JPH0678924B2 - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JPH0678924B2
JPH0678924B2 JP2325787A JP2325787A JPH0678924B2 JP H0678924 B2 JPH0678924 B2 JP H0678924B2 JP 2325787 A JP2325787 A JP 2325787A JP 2325787 A JP2325787 A JP 2325787A JP H0678924 B2 JPH0678924 B2 JP H0678924B2
Authority
JP
Japan
Prior art keywords
axis
conduit
mass
curved conduit
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2325787A
Other languages
Japanese (ja)
Other versions
JPS63191024A (en
Inventor
信吾 五味
輝基 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP2325787A priority Critical patent/JPH0678924B2/en
Publication of JPS63191024A publication Critical patent/JPS63191024A/en
Publication of JPH0678924B2 publication Critical patent/JPH0678924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/8472Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、質量流量計、より詳細には、軸対称な湾曲導
管を主構成要素とするコリオリの力式質量流量計におい
て、被測定流体の密度が変化しても誤差の生じないよう
にした質量流量計に関する。
Description: TECHNICAL FIELD The present invention relates to a mass flow meter, and more particularly to a Coriolis force type mass flow meter whose main component is an axisymmetric curved conduit, in which the density of a fluid to be measured is changed. The present invention relates to a mass flowmeter that does not cause an error.

従来技術 導管内を単位質量mの流体が流速Vで流れているとき、
この流体に対して角速度ωの振動を与えると、流管流体
に、流体の質量流量に比例し、流体の流れ方向と流体を
振動させる角速度のベクトル方向とのベクトル積と一致
する向きのコリオリの力が発生することが知られ、この
原理を利用した質量流量計が、例えば、特開昭54−5257
0号公報において公知である。この流量計は第2図に示
すようにU字形の導管(湾曲導管)1を軸XX′に対称に
支持部材2で固着支持するとともに、軸XX′方向に延び
る往復動部材3の一端が支持部材2に固着されている。
この往復動部材3の他端には導管1の固着点を結ぶ軸Y
Y′回りの導管1の固有振動数と実質的に等しい振動数
で加振する電磁コイル4が配設されている。この電磁コ
イル4の軸上に磁石4が導管1に保持板6を介して装着
されており、図示しない駆動源によりZZ′方向に吸収反
発され、この結果、導管1は軸YY′の回りに駆動され
る。これによりQ方向に流れる液体に対してコリオリの
力が作用し、XX′軸まわりに回転力が生ずる。これを導
管1の両腕に対称的に固設された遮閉板8により遮光さ
れる光検出器7における光量変化から、導管1の両腕が
中立面を通過する時間差を出し、これからコリオリの力
を求めている。
Prior Art When a fluid of unit mass m flows at a flow velocity V in a conduit,
When this fluid is oscillated at an angular velocity ω, the Coriolis of the direction in which the flow tube fluid is proportional to the mass flow rate of the fluid, and which corresponds to the vector product of the flow direction of the fluid and the vector direction of the angular velocity vibrating the fluid It is known that force is generated, and a mass flowmeter utilizing this principle is disclosed in, for example, Japanese Patent Laid-Open No. 54-5257.
It is known in Japanese Patent Publication No. 0. As shown in FIG. 2, this flow meter has a U-shaped conduit (curved conduit) 1 fixedly supported by a supporting member 2 symmetrically with respect to an axis XX ', and one end of a reciprocating member 3 extending in the direction of the axis XX' is supported. It is fixed to the member 2.
At the other end of the reciprocating member 3, there is an axis Y connecting the fixing points of the conduit 1.
An electromagnetic coil 4 is provided which vibrates at a frequency substantially equal to the natural frequency of the conduit 1 around Y '. The magnet 4 is attached to the conduit 1 via the holding plate 6 on the axis of the electromagnetic coil 4, and is absorbed and repulsed in the ZZ 'direction by a driving source (not shown). As a result, the conduit 1 moves around the axis YY'. Driven. As a result, Coriolis force acts on the liquid flowing in the Q direction, and a rotational force is generated around the XX 'axis. From the change in the amount of light in the photodetector 7 that is shielded by the shielding plates 8 that are symmetrically fixed to both arms of the conduit 1, a time difference for both arms of the conduit 1 to pass through the neutral plane is obtained. Seeking the power of.

以上のU字形の湾曲導管を用いて、コリオリの力を該導
管の基準面を各々の導管腕を通過する時間差として求め
る方式においては、X軸まわりの捩りモーメントと捩り
角とが比例する微少捩り範囲では、コリオリの力の比例
項の一つである振動周波数の項が消去され、質量流量は
時間差だけの関数として求められる。
In the above U-shaped curved conduit, the Coriolis force is obtained as the time difference between the reference plane of the conduit and each arm of the conduit. In the method, the torsion moment about the X axis and the torsion angle are proportional to each other. In the range, the vibration frequency term, which is one of the proportional terms of the Coriolis force, is eliminated, and the mass flow rate is obtained as a function of the time difference only.

従来技術における問題点 上述の従来技術は、支持部材2と共通の基板として固有
振動数が実質的に等しくなるように選ばれた導管1と往
復動部材3とで音叉状に振動させることにより、コイル
4と磁石5とによる電磁駆動エネルギを最小にするよう
な試みがなされ、一般に、このような共振周波数で加振
する場合の振動振幅に対して極めて小さいコリオリの力
による導管1の変位を、U字形のような湾曲導管とする
ことによりXX′軸のまわりに回転モーメントを大きくし
て、実質的に大きい変位量とすることが可能となる。こ
の結果、高感度な変位検出ができ、精度の高い質量流量
を得ることができた。この様な加振方式でのコリオリの
力は、その原理から明らかなように、導管1のYY′軸ま
わりの振動周波数と等しい周波数で発生する。従来技術
においては、導管1のYY′まわりの固有振動数よりもX
X′軸まわりの固有振動を大きくとっているが、理想的
にはオリコリの力の発生するXX′軸まわりの振動・振幅
特性は、振動周波数が変化しても振幅一定となることで
あり、振動周波数が変化してもオリコリの力による変位
量が変化しないことである。しかし、現実には、XX′軸
まわりの振動特性によって振動周波数が変化すると異な
った変位量が検出される。導管1の固有振動数は被測定
流体の密度により変化するので質量流量も僅かに変化す
るという問題点があった。流体の密度影響を受けずに質
量流量を測定する質量流量計にとっては、精度向上を求
める上において重大な問題点となっている。
Problems in the Related Art In the above-described related art, by vibrating in a tuning fork shape by the conduit 1 and the reciprocating member 3, which are selected as the substrate common to the supporting member 2 so that the natural frequencies are substantially equal, Attempts have been made to minimize the electromagnetic drive energy by the coil 4 and the magnet 5, and generally the displacement of the conduit 1 due to the Coriolis force, which is extremely small relative to the vibration amplitude when vibrating at such a resonance frequency, By using a curved conduit such as a U-shape, it is possible to increase the rotational moment about the XX 'axis and to obtain a substantially large displacement amount. As a result, highly sensitive displacement detection was possible and a highly accurate mass flow rate could be obtained. As is clear from the principle, the Coriolis force in such a vibration system is generated at a frequency equal to the vibration frequency of the conduit 1 around the YY 'axis. In the conventional technique, X is more than the natural frequency of the conduit 1 around YY ′.
Although the natural vibration around the X ′ axis is large, ideally the vibration / amplitude characteristics around the XX ′ axis where the force of the orientation is generated is that the amplitude is constant even if the vibration frequency changes, This means that the amount of displacement due to the force of the orientation does not change even if the vibration frequency changes. However, in reality, when the vibration frequency changes due to the vibration characteristics around the XX 'axis, different displacement amounts are detected. Since the natural frequency of the conduit 1 changes depending on the density of the fluid to be measured, the mass flow rate also slightly changes. For a mass flow meter that measures the mass flow rate without being affected by the density of the fluid, this is a serious problem in seeking accuracy improvement.

問題解決の手段 上述の問題点に対して、本出願人は被測定流体の密度が
異なった場合においても、各々の異なった密度の流体が
流れているときの湾曲導管1のXX′軸まわりの固有振動
数ωとYY′軸まわりの固有振動数ωbとの比が流体密
度が変化しても一定な値をとるとき、密度影響を受けな
い正確な質量流量が求められることを実験的に確めた。
Means for Solving the Problems To solve the above-mentioned problems, the present applicant has found that even when the densities of the fluids to be measured are different, when the fluids of different densities flow around the XX ′ axis of the curved conduit 1. When the ratio of the natural frequency ω T and the natural frequency ω b around the YY ′ axis has a constant value even if the fluid density changes, it is experimentally shown that an accurate mass flow rate that is not affected by the density can be obtained. I confirmed.

実施例 第2図において、密度ρの流体が流れている導管1の質
量をM,Y軸まわりのばね定数をKyとし、X軸まわりの慣
性モーメントをJ,ねじりばね定数をKθとすると、それ
ぞれの固有振動数ωy,ωθは で表わせる。
Example In FIG. 2, assuming that the mass of the conduit 1 through which the fluid of density ρ is flowing is M, the spring constant about the Y axis is Ky, the moment of inertia about the X axis is J, and the torsion spring constant is Kθ, respectively. The natural frequencies ωy and ωθ of Can be expressed as

導管1および該導管1内に存在する流体の質量を各々mp
およびml,慣性モーメントをjp,jlとすると、(1)式
は、 で表わされる。(2)式において、導管1のY軸および
X軸まわりのばね定数Ky,Kθは一定である範囲内でωy
とωθとの比が一定となる条件を求めると、導管1の質
量mpと慣性モーメントjpの比を、導管1内の流体質量ml
と慣性モーメントjlとの比と等しくすることであり、 なる式を満足することである。(3)式で左辺は流体に
より定まるものであるから、右辺の導管の質量mp又は慣
性モーメントjpを変えて、(3)式に合せる。例えば、
導管1とX軸上との交点にX軸まわりの導管1の慣性モ
ーメントjpに影響を及ぼさないX軸上に長い質量mを付
加することにより導管1の質量を増加するか、Y軸に平
行する線と交わる導管1の両腕に等しい質量を付加して
慣性モーメントjpを増加させるかをすることにより
(3)式を満足させるものである。通常は、導管1のX
軸上に質量mを付加することが部品点数も少なく有利で
あるため、この方法について述べる。例えば、被測定流
体が水と空気である場合、水および空気を流量計に導入
したときの曲げ固有振動数およびねじり固有振動数を測
定する。水および空気の曲げ固有振動数を各々ωyH,ω
yAとし、ねじり固有振動数を各々ωθ,ωθとす
る。導管のYY′まわりのばね定数Kyも容易に測定できる
ので、XX′軸上の導管に、 の質量、例えば第1図のようにステンレスの薄板10を
(4)式により求めたΔmの質量にして電子ビーム等で
溶着すればよい。
The mass of the conduit 1 and the mass of the fluid existing in the conduit 1 are respectively mp
And ml and the moment of inertia are jp and jl, the equation (1) is It is represented by. In the equation (2), the spring constants Ky and Kθ around the Y axis and the X axis of the conduit 1 are ωy within a certain range.
When the condition that the ratio between ω and ωθ is constant is obtained, the ratio of the mass mp of the conduit 1 to the moment of inertia jp is calculated as follows:
Is equal to the ratio of the moment of inertia jl, Is to satisfy the formula. Since the left side of equation (3) is determined by the fluid, change the mass mp or moment of inertia jp of the conduit on the right side to match equation (3). For example,
Increase the mass of the conduit 1 by adding a long mass m on the X axis that does not affect the moment of inertia jp of the conduit 1 around the X axis at the intersection of the conduit 1 and the X axis, or parallel to the Y axis. The equation (3) is satisfied by adding an equal mass to both arms of the conduit 1 intersecting with the line to increase the inertia moment jp. Usually X in conduit 1
This method will be described because it is advantageous to add the mass m on the shaft because the number of parts is small. For example, when the fluids to be measured are water and air, the bending natural frequency and the torsional natural frequency when water and air are introduced into the flowmeter are measured. The bending natural frequencies of water and air are ω y H and ω, respectively.
Let y A and the torsional natural frequencies be ω θ H and ω θ A , respectively. Since the spring constant Ky around the YY ′ of the conduit can be easily measured, 1. For example, as shown in FIG. 1, the stainless steel thin plate 10 may be welded with an electron beam or the like so as to have a mass of Δm obtained by the equation (4).

効果 上述のごとく、本発明によると密度の異なる流体を導通
したときの曲げ固有振動数およびねじり固有振動数を測
定し、更に流量計湾曲導管のばね定数を測定することで
(4)式で定められる付加質量を付加するという簡単な
手法により、前記曲げおよびねじり固有振動数の比を液
体密度の変化した場合でも一定とすることが可能で、質
量流量測定結果において、従来の液体密度の変化による
誤差はなくなり高精度の質量流量計を提供できる。
Effect As described above, according to the present invention, the bending natural frequency and the torsional natural frequency when conducting fluids having different densities are measured, and further, the spring constant of the flow meter curved conduit is measured to determine by the formula (4). It is possible to make the ratio of the natural frequencies of bending and torsion constant even if the liquid density changes by a simple method of adding the added mass that is obtained. There is no error and a highly accurate mass flow meter can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一例を説明するための図で、第2図
は従来技術の一例を説明するための図である。 1…湾曲導管,2…支持部材,3…往復動部材,4…コイル,5
…磁石,7,8…各々光検出器、遮閉板,10…付加質量。
FIG. 1 is a diagram for explaining an example of the present invention, and FIG. 2 is a diagram for explaining an example of a conventional technique. 1 ... Curved conduit, 2 ... Support member, 3 ... Reciprocating member, 4 ... Coil, 5
… Magnets, 7, 8… Photodetectors, shielding plates, 10… Additional mass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Y軸上の2点間で支持され、該2点間の中
央を通り前記Y軸と直交するX軸に軸対称な湾曲導管に
前記Y軸またはX軸と平行する軸を軸として正弦振動を
与え、X軸まわりに生ずるコリオリの力から質量流量を
求める質量流量計において、前記湾曲導管に所定質量を
付加して該湾曲導管のY軸まわりの固有振動数と、X軸
まわりの固有振動数との比を前記湾曲導管を流通する被
測定流体の密度が変化しても一定な値とすることを特徴
とする質量流量計。
1. A curved conduit, which is supported between two points on the Y axis and is axially symmetric with respect to the X axis passing through the center between the two points and orthogonal to the Y axis, is provided with an axis parallel to the Y axis or the X axis. In a mass flowmeter which applies a sine vibration as an axis and determines a mass flow rate from a Coriolis force generated around an X axis, a predetermined mass is added to the curved conduit to obtain a natural frequency about the Y axis of the curved conduit and an X axis. A mass flowmeter, characterized in that a ratio with a natural frequency around is a constant value even if a density of a fluid to be measured flowing through the curved conduit changes.
【請求項2】前記X軸上の湾曲導管に一体的におもりを
固設し、該おもりの質量Δmを前記湾曲導管に密度ρ
およびρの流体を流通したときの該湾曲導管のY軸、
X軸まわりの固有振動数をωy1,ωy1およびωθ,ω
θとし、Y軸のまわりのばね定数をKyとしたとき、 としたことを特徴とする特許請求の範囲第(1)項に記
載の質量流量計。
2. A weight is integrally fixed to the curved conduit on the X-axis, and a mass Δm of the weight is applied to the curved conduit at a density ρ 1.
And the Y-axis of the curved conduit when flowing a fluid of ρ 2 ,
The natural frequencies around the X axis are ωy 1 , ωy 1 and ωθ 1 , ω
When θ 2 and the spring constant around the Y axis is Ky, The mass flowmeter according to claim (1), characterized in that
JP2325787A 1987-02-02 1987-02-02 Mass flow meter Expired - Lifetime JPH0678924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325787A JPH0678924B2 (en) 1987-02-02 1987-02-02 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325787A JPH0678924B2 (en) 1987-02-02 1987-02-02 Mass flow meter

Publications (2)

Publication Number Publication Date
JPS63191024A JPS63191024A (en) 1988-08-08
JPH0678924B2 true JPH0678924B2 (en) 1994-10-05

Family

ID=12105548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325787A Expired - Lifetime JPH0678924B2 (en) 1987-02-02 1987-02-02 Mass flow meter

Country Status (1)

Country Link
JP (1) JPH0678924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557924B1 (en) 2018-05-14 2020-02-11 SOS Lab co., Ltd Lidar device
US10591598B2 (en) 2018-01-08 2020-03-17 SOS Lab co., Ltd Lidar device
US11953626B2 (en) 2018-01-08 2024-04-09 SOS Lab co., Ltd LiDAR device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2893286B2 (en) * 1990-05-17 1999-05-17 グンゼ株式会社 Heat-shrinkable foamed composite film and method for producing the same
JP2758798B2 (en) * 1992-11-19 1998-05-28 株式会社オーバル Coriolis flow meter
US5734112A (en) * 1996-08-14 1998-03-31 Micro Motion, Inc. Method and apparatus for measuring pressure in a coriolis mass flowmeter
JP4819541B2 (en) * 2006-03-23 2011-11-24 株式会社フジシールインターナショナル Shrink label
JP4881248B2 (en) * 2007-07-13 2012-02-22 株式会社フジシールインターナショナル Shrinkage molded body manufacturing method and shrinkage molded body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591598B2 (en) 2018-01-08 2020-03-17 SOS Lab co., Ltd Lidar device
US10613224B2 (en) 2018-01-08 2020-04-07 SOS Lab co., Ltd LiDAR device
US11493630B2 (en) 2018-01-08 2022-11-08 SOS Lab co., Ltd LiDAR device
US11953626B2 (en) 2018-01-08 2024-04-09 SOS Lab co., Ltd LiDAR device
US11953596B2 (en) 2018-01-08 2024-04-09 Sos Lab Co., Ltd. LiDAR device
US10557924B1 (en) 2018-05-14 2020-02-11 SOS Lab co., Ltd Lidar device
US10578721B2 (en) 2018-05-14 2020-03-03 SOS Lab co., Ltd LiDAR device
US10705190B2 (en) 2018-05-14 2020-07-07 SOS Lab co., Ltd LiDAR device

Also Published As

Publication number Publication date
JPS63191024A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
JP3541010B2 (en) Method of increasing sensitivity by balance bar and Coriolis flowmeter therewith
US7287438B2 (en) Method and apparatus for force balancing of a Coriolis flow meter
US4895031A (en) Sensor mounting for coriolis mass flow rate meter
US4658657A (en) Mass flow meter
EP0185709A1 (en) Apparatus for mass flow rate and density measurement
KR100453257B1 (en) Method and apparatus for a coriolis flowmeter having its flow calibration factor independent of material density
US7597007B2 (en) Split balance weights for eliminating density effect on flow
JPH0678924B2 (en) Mass flow meter
US8667852B2 (en) Flow meter including a balanced reference member
JP2951456B2 (en) Coriolis mass flowmeter
JPH0346334Y2 (en)
JPH0436410Y2 (en)
JPH0436409Y2 (en)
PL210330B1 (en) Method and apparatus for force balancing of a coriolis flow meter
JPH05164588A (en) Coriolis massflow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term