JPH0346334Y2 - - Google Patents

Info

Publication number
JPH0346334Y2
JPH0346334Y2 JP8826186U JP8826186U JPH0346334Y2 JP H0346334 Y2 JPH0346334 Y2 JP H0346334Y2 JP 8826186 U JP8826186 U JP 8826186U JP 8826186 U JP8826186 U JP 8826186U JP H0346334 Y2 JPH0346334 Y2 JP H0346334Y2
Authority
JP
Japan
Prior art keywords
conduit
axis
coriolis force
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8826186U
Other languages
Japanese (ja)
Other versions
JPS62199633U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8826186U priority Critical patent/JPH0346334Y2/ja
Publication of JPS62199633U publication Critical patent/JPS62199633U/ja
Application granted granted Critical
Publication of JPH0346334Y2 publication Critical patent/JPH0346334Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 技術分野 本考案は、質量流量計、より詳細には、導管を
流通する流体に作用するコリオリの力を測定して
質量流量を求める質量流量計の導管構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a mass flow meter, and more particularly to a conduit structure for a mass flow meter that measures the Coriolis force acting on a fluid flowing through the conduit to determine the mass flow rate.

従来技術 流管を流れる流体流に対して振動を与えると、
流体の流れの向きと流管の振動軸とに対して直角
方向にコリオリの力が発生し、このコリオリの力
が振動周波数と流体の質量流量に比例することが
知られており、特開昭54−52570号公報において、
前述のごときコリオリの力を利用した質量流量計
が開示されている。この流量計は、第3図A,B
に示すようにU字形の導管1を軸XX′に対称に支
持部材2で固着支持するとともに、軸XX′方向に
延びる往復動部材3の一端が支持部材2に固着さ
れている。この往復動部材3の他端には導管1の
固着点を結ぶ軸YY′回りの導管1の固有振動数と
実質的に等しい振動数で加振する電磁コイル4が
配設されている。この電磁コイル4の軸上に磁石
5が導管1に保持板6を介して装着されており、
図示しない駆動源によりZZ′方向に吸引反発さ
れ、この結果、導管1は軸YY′の回りに駆動され
る。これによりQ方向に流れる流体に対してコリ
オリの力が作用し、XX′軸まわりに回転力が生ず
る。これを導管1の両腕に対称的に固設された遮
閉板8により遮光される光検出器7における光量
変化から、導管1の両腕が中立面を通過する時間
差を出し、これからコリオリの力を求めている。
Prior Art When vibration is applied to a fluid flow flowing through a flow tube,
It is known that a Coriolis force is generated in a direction perpendicular to the direction of the fluid flow and the vibration axis of the flow tube, and that this Coriolis force is proportional to the vibration frequency and the mass flow rate of the fluid. In Publication No. 54-52570,
A mass flow meter utilizing the Coriolis force as described above is disclosed. This flowmeter is shown in Figure 3 A and B.
As shown in FIG. 1, a U-shaped conduit 1 is fixedly supported by a support member 2 symmetrically about the axis XX', and one end of a reciprocating member 3 extending in the direction of the axis XX' is fixed to the support member 2. An electromagnetic coil 4 is disposed at the other end of the reciprocating member 3 and vibrates at a frequency substantially equal to the natural frequency of the conduit 1 around an axis YY' connecting the fixed points of the conduit 1. A magnet 5 is attached to the conduit 1 via a holding plate 6 on the axis of the electromagnetic coil 4.
The conduit 1 is attracted and repelled in the ZZ' direction by a drive source (not shown), and as a result, the conduit 1 is driven around the axis YY'. As a result, a Coriolis force acts on the fluid flowing in the Q direction, and a rotational force is generated around the XX' axis. From the change in the light intensity at the photodetector 7, which is blocked by the shielding plate 8 fixed symmetrically to both arms of the conduit 1, the time difference between the two arms of the conduit 1 passing through the neutral plane is calculated, and from this Coriolis seeking the power of

従来技術の問題点 上述のコリオリ式質量流量計は、コリオリの力
を軸XX′回りのモーメントとして求めるものであ
るが、高感度で検出するにはモーメントアームを
長くすることによつても得られるが、同一形状に
おいて検出感度を向上させるには導管の肉厚を薄
くして剛性を小さくする必要がある。この結果、
導管の耐圧強度が低下し、高圧の流体は計測でき
なくなるという問題点が生ずる。なお、以上に
は、導管がU字管の場合について述べたが、直管
の場合は、コリオリの力を導管上の支持点近傍に
生ずる位相変化として検出するのであるから、U
字管の場合よりはるかに剛性が高く、それだけ検
出感度が低くなるため、薄肉導管とすることはよ
り強く求められ、耐圧性が更に劣るものとなる。
Problems with the conventional technology The Coriolis mass flowmeter described above determines the Coriolis force as a moment around the axis XX', but high sensitivity detection can also be achieved by lengthening the moment arm. However, in order to improve detection sensitivity with the same shape, it is necessary to reduce the wall thickness of the conduit and reduce its rigidity. As a result,
A problem arises in that the pressure resistance of the conduit is reduced and high pressure fluid cannot be measured. In addition, although the case where the conduit is a U-shaped tube has been described above, in the case of a straight tube, the Coriolis force is detected as a phase change that occurs near the support point on the conduit, so the U
Since the rigidity is much higher than in the case of a shaped tube, and the detection sensitivity is correspondingly lower, a thin-walled conduit is more strongly required, and the pressure resistance is even worse.

問題解決のための手段 導管軸に直交するように複数の板状の耐圧フイ
ンを導管外周壁に等間隔に固設することにより、
流体導管のXX′軸回りの捩り剛性、YY′軸まわり
の曲げ剛性を従来と殆ど変えることなく耐圧性を
向上させるものである。
Means for solving the problem By fixing a plurality of plate-shaped pressure-resistant fins at equal intervals on the outer peripheral wall of the conduit so as to be perpendicular to the conduit axis,
The pressure resistance is improved without changing the torsional rigidity around the XX' axis and the bending rigidity around the YY' axis of the fluid conduit from the conventional ones.

実施例 第1図は本考案による質量流量計の一実施例を
示す図であるが、第3図に示した従来例において
説明した質量流量計と同様の機能を有する要素は
省略して示してある。即ち、支持部材2にはU字
形の導管1が軸XX′に対称に固設支持され、更
に、この支持部材2には導管1の支持部材2の固
着点を結ぶYY′軸まわりの固有振動数と実質的に
等しい固有振動数を有する往復動部材3が固定さ
れてYY′軸まわりに音叉状の振動をし、この振動
は駆動源である電磁コイル4とこの電磁コイルに
吸引反発される磁石5により与えられ、この結
果、XX′軸まわりに流体の質量流量に比例するコ
リオリ力によるモーメントが発生し、検出手段
7,8により検出位置での導管が導管の静止面で
ある基準面を通過する時間差として検出する機能
を有しているが、このような機能を有する要素は
第1図において省いてある。而して、本考案にお
いては導管1には導管軸と直交するように板状の
耐圧フイン11を等間隔に導管壁に溶接等で固設
してあり、第1図Aはこのような耐圧フインを固
設した平面図であり、B図はA図BB′矢視断面図
である。このような耐圧フインにより耐圧強度は
向上するが、XX′軸まわりの捩り剛性、YY′軸上
まわりの曲げ剛性は従来と大きく変化することは
ない。第2図は他の実施例を示すもので、この実
施例は流体導管10が直管の場合のもので、支持
部材21,22の2点で固設されており、この間
に耐圧フイン11を等間隔に直管壁に固設してい
る。
Embodiment FIG. 1 is a diagram showing an embodiment of a mass flowmeter according to the present invention, but elements having the same functions as the mass flowmeter explained in the conventional example shown in FIG. 3 are omitted. be. That is, the U-shaped conduit 1 is fixedly supported on the support member 2 symmetrically with respect to the axis XX', and furthermore, the support member 2 has a natural vibration around the YY' axis connecting the fixed points of the support member 2 of the conduit 1. A reciprocating member 3 having a natural frequency substantially equal to the number of vibrations is fixed and vibrates in a tuning fork shape around the YY′ axis, and this vibration is attracted and repelled by the electromagnetic coil 4 that is the driving source. As a result, a moment due to the Coriolis force is generated around the XX' axis which is proportional to the mass flow rate of the fluid, and the detection means 7 and 8 cause the conduit at the detection position to align with the reference plane which is the stationary surface of the conduit. Although it has a function of detecting a passing time difference, elements having such a function are omitted in FIG. Therefore, in the present invention, plate-shaped pressure-resistant fins 11 are fixed to the pipe wall by welding or the like at equal intervals so as to be orthogonal to the pipe axis, and FIG. 1A shows such pressure-resistant fins. It is a plan view with the fins fixedly installed, and Figure B is a sectional view taken along arrow BB' in Figure A. Although the pressure resistance is improved by such pressure fins, the torsional rigidity around the XX' axis and the bending rigidity around the YY' axis do not change significantly from the conventional ones. FIG. 2 shows another embodiment, in which the fluid conduit 10 is a straight pipe, and is fixed at two points, support members 21 and 22, between which a pressure fin 11 is inserted. They are fixed to the straight pipe wall at equal intervals.

尚、直管の場合は支持部材21,22の中央
MM′軸上で上下に加振することにより、流体が
支持部材21と22とで各々反対廻りの運動を与
えられることから各々の支持部材近傍で反対位相
のコリオリの力が発生し、これが上下方向の加振
された導管変位に加算される形で振動の方向にあ
らわれる。従つて、直管の場合も耐圧性は向上す
るが、振動方向と同一方向に発生するコリオリ力
による変形に対する剛性は従来とは大きく変化す
ることはない。
In addition, in the case of straight pipes, the center of the support members 21 and 22
By vibrating up and down on the MM' axis, the fluid is given opposite motion in the supporting members 21 and 22, so Coriolis forces of opposite phase are generated near each supporting member, which causes the upward and downward movements. It appears in the direction of vibration in addition to the excited conduit displacement in the direction. Therefore, even in the case of a straight pipe, the pressure resistance is improved, but the rigidity against deformation due to the Coriolis force generated in the same direction as the vibration direction does not change significantly from the conventional pipe.

効 果 上述のように、本案によれば簡単な耐圧フイン
を導管壁に固設することにより、安価にしかも感
度を大幅に低下することなしに耐圧特性を向上さ
せることができる。
Effects As described above, according to the present invention, by fixing a simple pressure-resistant fin to the conduit wall, pressure-resistant characteristics can be improved at low cost and without significantly reducing sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本案による質量流量計の示す一実施
例を説明するための要部構成図、第2図は他の実
施例を説明するための要部構成図、第3図は、従
来の質量流量計の一例を説明するための構成図
で、Aは平面図、Bは正面図である。 1……導管、2……支持部材、3……往復動部
材、4……電磁コイル、5……磁石、7……光検
出器、8……遮閉板。
FIG. 1 is a block diagram of main parts for explaining one embodiment of the mass flowmeter according to the present invention, FIG. 2 is a block diagram of main parts for explaining another embodiment, and FIG. FIG. 1 is a configuration diagram for explaining an example of a mass flowmeter, in which A is a plan view and B is a front view. DESCRIPTION OF SYMBOLS 1... Conduit, 2... Supporting member, 3... Reciprocating member, 4... Electromagnetic coil, 5... Magnet, 7... Photodetector, 8... Shielding plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流体を流通する導管上の2点に支持点をもち、
これら支持点に挟まれた区間に単振運動を与えて
流体の流れが前記支持点のまわりに単振運動する
ことによつて生ずるコリオリの力を測定し、この
コリオリの力に比例した質量流計を求める流量計
において、上記導管の軸と直交するように複数の
板状耐圧フインを導管外周壁に等間隔に固設した
ことを特徴とする質量流量計。
It has support points at two points on the conduit through which the fluid flows,
The Coriolis force generated when the fluid flow moves around the support points by applying a simple harmonic motion to the section between these support points is measured, and the mass flow proportional to this Coriolis force is measured. 1. A mass flowmeter characterized in that a plurality of plate-like pressure-resistant fins are fixed at equal intervals on the outer peripheral wall of the conduit so as to be perpendicular to the axis of the conduit.
JP8826186U 1986-06-10 1986-06-10 Expired JPH0346334Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8826186U JPH0346334Y2 (en) 1986-06-10 1986-06-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8826186U JPH0346334Y2 (en) 1986-06-10 1986-06-10

Publications (2)

Publication Number Publication Date
JPS62199633U JPS62199633U (en) 1987-12-19
JPH0346334Y2 true JPH0346334Y2 (en) 1991-09-30

Family

ID=30946215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8826186U Expired JPH0346334Y2 (en) 1986-06-10 1986-06-10

Country Status (1)

Country Link
JP (1) JPH0346334Y2 (en)

Also Published As

Publication number Publication date
JPS62199633U (en) 1987-12-19

Similar Documents

Publication Publication Date Title
JP2778836B2 (en) Coriolis effect flowmeter with increased sensitivity using sensors close to the nodes
US6223605B1 (en) Coriolis-type mass flow sensor with a single measuring tube
US4934195A (en) Coriolis mass flowmeter
US6360614B1 (en) Method and corresponding sensors for measuring mass flow rate
US7287438B2 (en) Method and apparatus for force balancing of a Coriolis flow meter
US4716771A (en) Symmetrical mass flow meter
JP2009534686A (en) Equilibrium structure for single curved tube type Coriolis flowmeter
JPS62238419A (en) Device and method for continuously measuring flow
EP0381302B1 (en) Measuring mass flow rates of fluid flows
US7437949B2 (en) Tertiary mode vibration type Coriolis flowmeter
US7597007B2 (en) Split balance weights for eliminating density effect on flow
JPH0346334Y2 (en)
JPH0678924B2 (en) Mass flow meter
JPH0341319A (en) Coriolis mass flowmeter
JP3782438B1 (en) Coriolis flow meter with double-loop flow tube
JPH0455250B2 (en)
JP2992162B2 (en) Coriolis flow meter
JP3475786B2 (en) Coriolis mass flowmeter
JPH0455253B2 (en)
JP2984134B2 (en) Coriolis flow meter
JPH067324Y2 (en) Mass flow meter
JPH0650784A (en) Mass flowmeter
JP3834144B2 (en) Counter balance tube type Coriolis flow meter
JPH0455252B2 (en)
JPH0438260Y2 (en)