JPH0347289Y2 - - Google Patents

Info

Publication number
JPH0347289Y2
JPH0347289Y2 JP1985090450U JP9045085U JPH0347289Y2 JP H0347289 Y2 JPH0347289 Y2 JP H0347289Y2 JP 1985090450 U JP1985090450 U JP 1985090450U JP 9045085 U JP9045085 U JP 9045085U JP H0347289 Y2 JPH0347289 Y2 JP H0347289Y2
Authority
JP
Japan
Prior art keywords
resistor
electrodes
individual
array
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985090450U
Other languages
Japanese (ja)
Other versions
JPS61207002U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985090450U priority Critical patent/JPH0347289Y2/ja
Publication of JPS61207002U publication Critical patent/JPS61207002U/ja
Application granted granted Critical
Publication of JPH0347289Y2 publication Critical patent/JPH0347289Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は抵抗体アレイ、特に厚膜による抵抗
体アレイの電極構造に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a resistor array, particularly an electrode structure of a thick-film resistor array.

(従来の技術) 従来から、例えば、サーマルヘツド、発光素子
アレイ、その他の素子アレイの駆動用電力を供給
するための一回路素子として、微細なピツチで設
けられた抵抗体アレイが用いられている。
(Prior Art) Conventionally, a resistor array provided at a fine pitch has been used as a circuit element for supplying power for driving a thermal head, a light emitting element array, and other element arrays. .

この従来の抵抗体アレイの構造を理解を深める
ため、その製造方法につき簡単に説明する。
In order to better understand the structure of this conventional resistor array, the manufacturing method thereof will be briefly explained.

第3図A及びBはその製造工程図である。 FIGS. 3A and 3B are diagrams of the manufacturing process.

基板11上に等ピツチの第一電極12a〜12
n(代表して12で示す)及び第二電極13a〜
13n(代表して13で示す)から成る第一及び
第二電極群配列14及び15をスクリーン印刷法
(すなわち厚膜印刷法)を用いた厚膜導体パター
ン形成する。次に、対向する第一及び第二電極群
配列14及び15間にまたがるように厚膜の帯状
抵抗体膜16をスリーン印刷法(すなわち厚膜印
刷方法)で形成する(第3図A)。
First electrodes 12a to 12 are arranged at equal pitches on the substrate 11.
n (representatively indicated by 12) and second electrodes 13a~
First and second electrode group arrays 14 and 15 consisting of 13n (representatively indicated by 13) are formed into a thick film conductor pattern using a screen printing method (that is, a thick film printing method). Next, a thick strip resistor film 16 is formed by a screen printing method (that is, a thick film printing method) so as to span between the opposing first and second electrode group arrays 14 and 15 (FIG. 3A).

次に、例えば、レーザビームで帯状抵抗体膜1
6を同一幅でかつ等ピツチで切断して各第一及び
第二電極12及び13間にのみそれぞれ抵抗体膜
を残存させて個別抵抗体17a〜17n(代表し
て17で示す)を形成し、抵抗体アレイを完成す
る(第3図B)。
Next, for example, the strip resistor film 1 is
6 to the same width and at equal pitches, leaving the resistor film only between each of the first and second electrodes 12 and 13 to form individual resistors 17a to 17n (representatively indicated by 17). , completes the resistor array (Fig. 3B).

上述の従来の方法において、第一及び第二電極
群配列14及び15の形成の際、各第一及び第二
電極12及び13間の間隔lは全て同一の寸法に
形成する。この間隔lは第一及び第二電極間に形
成され後述する個別抵抗体の長さを規定するもの
であり、形成された帯状抵抗体膜16の厚みが均
一であれば、各個別抵抗体は同一の抵抗値を有す
る。
In the conventional method described above, when forming the first and second electrode group arrays 14 and 15, the distances 1 between each of the first and second electrodes 12 and 13 are all formed to have the same dimension. This interval l is formed between the first and second electrodes and defines the length of the individual resistor, which will be described later.If the thickness of the formed strip resistor film 16 is uniform, each individual resistor have the same resistance value.

(考案が解決しようとする問題点) しかしながら、上述した通り、従来は厚膜の帯
状抵抗体膜16を形成するに当りスクリーン印刷
法を用いている。これがため、抵抗体アレイを形
成しようとする領域が基板の端部に接近していた
り、或いは他の電気回路等が隣接している場合に
はスクリーンマスクの領域をフルに用いて帯状抵
抗体膜を形成することが必要となる。そのような
場合、第4図に第3図AのA−A線断面図で示す
ように、スクリーンマスク(図示せず)の乳剤の
厚み等の影響を受けて、帯状抵抗体膜16の端部
側の膜厚t1がその中央部側よりの膜厚t2よりも厚
く(t1>t2)なつて盛り上つてしまう。
(Problems to be Solved by the Invention) However, as described above, conventionally, a screen printing method has been used to form the thick band-shaped resistor film 16. For this reason, if the area where the resistor array is to be formed is close to the edge of the substrate or adjacent to other electrical circuits, the entire area of the screen mask should be used to form the strip resistor film. It is necessary to form a In such a case, as shown in FIG. 4, which is a cross-sectional view taken along the line A--A in FIG. The film thickness t 1 on the central part side becomes thicker than the film thickness t 2 on the central part side (t 1 >t 2 ) and swells.

ところで、抵抗体の抵抗値Rは次式で与えられ
る。
By the way, the resistance value R of the resistor is given by the following equation.

R=ρ×l/(w×t) 但し、 Rは抵抗体の抵抗値 ρは抵抗体の固有抵抗値 lは抵抗体の長さ(電極間の間隔) wは抵抗体の幅 tは抵抗体の膜厚 である。R=ρ×l/(w×t) however, R is the resistance value of the resistor ρ is the specific resistance value of the resistor l is the length of the resistor (distance between electrodes) w is the width of the resistor t is the film thickness of the resistor It is.

このように、抵抗値は抵抗体の膜厚に反比例す
るので、前述したように抵抗体膜16が端部側で
膜厚が大となると、個別抵抗体に設計通りの正常
な厚みの個別抵抗体と、厚みがそれよりも厚い個
別抵抗体(例えば17a及び17n)とが形成さ
れ、後者の抵抗値は中央側の個別抵抗体17の抵
抗値よりも小さくなつてしまう。従つて、形成さ
れた抵抗体アレイの抵抗値に大きなバラツキが生
じるという問題があつた。
In this way, the resistance value is inversely proportional to the film thickness of the resistor, so if the resistor film 16 becomes thicker on the end side as described above, the individual resistor has a normal thickness as designed. A resistor body and individual resistors (for example, 17a and 17n) having a thickness larger than that are formed, and the resistance value of the latter is smaller than the resistance value of the individual resistor element 17 on the center side. Therefore, there was a problem in that the resistance values of the formed resistor array varied greatly.

この考案の目的は、上述したような従来の問題
点を解決し、抵抗値のバラツキが小さくなる構造
の抵抗体アレイを提供することにある。
The purpose of this invention is to solve the above-mentioned conventional problems and to provide a resistor array having a structure in which variations in resistance values are reduced.

(問題点を解決するための手段) この目的の達成を図るため、この考案によれ
ば、各第一及び第二電極間の間隔を形成されるべ
き個別抵抗体の膜厚に応じた値すなわち膜厚に見
合つた値とし、よつて全ての個別抵抗体の抵抗値
が実質的に同一となるように構成する。
(Means for solving the problem) In order to achieve this object, according to this invention, the distance between each first and second electrode is set to a value corresponding to the film thickness of the individual resistor to be formed. The resistance value is set in accordance with the film thickness, and the resistance values of all the individual resistors are configured to be substantially the same.

この場合、スクリーン印刷法で(すなわち、厚
膜印刷法)で帯状抵抗体膜を形成すると、通常は
中央側よりも端部側で膜厚が厚くなるので、抵抗
体アレイの端部側の個別抵抗体の第一電極及び第
二電極間の間隔を、中心側の個別抵抗体の第一電
極及び第二電極間の間隔よりも長くするのが好適
である。
In this case, if a strip resistor film is formed using the screen printing method (i.e., thick film printing method), the film thickness is usually thicker on the edge side than on the center side. Preferably, the distance between the first and second electrodes of the resistor is longer than the distance between the first and second electrodes of the individual resistors on the center side.

さらに中心より膜厚が厚くなつた個別抵抗体が
形成されるのは、最端部の個別抵抗体のみではな
く、最端部の個別抵抗体の近傍のその内側の複数
の個別抵抗体も膜厚が大となることがあるので、
端部側の抵抗値が調整されるべき個別抵抗体の数
を両端部側すなわち各端部側でそれぞれ一個以上
とするのが好適である。
Furthermore, the individual resistor whose film thickness becomes thicker from the center is formed not only at the endmost individual resistor, but also at the innermost individual resistor near the endmost individual resistor. Because the thickness may become large,
It is preferable that the number of individual resistors whose resistance value is to be adjusted on the end side is one or more on both end sides, that is, on each end side.

(作用) 上述したように、この考案の個別抵抗体はスク
リーン印刷法(すなわち、厚膜印刷法)によつて
形成された帯状抵抗体膜を等間隔に切断して形成
する。スクリーン印刷のための諸条件が同一であ
るならば、帯状抵抗体膜の、盛り上り箇所及びそ
の部分の膜厚も予測出来る。従つて、各個別抵抗
体の幅を一定としてあるから、この膜厚の相違に
起因する所定の抵抗値からの抵抗変化分を、個別
抵抗体の長さすなわち第一及び第二電極間の間隔
を予め調整しておいて、補償すれば良い。
(Function) As described above, the individual resistors of this invention are formed by cutting a strip-shaped resistor film formed by screen printing (that is, thick film printing) into equal intervals. If the various conditions for screen printing are the same, the raised portion of the strip resistor film and the film thickness at that portion can also be predicted. Therefore, since the width of each individual resistor is constant, the change in resistance from the predetermined resistance value due to the difference in film thickness can be calculated as the length of the individual resistor, that is, the distance between the first and second electrodes. It is sufficient to adjust in advance and compensate.

上述した通り膜厚が厚くなれば抵抗値は設計値
よりも小さくなるので、膜厚の予想される増加分
に対応して第一及び第二電極間の間隔を予め広げ
ておき、これら電極間に個別抵抗体を形成すれ
ば、個別抵抗体の長さが長くなり、従つて、小さ
くなつた抵抗値を設計通りの値に戻すことが出来
る。
As mentioned above, as the film thickness increases, the resistance value becomes smaller than the designed value, so the distance between the first and second electrodes is increased in advance to accommodate the expected increase in film thickness. If the individual resistors are formed in the wafer, the length of the individual resistors becomes longer, and therefore the reduced resistance value can be returned to the designed value.

(実施例) 以下、図面を参照して、この考案の実施例を説
明する。尚、図において、第3図A及びB及び第
4図に示した構成成分と同一の構成成分について
は同一の符号を付して説明する。
(Example) Hereinafter, an example of this invention will be described with reference to the drawings. In the figures, the same components as those shown in FIGS. 3A and 3B and FIG. 4 will be described with the same reference numerals.

第1図はこの考案の抵抗体アレイの一実施例を
説明するための説明図で、抵抗体アレイの製造途
中での状態を概略的平面図で示したものである。
FIG. 1 is an explanatory view for explaining one embodiment of the resistor array of this invention, and is a schematic plan view showing the state of the resistor array in the middle of manufacturing.

この考案では、第一電極12及び第二電極13
間の間隔を個別抵抗体の抵抗値が同一となるよう
な、個別抵抗体17の膜厚に応じた値に設定した
構造とする。この実施例では、抵抗体アレイの両
最端部の個別抵抗体(図は17aのみが形成され
た状態にある)の第一及び第二電極12a及び1
3a間並びに12n及び13n間の間隔を長くし
ておく。
In this invention, the first electrode 12 and the second electrode 13
The structure is such that the interval between them is set to a value corresponding to the film thickness of the individual resistor 17 so that the resistance values of the individual resistors are the same. In this embodiment, the first and second electrodes 12a and 1 of the individual resistors at both ends of the resistor array (only 17a is formed in the figure)
The intervals between 3a and between 12n and 13n are made long.

このように構成すれば、従来と同様に、先ず、
基板11上にスクリーン印刷法(すなわち、厚膜
印刷法)によつて第一及び第二電極間12及び1
3のパターニングを行つて厚膜導体パターンから
成る第一及び第二電極群配列14及び15を形成
し、然る後、厚膜の帯状抵抗体膜16をスクリー
ン印刷法(すなわち、厚膜印刷法)で形成し、次
いで例えばレーザビーム18を用いて、帯状抵抗
体膜16を等ピツチで切断して抵抗値が全て等し
い個別抵抗体17(17a…)を形成することが
出来る。
With this configuration, first of all, as in the conventional case,
Between the first and second electrodes 12 and 1 are formed on the substrate 11 by screen printing (i.e., thick film printing).
3 to form the first and second electrode group arrays 14 and 15 consisting of thick film conductor patterns, and then the thick film strip resistor film 16 is formed by screen printing (i.e., thick film printing). ), and then, using, for example, a laser beam 18, the band-shaped resistor film 16 is cut at equal pitches to form individual resistors 17 (17a, . . . ) having the same resistance value.

この場合、抵抗体アレイの両端の第一及び第二
電極12a及び13a間並びに12n及び13n
間の間隔l1は次の式によつて定めることが出来
る。
In this case, between the first and second electrodes 12a and 13a and between 12n and 13n at both ends of the resistor array.
The interval l 1 between can be determined by the following formula.

l1=l2×t1/t2 但し、l1及びt1は両端の第一及び第二電極12
a及び13a間並びに12n及び13n間の間隔
及び個別抵抗体17a,17nの平均的膜厚、l2
及びt2は中央側の他の通常の電極12及び13間
の間隔及び平均的膜厚である。
l 1 = l 2 ×t 1 /t 2 However, l 1 and t 1 are the first and second electrodes 12 at both ends.
The distance between a and 13a and between 12n and 13n and the average film thickness of individual resistors 17a and 17n, l 2
and t 2 are the spacing and average film thickness between the other normal electrodes 12 and 13 on the center side.

第2図Aは帯状抵抗体膜16をスクリーン印刷
法形成した時に、この抵抗体膜16の、抵抗体ア
レイ方向における端部側での輪郭の様子を示す、
第1図のA−A線断面図及びBはスクリーン印刷
法で形成した第二電極13の輪郭の様子を示す、
第1図B−B線断面図で、いずれも実験により得
られた拡大図である。これら図において、X方向
(幅方向)は抵抗体アレイの方向であり、この単
位長xは0.2mmに相当する。また、このx方向と
直交するY方向(厚み方向)の単位長yは10μm
に相当する。これら図において、11aは基板1
1の表面、16aは帯状抵抗体膜16の表面であ
る。また、13aは端部側の第二電極、13bは
中央側の第二電極である。
FIG. 2A shows the outline of the resistor film 16 on the end side in the resistor array direction when the strip resistor film 16 is formed by screen printing.
A cross-sectional view taken along the line A-A in FIG. 1 and B show the outline of the second electrode 13 formed by the screen printing method.
FIG. 1 is a sectional view taken along the line B-B, and both are enlarged views obtained through experiments. In these figures, the X direction (width direction) is the direction of the resistor array, and this unit length x corresponds to 0.2 mm. Also, the unit length y in the Y direction (thickness direction) perpendicular to this x direction is 10 μm.
corresponds to In these figures, 11a is the substrate 1
1, the surface 16a is the surface of the strip-shaped resistor film 16. Further, 13a is a second electrode on the end side, and 13b is a second electrode on the center side.

第2図Aに示されているように、帯状抵抗体膜
16の端部での膜厚(平均的な膜厚である)t1
は、既に説明したように、スクリーンマスクの乳
剤厚等の影響で、正規の膜厚(平均的な膜厚であ
る)t2よりも増大していることがわかる。
As shown in FIG. 2A, the film thickness (average film thickness) t 1 at the end of the strip resistor film 16
As already explained, it can be seen that t2 is larger than the normal film thickness (average film thickness) due to the influence of the emulsion thickness of the screen mask, etc.

この実施例では、両厚みの比t1/t2はt1/t2
1.16であつた。従つて、第1図に示した両端の電
極12a及び13a間並びに12n及び13n間
の間隔l1と、内側の電極12及び13間の間隔l2
との間の関係をl1/l2=1.16と設定して端部側の
電極間の間隔を定めた。
In this example, the ratio t 1 /t 2 of both thicknesses is t 1 /t 2 =
It was 1.16. Therefore, the distance l 1 between the electrodes 12a and 13a at both ends and between the electrodes 12n and 13n shown in FIG. 1, and the distance l 2 between the inner electrodes 12 and 13.
The distance between the electrodes on the end side was determined by setting the relationship between l 1 /l 2 =1.16.

尚、この電極間の間隔は上述した値にのみ限定
されるものではなく、スクリーン印刷(すなわ
ち、厚膜印刷)の条件によつて、種々変更される
ものである。又、厚みに対応して電極間の間隔を
変えて抵抗値を調整するのは、最端部の個別抵抗
体のみならず、抵抗体アレイを構成する任意の個
別抵抗体についても所要に応じて行うことが出来
る。
Note that the distance between the electrodes is not limited to the above-mentioned value, but may be changed in various ways depending on the conditions of screen printing (that is, thick film printing). In addition, adjusting the resistance value by changing the spacing between electrodes according to the thickness is not only for the individual resistor at the end, but also for any individual resistor that makes up the resistor array. It can be done.

(考案の効果) 上述した説明からも明らかなように、この考案
の抵抗体アレイによれば、各個別抵抗体の膜厚が
スクリーン印刷時にスクリーンマスクの乳剤厚等
の影響を受けて所定の膜厚よりも厚くなつた部分
(特に両端部)が生じたとしても、その膜厚が所
定膜厚より厚くなつている個別抵抗体に関連する
第一及び第二電極間の間隔を膜厚増大分だけ長く
してあるので、その膜厚が所定膜厚より厚くなつ
ている個別抵抗体の抵抗値と、正常の厚みの個別
抵抗体の抵抗値とをほぼ等しくすることが出来、
従つて、抵抗体アレイ全体の抵抗値のバラツキを
従来よりも著しく小さくすることが出来る。
(Effects of the invention) As is clear from the above explanation, according to the resistor array of this invention, the film thickness of each individual resistor is influenced by the emulsion thickness of the screen mask during screen printing, and the film thickness is adjusted to a predetermined film thickness during screen printing. Even if there are parts (especially at both ends) that are thicker than the specified thickness, the distance between the first and second electrodes associated with the individual resistor whose film thickness is thicker than the predetermined film thickness is calculated by the increased film thickness. Since the resistance value of the individual resistor whose film thickness is thicker than the predetermined thickness can be made almost equal to the resistance value of the individual resistor element with a normal thickness,
Therefore, the variation in the resistance value of the entire resistor array can be significantly reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の抵抗体アレイの説明に供す
る説明図、第2図A及びBはこの考案の抵抗体ア
レイの説明に供する帯状抵抗体膜及び第二電極の
輪郭状態を示す断面図、第3図A及びBは従来の
抵抗体アレイの説明に供する製造工程図、第4図
は従来の抵抗体アレイの説明に供する帯状抵抗体
膜の輪郭状態を示す断面図である。 11……基板、12,12a…12n……第一
電極、13,13a…13n……第二電極、14
……第一電極群配列、15……第二電極群配列、
16……帯状抵抗体膜、17,17a………個別
抵抗体、18……レーザビーム。
FIG. 1 is an explanatory diagram for explaining the resistor array of this invention; FIGS. 2A and B are cross-sectional views showing the contours of the strip-shaped resistor film and the second electrode for explaining the resistor array of this invention; 3A and 3B are manufacturing process diagrams for explaining a conventional resistor array, and FIG. 4 is a cross-sectional view showing the outline of a strip-shaped resistor film for explaining the conventional resistor array. 11... Substrate, 12, 12a... 12n... First electrode, 13, 13a... 13n... Second electrode, 14
...First electrode group arrangement, 15...Second electrode group arrangement,
16... Strip resistor film, 17, 17a... Individual resistor, 18... Laser beam.

Claims (1)

【実用新案登録請求の範囲】 (1) 複数の第一電極から成る第一電極群配列と、
該第一電極とそれぞれ対向して設けられた複数
の第二電極から成る第二電極群配列と、厚膜印
刷により形成された帯状抵抗体膜を等ピツチで
切断して前記各第一及び第二電極間に設けられ
た個別抵抗体とを有する抵抗体アレイにおい
て、 第一電極及び第二電極間の間隔を個別抵抗体
の抵抗値が同一となるような該個別抵抗体の膜
厚に応じた値に設定し、および、抵抗体アレイ
の端部側の個別抵抗体の第一電極及び第二電極
間の間隔を、中心側の個別抵抗体の第一電極及
び第二電極間の間隔よりも長くした ことを特徴とする抵抗体アレイ。 (2) 個別抵抗体の第一電極及び第二電極間の間隔
を、中心側の個別抵抗体の第一電極及び第二電
極間の間隔よりも長くした前記端部側の個別抵
抗体数を抵抗体アレイの両端部側でそれぞれ1
個以上としたことを特徴とする実用新案登録請
求の範囲第1項記載の抵抗体アレイ。
[Claims for Utility Model Registration] (1) A first electrode group arrangement consisting of a plurality of first electrodes;
A second electrode group array consisting of a plurality of second electrodes provided opposite to the first electrode, and a strip resistor film formed by thick film printing are cut at equal pitches to form a second electrode group array, each of which is formed by cutting the first and second electrodes at equal pitches. In a resistor array having an individual resistor provided between two electrodes, the distance between the first electrode and the second electrode is adjusted according to the film thickness of the individual resistor so that the resistance values of the individual resistors are the same. and set the distance between the first and second electrodes of the individual resistors on the end side of the resistor array to a value greater than the distance between the first and second electrodes of the individual resistors on the center side. A resistor array characterized by having a longer length. (2) The number of individual resistors on the end side where the distance between the first and second electrodes of the individual resistors is longer than the distance between the first and second electrodes of the individual resistors on the center side. 1 each on both ends of the resistor array.
2. A resistor array according to claim 1, characterized in that the resistor array has at least one resistor array.
JP1985090450U 1985-06-15 1985-06-15 Expired JPH0347289Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985090450U JPH0347289Y2 (en) 1985-06-15 1985-06-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985090450U JPH0347289Y2 (en) 1985-06-15 1985-06-15

Publications (2)

Publication Number Publication Date
JPS61207002U JPS61207002U (en) 1986-12-27
JPH0347289Y2 true JPH0347289Y2 (en) 1991-10-08

Family

ID=30645452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985090450U Expired JPH0347289Y2 (en) 1985-06-15 1985-06-15

Country Status (1)

Country Link
JP (1) JPH0347289Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186231A (en) * 2004-12-28 2006-07-13 Kamaya Denki Kk Chip resistor and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724274A (en) * 1980-07-18 1982-02-08 Matsushita Electric Ind Co Ltd Manufacture of thermal head for heat-sensitive recording
JPS57210611A (en) * 1981-06-19 1982-12-24 Jidou Keisoku Gijutsu Kenkiyuu Method of trimming film resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724274A (en) * 1980-07-18 1982-02-08 Matsushita Electric Ind Co Ltd Manufacture of thermal head for heat-sensitive recording
JPS57210611A (en) * 1981-06-19 1982-12-24 Jidou Keisoku Gijutsu Kenkiyuu Method of trimming film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186231A (en) * 2004-12-28 2006-07-13 Kamaya Denki Kk Chip resistor and its manufacturing method

Also Published As

Publication number Publication date
JPS61207002U (en) 1986-12-27

Similar Documents

Publication Publication Date Title
KR100468373B1 (en) Resistor and method for fabricating the same
US7049928B2 (en) Resistor and method of manufacturing the same
US4794367A (en) Circuit arrangement
JPH0347289Y2 (en)
JPH0630292B2 (en) Manufacturing method of composite parts
JP3753252B2 (en) Multi-element type chip device and manufacturing method thereof
JPH1050502A (en) Resistor and production thereof
JPS61288402A (en) Manufacture of resistor array
JPH034525Y2 (en)
JPH0614481B2 (en) Side-by-side resistor device
JPH0795483B2 (en) Method for manufacturing thick film resistance element
JP2585679B2 (en) Method for manufacturing substrate in resistor
JPH11111513A (en) Manufacture of chip resistor
JPH11307304A (en) Chip resistor and manufacture of the same
US6653927B2 (en) Structure used for manufacturing a line-type heater
JP2863283B2 (en) Thermal head and method of manufacturing the same
JPH0427947B2 (en)
JP2635799B2 (en) Method of manufacturing network type resistor
JPH0722203A (en) Chip thermister and production thereof
JP2000021613A (en) Manufacture of chip resistor
JP2004146859A (en) Method of manufacturing resistor
JPS61192564A (en) Preparation of thermal printing head
JPS6248573A (en) Thick film type thermal recording head
JPH01264202A (en) Resistance device for hybrid integrated circuit
JPS6259861B2 (en)