean steel, and high-speed steel (high speed steel), but no material that fully satisfies the above-mentioned performance has yet been found. Not yet. As mentioned above, steel such as tool steel or cemented carbide is generally used as a metal plastic working tool material, and even when looking at the movement towards new plastic working tool materials, only slight changes have been made. On the other hand, ceramic has recently attracted attention as a material for plastic working tools, but its properties such as thermal shock resistance, impact resistance, and brittleness are inferior to the materials mentioned above, so it is one of the most popular materials for plastic working tools. It is only beginning to be used gradually in fields such as guide rolls with low stress, and at present there is almost no idea of using it for hot rolling rolls. The present inventors have arrived at this invention after many years of studying the possibility of using ceramic materials as plastic working tool materials. That is, the present invention relates to a new plastic working tool which is a silicon nitride ceramic, in particular, whose porosity is 5% or less, and which is obtained by pressureless sintering.
In particular, hot rolling rolls or guide rollers. These tools bring about a revolutionary change that overturns the conventional concept of various plastic working tools. The lifespan of conventional plastic working tools varies depending on the metal being plastic worked. For example, in the case of copper or copper alloys, a reaction occurs with the workpiece, causing a welding phenomenon, and the surface layer is welded and separated. Due to this repeated phenomenon, the surface layer becomes rough or worn out, and eventually reaches the end of its life. In addition, particularly during hot working, cracks occur in cemented carbide and soybean steel due to peeling phenomena called spalling and fatigue phenomena due to repeated welding and separation, which can be fatal. Spalling due to repeated welding is a problem specific to hot rolling rolls for copper and copper alloy wires, and is a particularly important and special problem among the damages, so it will be explained in detail. In particular, even for copper and copper alloy wires, in the case of wire drawing dies, wear, material biting, or jamming are more important problems, whereas spalling due to repeated welding is not such a serious problem. The difference between hot rolling rolls and wire drawing dies for wire rods such as copper and copper alloys is that although cemented carbide is suitably used as wire drawing dies for copper wire rods in the prior art, This can be understood from the fact that soybean steel is used as inter-rolling rolls because it suffers from severe wear and tear and cannot withstand use, sacrificing its lifespan. Spalling (surface peeling) of hot rolling rolls for copper and copper alloy wire rods is caused by thermal, mechanical, and chemical interactions between the roll and the rolled material that are specific to hot rolling. First, thermal action is characterized by periodic contact between the roll surface and the rolled material. In this respect, it differs from the steady thermal action that a die receives. The rolls are thus subject to heat cycling and become fatigued, making them susceptible to spalling due to interaction with copper and copper alloy welds. Mechanical action means that the roll surface is subjected to high rolling forces and is placed in high speed contact with the material to be rolled. Wear is not a particularly serious problem here, as is the case with dies. Chemical action refers to the reactivity between the roll surface material and the material to be rolled, and the behavior is particularly complex in the case of hot rolling of copper and copper alloys. For example, it is known that Si 3 N 4 sintered bodies have low reactivity with molten copper or copper alloys. However,
When copper or copper alloy wire is hot rolled using a roll made of Si 3 N 4 sintered body, spalling occurs due to severe welding or adhesion of copper or copper alloy to the roll surface.
This means that the reactivity with copper during hot rolling of the Si 3 N 4 sintered body is completely different from the reactivity with copper in the molten state, and no analogy can be made from this. That is, spalling due to welding of hot rolls of copper and copper alloys is the result of complex reactions caused by the thermal, mechanical, and chemical interactions described above. According to the research of the present inventors,
The reaction between Si 3 N 4 and copper wire is that the copper wire forms an oxide film in the atmosphere, cooling water, etc. during the rolling process.
It was concluded that one of the major factors was that it was CuO. The reactivity of Si 3 N 4 and CuO in air is 1050
When tested up to ℃, a rapid reaction was confirmed. As a result of these experiments, the present inventors considered the spalling phenomenon caused by welding during hot rolling of copper and copper alloy wires as follows. The Si 3 N 4 roll surface is oxidized by CuO under the thermal and mechanical effects described above to produce a SiO 2 layer. As this SiO 2 layer diffuses into CuO, the reaction between Si 3 N 4 and CuO progresses. especially
The eutectic structure of SiO 2 −CuO exhibits high reactivity at relatively low temperatures. For this reason, copper welding or adhesion progresses and spalling occurs. As described above, spalling due to welding of copper or copper alloy hot rolling rolls is a very special phenomenon, and it has been extremely difficult to prevent this and provide rolls with a long life. The present invention has succeeded in dramatically extending the service life of conventional rolling rolls and guide rolls made of cemented carbide, dance steel, or high speed steel by preventing spalling due to adhesion as described above. As a result, the conventional concept of jigs and tools has been changed, and the tools of the present invention can be considered as part of the equipment, and for example, it is no longer necessary to manage periodic maintenance of the equipment itself, eliminating any unproductive situations. It was. The tool material of the present invention, which exhibits long life for rolling rolls and guide rolls for such copper and copper alloy wires,
As raw material composition, more than 60% by weight of Si 3 N 4 and Al 2 O 3
and/or 1 to 40% by weight of AlN, 1 % of SiO2
The sintered body is characterized by containing 40% by weight of MgO and having a porosity of 5% or less, and may further contain 1 to 5% by weight of MgO. In the above Si 3 N 4 −Al 2 O 3 −AlN−SiO 2 system,
Favorable results can be obtained if the SiAlON composition, which is well known in sintered bodies, has a composition of Si 6 (1-X/8)Al2/3×N(8-X)Ox. A mixture containing this as a main component and a second phase may be formed. Regarding Si 3 N 4 used as the main material in this invention, a reaction sintering method in which a molded body of Si metal powder is nitrided and
Two methods are known in which Si 3 N 4 and additives are mixed and produced using a powder metallurgy method. However, the former method inevitably leaves more than 10% of pores, making it unsuitable for this invention. It is also known that the properties of the latter method are greatly influenced by the use of additives; however, Si 3 N 4 requires 60 % by weight or more was required.
If Al 2 O 3 , AlN and SiO 2 are less than 1%, the strength will be insufficient, and if it is more than 40%, the strength will be low and it will become brittle.
This is not preferable because it reduces wear resistance. When MgO is in the range of 1 to 5%, a dense sintered body can be obtained, and the porosity can be easily controlled to 5% or less. As a result of various experiments, 25% by weight of Al 2 O 3 , 5% by weight of AlN, and SiO 2 were used as roll materials for rolling at high temperatures.
It has been found that a tool made of a sintered body containing 8% by weight of carbon dioxide has the longest life. If the porosity exceeds 5%, the above-mentioned damage due to spalling becomes severe especially at high temperatures, which is not preferable. however,
In areas where the usage conditions are not too harsh, there is no significant effect up to about 10%. The crystal system of Si 3 N 4 can be used in either the α type or β type without any difference in effectiveness. Next, an example will be explained. Example 1 Based on Si 3 N 4 , 20% by weight of Al 2 O 3 , 10% by weight of AlN and 5% by weight of SiO 2 were weighed and thoroughly ground and mixed in a ball mill. The obtained powder was molded and then sintered at 1650 to 1850°C for 4 hours in an N2 gas atmosphere to produce a rolling roll with an outer diameter of 200 mmφ.
(The porosity of the sintered body was 3%) and this rolling roll was used as the 10th stage of a finishing rolling roll for copper wire. As a result, the rolling amount until the end of life was 2560 tons. The temperature of the material to be rolled was 500°C, and the temperature of the conventionally used superalloy roll was 350t. Examples 2 to 4 15% by weight of Al 2 O 3 and 5% of AlN based on Si 3 N 4
Weighed 10% by weight of SiO 2 and 3% by weight of MgO, and sintered it in the same manner as in Example 1 to obtain an outer diameter of 220% by weight.
A rolling roll of mmφ was manufactured. The composition of the sintered body is 90% Sialon, and the porosity is 2.0%, which is a mixture of this and a second phase containing MgO.
It was hot. Using this roll, the rolling temperature is 900℃, 700℃,
Rolling was carried out at 500°C, and when the rolling amount until the end of the roll life and the causes of the roll life were investigated, the results shown in Table 1 were obtained, and the rolling amount reached the end of life at approximately the same amount at 900°C and 700°C. Moreover, it was found that the rolling amount actually decreased at 500℃. The comparative roll is made of the same cemented carbide as in Example 1.

【表】 実施例 5〜7 Si3N465重量%とAl2O325重量%、AlN5重量
%、SiO25重量%の粉砕混合物を用いて実施例1
と同じ方法で(ただし焼結温度は1780℃)、外径
250mmφの圧延ロールを作製し、これを実施例2
〜4の方法と同様にして寿命テストを行つた。そ
の結果は第2表の通りであり、実施例2〜4と異
なり900℃の圧延時に最も圧延量が多くなり500℃
の時が最も少なかつた。
[Table] Examples 5 to 7 Example 1 using a pulverized mixture of 65% by weight of Si 3 N 4 , 25% by weight of Al 2 O 3 , 5% by weight of AlN, and 5% by weight of SiO 2
In the same way as (but the sintering temperature is 1780℃), the outer diameter
A rolling roll of 250 mmφ was prepared and used in Example 2.
A lifespan test was conducted in the same manner as in method 4. The results are shown in Table 2, and unlike Examples 2 to 4, the rolling amount was greatest when rolling at 900℃, and the rolling amount was the highest when rolling at 900℃.
was the least frequent.

【表】 実施例 8 市販Si3N480重量%、Al2O310重量%、SiO210
重量%混合し、実施例1と同様の方法(ただし焼
結温度は1700℃)で銅線材線引き用ガイドローラ
を作製した。寸法は外径200mmφ×40mmであり、
焼結体の空孔率は4%であつた。 作製した本実施例のガイドローラを市販の超硬
合金製、及びアルミナセラミツク製のガイドロー
ラ使用寿命の比較テストを行つたところ第3表の
結果を得、本実施例のガイドローラが非常に優れ
ていることが実証された。なお、線材の速度は15
m/secであり、線材温度は500℃である。
[Table] Example 8 Commercially available Si 3 N 4 80% by weight, Al 2 O 3 10% by weight, SiO 2 10
A guide roller for drawing a copper wire was produced by mixing the materials in a weight% manner in the same manner as in Example 1 (however, the sintering temperature was 1700° C.). The dimensions are outer diameter 200mmφ x 40mm,
The porosity of the sintered body was 4%. When we conducted a comparison test on the service life of commercially available guide rollers made of cemented carbide and alumina ceramic, we obtained the results shown in Table 3, indicating that the guide roller of this example was extremely superior. It has been proven that In addition, the speed of the wire is 15
m/sec, and the wire temperature is 500°C.

【表】【table】

Claims (1)

【特許請求の範囲】 1 Si3N4の60重量%以上に、Al2O3および/ま
たはAlNを1〜40重量%、SiO2を1〜40重量%
含有し、全体焼結体の組成の主体が、 Si6(1−X/8)Al2/3×N(8−X)Ox (但し、Xは0より大きく、かつ6より小さいか
6に等しい) であり、空孔率が5%以下である焼結体より構成
されていることを特徴とする銅および銅合金線材
用熱間圧延工具。 2 特許請求の範囲第1項記載の焼結体に、さら
に1〜5重量%のMgOを含有することを特徴と
する銅および銅合金線材用熱間圧延工具。
[Claims] 1 60% by weight or more of Si 3 N 4 , 1 to 40% by weight of Al 2 O 3 and/or AlN, and 1 to 40% by weight of SiO 2
The main composition of the entire sintered body is Si 6 (1-X/8)Al2/3×N(8-X)Ox (where X is greater than 0 and less than 6 or equal to 6). ) A hot rolling tool for copper and copper alloy wire, characterized in that it is made of a sintered body having a porosity of 5% or less. 2. A hot rolling tool for copper and copper alloy wire, characterized in that the sintered body according to claim 1 further contains 1 to 5% by weight of MgO.
JP57134447A 1981-02-05 1982-07-30 Plasticity working tool for copper and copper alloy Granted JPS5874573A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57134447A JPS5874573A (en) 1982-07-30 1982-07-30 Plasticity working tool for copper and copper alloy
EP19820304036 EP0100380B1 (en) 1981-02-05 1982-07-30 Method for plastic deformation of non-ferrous metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57134447A JPS5874573A (en) 1982-07-30 1982-07-30 Plasticity working tool for copper and copper alloy

Publications (2)

Publication Number Publication Date
JPS5874573A JPS5874573A (en) 1983-05-06
JPH0348155B2 true JPH0348155B2 (en) 1991-07-23

Family

ID=15128561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57134447A Granted JPS5874573A (en) 1981-02-05 1982-07-30 Plasticity working tool for copper and copper alloy

Country Status (1)

Country Link
JP (1) JPS5874573A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133706A (en) * 1984-07-24 1986-02-17 Hitachi Ltd Rolling mill
JPS6178657A (en) * 1984-09-27 1986-04-22 Toshiba Corp Guide member for printer
JPS61273231A (en) * 1985-05-27 1986-12-03 Hitachi Metals Ltd Ceramic die for forging valve

Also Published As

Publication number Publication date
JPS5874573A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
KR100591624B1 (en) Diamond Sintered Body and Manufacturing Method Thereof
JP6093324B2 (en) Thermal spray coated work roll
US3410732A (en) Cobalt-base alloys
EP0100380B1 (en) Method for plastic deformation of non-ferrous metals
US4401617A (en) Ceramic cutting tool formed from Si3 N4 -Y2 O3 -SiO.sub.
US4777822A (en) Method of hot rolling copper
JPH0348155B2 (en)
US3705020A (en) Metals having improved machinability and method
US4756180A (en) Method of hot rolling for iron and iron alloy rods
JPS5874572A (en) Plasticity working tool for copper and copper alloy
JPS61194147A (en) Sintered hard alloy
JPS61266357A (en) Ceramic tool for worm or hot forging
JPH0246541B2 (en)
JPH0373614B2 (en)
EP0143781B1 (en) Method of extending wear life of non-oxide ceramic bodies at high temperatures
JPH044267B2 (en)
AU566604B2 (en) Method of extending wear life of non-oxide ceramic bodies at high temperatures
US1071364A (en) Alloy of iron.
JPS5874575A (en) Plasticity working tool for aluminum and aluminum alloy
JPS6054978A (en) Plasticity working tool for non-ferrous metal and nonferrousmetal alloy
JPH0745681B2 (en) Reduced iron powder with excellent machinability and mechanical properties after sintering
CA1232717A (en) Method of extending wear life of non-oxide ceramic bodies at high temperatures
JPH0693379A (en) Erosion-corrosion resistant material against aluminum
JPH0256419B2 (en)
CN111484320A (en) Non-cooling steel rolling heating furnace corundum-titanium nitride sliding rail material and preparation method thereof