JPS61194147A - Sintered hard alloy - Google Patents

Sintered hard alloy

Info

Publication number
JPS61194147A
JPS61194147A JP3258885A JP3258885A JPS61194147A JP S61194147 A JPS61194147 A JP S61194147A JP 3258885 A JP3258885 A JP 3258885A JP 3258885 A JP3258885 A JP 3258885A JP S61194147 A JPS61194147 A JP S61194147A
Authority
JP
Japan
Prior art keywords
hard alloy
sintered hard
solid solution
resistance
binding phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3258885A
Other languages
Japanese (ja)
Inventor
Hitoshi Horie
堀江 仁
Norio Takahashi
紀雄 高橋
Yusuke Iyori
裕介 井寄
Hisaaki Ida
井田 久晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Carbide Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Carbide Tools Ltd filed Critical Hitachi Metals Ltd
Priority to JP3258885A priority Critical patent/JPS61194147A/en
Publication of JPS61194147A publication Critical patent/JPS61194147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve resistance to heat, impact, heat checks, and oxidation of a sintered hard alloy by composing a binding phase out of W, Ni, Co, Fe, and Cr, by specifying weight ratios among the above elements, and by forming WC into spheroidized grain shape. CONSTITUTION:The binding phase of the WC-base sintered hard alloy is composed of W, Ni, Co, Fe, and Cr. The additive quantities of each element are controlled so that they satisfy, by weight, Fe/(Ni+Co+Cr+Fe+ W)=0.3/100-2/100, Cr/(Ni+Co+Cr+Fe+W)=1/20-1/5, W/(Ni+Co+Cr+Fe+ W)=1/10-2.5/10, Co/Ni=1/9-1, and Ni+Co+Cr+Fe+W=10-30wt%. Further, WC grains are spheroidized so as to inhibit the cracks between the WC and the binding phase from propagating. This sintered hard alloy has excellent properties as material for use in rolls for hot rolling and in hot working tools.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱間圧延ロール、熱間鍛造ダイスなど比較的高
温にさらされる熱間加工用の超硬合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cemented carbide for hot working, such as a hot rolling roll or a hot forging die, which is exposed to relatively high temperatures.

「 豫番消話1許 ) タングステン炭化物−Co超硬合金は切削工具、耐摩工
具などに広く使用されている。特に耐摩層として結合相
はCo単独からCo−Ni。
Tungsten carbide-Co cemented carbide is widely used in cutting tools, wear-resistant tools, etc. In particular, as a wear-resistant layer, the binder phase ranges from Co alone to Co-Ni.

Ni−Cr 、Go−Ni−Cr等になり、耐食性、耐
熱衝撃性、耐熱疲労性等の向上が図られてきた。
Ni-Cr, Go-Ni-Cr, etc. have been used to improve corrosion resistance, thermal shock resistance, thermal fatigue resistance, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし過酷な高温特性が要求される条件では、従来のW
C−(CoまたはNi)合金では欠損する場合もあり、
また寿命が短く十分な特性が発揮されない、また、Cr
を添加した系では、CrをGoまたはNi中に固溶させ
て耐酸化性、耐熱衝撃性、耐熱疲労性などを改良するが
、Crは、また一方ではWCの固溶を抑制するので結合
相のWによる固溶強化を阻害する元素でもある。
However, under conditions that require severe high-temperature characteristics, conventional W
Defects may occur in C-(Co or Ni) alloys,
In addition, the life is short and sufficient characteristics are not exhibited, and Cr
In systems where Cr is added, Cr is dissolved in Go or Ni to improve oxidation resistance, thermal shock resistance, thermal fatigue resistance, etc. However, Cr also suppresses the solid solution of WC, so it does not form a binder phase. It is also an element that inhibits solid solution strengthening by W.

本発明の目的は、耐熱性、耐衝撃性、耐熱亀裂性、耐酸
化性に富んだ耐熱超硬合金を提供することである。
An object of the present invention is to provide a heat-resistant cemented carbide having high heat resistance, impact resistance, heat cracking resistance, and oxidation resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、WC−MiIi硬合會において、その結合相
がW+ Ni t Co * Fe 、Crよりなり、
IL量比で Fe/(Ni+Co+Cr+Fe+W)〜
0.3/100−2/100、Cr/(Ni+C。
The present invention provides a WC-MiIi hard bond in which the binder phase is composed of W+NitCo*Fe, Cr,
IL amount ratio: Fe/(Ni+Co+Cr+Fe+W)~
0.3/100-2/100, Cr/(Ni+C.

+Cr+Fe+W)  = 1 / 20〜1/ 5、
 W/(N i十Co十Cr十Fe+W  )〜1 /
 10〜2.5/10、Co/Ni =1/9〜1、N
i十Co+Cr+Fe+W=10〜30重量%であり、
かつWCは球状化した粒子形状を有することを特徴とす
るものである。
+Cr+Fe+W) = 1/20 to 1/5,
W/(N i + Co + Cr + W) ~ 1/
10~2.5/10, Co/Ni =1/9~1, N
i+Co+Cr+Fe+W=10 to 30% by weight,
Moreover, WC is characterized by having a spherical particle shape.

〔作 用〕[For production]

本発明の超硬合金はCo、NiへのW固溶強化作用及び
Crによる優れた耐熱性、耐熱疲労性の付与と共に、C
r添加によI)W固溶が抑制される。
The cemented carbide of the present invention has a solid solution strengthening effect of W on Co and Ni, and provides excellent heat resistance and thermal fatigue resistance due to Cr.
I) The solid solution of W is suppressed by the addition of r.

そのため、結合金属が同様ならその結合相中へのWの固
溶量が大になる程、高温特性は向上する。二のWの固溶
量を増すためには、あらかじめW金属を固溶させた粉末
を使用したり、添加物を使用したりする方法がある。
Therefore, if the bonding metal is the same, the higher the amount of solid solution of W in the bonding phase, the better the high temperature properties will be. In order to increase the amount of solid solution of W, there is a method of using powder in which W metal is dissolved in solid solution in advance or using an additive.

そのため種々の金属および炭化物、窒化物等を検討した
結果、室温での強度を低下させずに高温特性を改良する
には、Feの微量添加が効果のあることが分かった。
Therefore, as a result of examining various metals, carbides, nitrides, etc., it was found that adding a small amount of Fe is effective in improving high-temperature properties without reducing the strength at room temperature.

微量のFeは結合相中に固溶し、結合相の塑性変形能を
大巾に向上させるとともに、合金のC量を下げ、W等の
固溶量を増す、そのため室温での物性を劣化させること
なく高温での特性、特にit酸化性、耐熱亀裂性を改善
する。
A small amount of Fe dissolves in solid solution in the binder phase, greatly improving the plastic deformability of the binder phase, lowering the amount of C in the alloy and increasing the amount of solid solution such as W, which deteriorates the physical properties at room temperature. It improves properties at high temperatures, especially IT oxidation resistance and heat cracking resistance.

しかし、結合相中の固溶量が増すと結合相の強度が劣化
し、特に高温での塑性変形が大きくなるため、その添加
量をFe/(Ni十CofCr十Fe+W)比で2/1
00以下とした。またその比が0.3/100未満では
、実質上(Ni十Co+Cr+W)の結合相と変わらな
いため添加効果がない、よって、0.3/100〜2/
100とした。
However, as the amount of solid solution in the binder phase increases, the strength of the binder phase deteriorates, and plastic deformation increases especially at high temperatures.
00 or less. Moreover, if the ratio is less than 0.3/100, there is no addition effect because it is essentially the same as the bonding phase of (Ni + Co + Cr + W).
It was set as 100.

Orは熱的性質を改良するが、Cr/(Ni+Co+C
r+W )比が1/20未満では その効果、がほとん
どなく、115を超えると強度の低1下が者しい。
Or improves thermal properties, but Cr/(Ni+Co+C
If the ratio (r+W) is less than 1/20, there is almost no effect, and if it exceeds 115, the strength will drop by 1.

COとNiは、この両者が共存することによQCoとN
i との固溶強化およびCo、NiへのW固溶強化によ
り 高温における強度低下を抑制し、さらに熱疲労、熱
衝撃に対して着しい効果がある。
When CO and Ni coexist, QCo and N
Solid solution strengthening with i and W solid solution strengthening with Co and Ni suppresses strength loss at high temperatures and has significant effects on thermal fatigue and thermal shock.

結合相中へのW固溶量をW/(Ni+Co十Cr+Fe
+W)比で1/10〜2.5/10としたのは、1/1
0未満では固溶強化が十分でな(,2,5/10を超え
るとWCへの固溶析出が始まり合金の強度低下を起こし
て実用に耐えない。
The amount of W solid solution in the bonded phase is W/(Ni+Co x Cr+Fe
+W) ratio of 1/10 to 2.5/10 is 1/1
If it is less than 0, the solid solution strengthening will not be sufficient. If it exceeds 2.5/10, solid solution precipitation will begin in the WC, causing a decrease in the strength of the alloy, making it unusable for practical use.

合金中のCo/Ni比は 1/9未満ではほとんど効果
がない、また1を超えるとGoが多(なり、三角または
四角の粒子形状をなし耐衝撃性を劣化させる。
If the Co/Ni ratio in the alloy is less than 1/9, there is almost no effect, and if it exceeds 1, the Go content becomes large, resulting in triangular or square particle shapes and deteriorating impact resistance.

結合相(Ni十Co+Cr十Fe+W)の総和が10%
未満では靭性的に不十分であり、30%を超えると熱的
性質が着しく悪化する。
The total of the bonded phase (Ni + Co + Cr + Fe + W) is 10%
If it is less than 30%, the toughness will be insufficient, and if it exceeds 30%, the thermal properties will deteriorate severely.

WC粒子を球状化したのは、W Cと結合相との罰を通
るクラックのf云播をLに〈(中6ため1である。
The reason why the WC particles were spheroidized was to increase the propagation of cracks through the bond between the WC and the binder phase into L.

〔実施例〕〔Example〕

WC粉末(平均粒度5μ(至))、Co粉末(同1.2
/Jw+)、 Ni−Cr粉末(同2μm)  F6粉
末(同1μ論)、W粉末(同0.6μm)を第1表に示
す組成に配合し、アトライター混合を5時間行なった後
、2%のパラフィンを添加し、乾燥後プレス成型し、1
400℃で真空焼結をした。ついで室温における抗折力
、硬さおよび高温での特性として耐酸化性、耐熱衝撃性
について測定し、その結果を第2表に示す。
WC powder (average particle size 5μ (up)), Co powder (average particle size 1.2)
/Jw+), Ni-Cr powder (2 μm), F6 powder (1 μm), and W powder (0.6 μm) were blended into the composition shown in Table 1, mixed with attritor for 5 hours, and then % of paraffin was added, and after drying, press molding was performed.
Vacuum sintering was performed at 400°C. Next, transverse rupture strength and hardness at room temperature, and properties at high temperatures such as oxidation resistance and thermal shock resistance were measured, and the results are shown in Table 2.

耐酸化性は900℃5時間の空気中酸化試験後の酸化増
量(ms/ cm”)で示す。
Oxidation resistance is expressed as oxidation weight gain (ms/cm") after an in-air oxidation test at 900°C for 5 hours.

耐熱衝撃性は炉中(N2雰囲気)より急冷することによ
り (温度差800℃)、亀裂発生までの繰り返し回数
で評価した。
Thermal shock resistance was evaluated by rapidly cooling in a furnace (N2 atmosphere) (temperature difference 800°C) and the number of repetitions until cracking occurred.

第2表の結果より、Ni十Co十〇r+W系合金にFe
を0.1〜2.0%添加すると、塑性変形能を劣化させ
ずに耐酸化性を良くすることができる。
From the results in Table 2, Fe
Adding 0.1 to 2.0% of oxidation resistance can improve the oxidation resistance without deteriorating the plastic deformability.

次に本発明合金NO,2,3,5お上り比較合金No、
8を用いてオーステナイト系耐熱鋼のエンジンバルブ用
熱間鍛造型に使用し、前記鍛造型が摩耗および局部の傷
発生により使用不能に至るまでの総ストローク数を調査
した4この結果を、従来用いられる熱間金型用鋼5Kl
)61およびW C−Co系超硬合會で製作した鍛造型
を同条件で使用した場合と比較し、第3表に示す。
Next, the present invention alloy No. 2, 3, 5 and the comparative alloy No.
8 was used in a hot forging die for an engine valve made of austenitic heat-resistant steel, and the total number of strokes until the forging die became unusable due to wear and local scratches was investigated. Steel for hot molds 5Kl
) 61 and W C-Co based cemented carbide alloys were compared with those made using the same conditions, as shown in Table 3.

なお上記鍛造型の使用条件は、耐熟鋼素材温&1200
℃、ストローク数20ストローク/分、鍛造時の荷重2
00Tonで、鍛造型に油とグラファイトの混合離型剤
を冷却も兼ねて散布した。
The conditions for using the above forging die are as follows:
°C, number of strokes 20 strokes/min, load during forging 2
At 00 tons, a mixed mold release agent of oil and graphite was sprayed onto the forging mold to also serve as a cooling agent.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は、結合相の固溶強化により、急熱
、急冷繰り返しの過酷な熱応力と高温度での過酷な機械
的衝撃とが加わるとともに、高温度における耐摩耗性が
要求される熱間圧延用ロールや熱間鍛造等の熱間工具な
どの材料として、従来のWCC超超硬合金は達し得なか
った性能を達し得たものである。
As mentioned above, in the present invention, the solid solution strengthening of the binder phase applies severe thermal stress due to repeated rapid heating and rapid cooling, and severe mechanical shock at high temperatures, and wear resistance at high temperatures is required. As a material for hot rolling rolls and hot tools for hot forging, etc., it has achieved performance that conventional WCC cemented carbide could not achieve.

Claims (1)

【特許請求の範囲】[Claims] WC基超硬合金において、その結合相がW、Ni、Co
、Fe、Crよりなり、重量比でFe/(Ni+Co+
Cr+Fe+W)=0.3/100〜2/100、Cr
/(Ni+Co+Cr+Fe+W)=1/20〜1/5
、W/(Ni+Co+Cr+Fe+W)=1/10〜2
.5/10、Co/Ni=1/9〜1、Ni+Co+C
r+Fe+W=10〜30重量%であり、かつWCは球
状化した粒子形状を有することを特徴とする超硬合金。
In WC-based cemented carbide, the binder phase is W, Ni, Co
, Fe, and Cr, with a weight ratio of Fe/(Ni+Co+
Cr+Fe+W)=0.3/100~2/100, Cr
/(Ni+Co+Cr+Fe+W)=1/20~1/5
, W/(Ni+Co+Cr+Fe+W)=1/10~2
.. 5/10, Co/Ni=1/9~1, Ni+Co+C
A cemented carbide characterized in that r+Fe+W=10 to 30% by weight, and WC has a spherical particle shape.
JP3258885A 1985-02-22 1985-02-22 Sintered hard alloy Pending JPS61194147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258885A JPS61194147A (en) 1985-02-22 1985-02-22 Sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258885A JPS61194147A (en) 1985-02-22 1985-02-22 Sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS61194147A true JPS61194147A (en) 1986-08-28

Family

ID=12363024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258885A Pending JPS61194147A (en) 1985-02-22 1985-02-22 Sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS61194147A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220963A (en) * 1987-03-06 1988-09-14 Hitachi Tool Eng Ltd Hard alloy sleeve for casting by pressure die casting
US5992546A (en) * 1997-08-27 1999-11-30 Kennametal Inc. Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder
US6010283A (en) * 1997-08-27 2000-01-04 Kennametal Inc. Cutting insert of a cermet having a Co-Ni-Fe-binder
US6022175A (en) * 1997-08-27 2000-02-08 Kennametal Inc. Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6170917B1 (en) 1997-08-27 2001-01-09 Kennametal Inc. Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
EP1548137A1 (en) * 2003-12-22 2005-06-29 CERATIZIT Austria Gesellschaft m.b.H. Use of a hard metal for tools
CN106435322A (en) * 2016-11-02 2017-02-22 中南大学 WC-Fe-Ni-Co-Cr cemented carbide roll collar with low cost and high performance
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith
CN111386356A (en) * 2018-01-31 2020-07-07 日立金属株式会社 Hard alloy and composite hard alloy roller for rolling

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220963A (en) * 1987-03-06 1988-09-14 Hitachi Tool Eng Ltd Hard alloy sleeve for casting by pressure die casting
US5992546A (en) * 1997-08-27 1999-11-30 Kennametal Inc. Rotary earth strata penetrating tool with a cermet insert having a co-ni-fe-binder
US6010283A (en) * 1997-08-27 2000-01-04 Kennametal Inc. Cutting insert of a cermet having a Co-Ni-Fe-binder
US6022175A (en) * 1997-08-27 2000-02-08 Kennametal Inc. Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6170917B1 (en) 1997-08-27 2001-01-09 Kennametal Inc. Pick-style tool with a cermet insert having a Co-Ni-Fe-binder
EP1548137A1 (en) * 2003-12-22 2005-06-29 CERATIZIT Austria Gesellschaft m.b.H. Use of a hard metal for tools
CN106435322A (en) * 2016-11-02 2017-02-22 中南大学 WC-Fe-Ni-Co-Cr cemented carbide roll collar with low cost and high performance
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith
CN111386356A (en) * 2018-01-31 2020-07-07 日立金属株式会社 Hard alloy and composite hard alloy roller for rolling
CN111386356B (en) * 2018-01-31 2022-01-04 日立金属株式会社 Hard alloy and composite hard alloy roller for rolling

Similar Documents

Publication Publication Date Title
EP1410872B1 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
JP5525813B2 (en) Thermal spray coated work roll
JPH1081924A (en) Production of iron aluminide by thermochemical treatment for element powder
JPS61194147A (en) Sintered hard alloy
CN117737543A (en) High-toughness wear-resistant hard alloy, preparation method and application
JPH0633180A (en) Chromium-based alloy
JP7316923B2 (en) Hearth roll for continuous annealing furnace
JPH0373614B2 (en)
JPS61183439A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JPH02179843A (en) Tool material for hot tube making
JP4259406B2 (en) Hot rolling roll
JPS601387B2 (en) Tungsten carbide-based cemented carbide with high strength and high oxidation resistance
JP2688729B2 (en) Aluminum corrosion resistant material
JPS609849A (en) Sintered hard alloy with high strength and oxidation resistance
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
JPS6053098B2 (en) Wear-resistant Cu alloy with high strength and toughness
US5226980A (en) Skid rail alloy
JP3002215B2 (en) Heat-resistant alloy and skid rail using it
JP2797048B2 (en) Melt erosion resistant material
JPS6358905B2 (en)
JPS6173867A (en) Hot wear resistant member of dispersion strengthening sintered alloy steel
JPS62222044A (en) Hot-working method for two-phase stainless steel powder
JPS5821023B2 (en) netsukankouguyouchiyoukoshitsugokin
JPS6335706B2 (en)
JP3482349B2 (en) Hot working tool materials