JPH0345088Y2 - - Google Patents

Info

Publication number
JPH0345088Y2
JPH0345088Y2 JP6694384U JP6694384U JPH0345088Y2 JP H0345088 Y2 JPH0345088 Y2 JP H0345088Y2 JP 6694384 U JP6694384 U JP 6694384U JP 6694384 U JP6694384 U JP 6694384U JP H0345088 Y2 JPH0345088 Y2 JP H0345088Y2
Authority
JP
Japan
Prior art keywords
condenser
absorber
evaporator
refrigerant
condensable gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6694384U
Other languages
Japanese (ja)
Other versions
JPS60178776U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6694384U priority Critical patent/JPS60178776U/en
Publication of JPS60178776U publication Critical patent/JPS60178776U/en
Application granted granted Critical
Publication of JPH0345088Y2 publication Critical patent/JPH0345088Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は吸収ヒートポンプにおける不凝縮性ガ
ス排出装置に関する。これは、吸収器に滞留する
水素ガスを含む不凝縮性ガスや冷媒蒸気を導出
し、冷媒蒸気は吸収ヒートポンプの熱回収に再利
用すると共に、不凝縮性ガスは凝縮器の不凝縮性
ガスと一緒に外部に能率よく排出することを図る
分野で利用されるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a non-condensable gas discharge device in an absorption heat pump. This extracts non-condensable gas including hydrogen gas and refrigerant vapor that remain in the absorber, and reuses the refrigerant vapor for heat recovery in the absorption heat pump. It is used in fields where wastewater is efficiently discharged to the outside.

〔従来技術〕[Prior art]

蒸発器、吸収器、再生器および凝縮器などの真
空容器から構成されている吸収ヒートポンプにお
いては、例えば冷媒である水と吸収液である臭化
リチウム水溶液とが、液体または冷媒蒸気の状態
で循環することにより、吸収器で温水または蒸気
が得られるようになつている。このような吸収ヒ
ートポンプでは、蒸発器と吸収器の内部圧力はお
よそ500mmHg、再生器と凝縮器の内部圧力はおよ
そ40mmHgといつたような真空となつている。し
たがつて、溶接などによつて気密が図られている
が、それにも拘わらず僅かな空気が侵入したり、
鉄製の真空容器が冷媒および吸収液の水分により
酸化され酸化被膜が生成される。このとき発生す
る水素ガスや侵入した空気は不凝縮性ガスで、真
空容器内で滞留している。そのうち蒸発器の不凝
縮性ガスは冷媒の蒸気と共に吸収器に導入され、
吸収器の不凝縮性ガスと共に管群中に集まる。ま
た、再生器の不凝縮性ガスは前述と同様、冷媒蒸
気と共に凝縮器に導入され凝縮器の管群中に集ま
る。これらの不凝縮性ガスは吸収器の管群におけ
る熱回収能力を著しく低下させると共に、凝縮器
の管群における伝熱効果を著しく低下させる原因
となつている。したがつて、このような不凝縮性
ガスを外部に排出するために従来の吸収ヒートポ
ンプでは、吸収器の方が凝縮器より内部圧力が高
いことに着目して不凝縮性ガスを一旦全部凝縮器
に集積し、冷媒蒸気との混合物として抽気ポンプ
で排出している。しかし、吸収器から凝縮器に不
凝縮性ガスや冷媒蒸気を導出する際に、冷媒蒸気
の分圧が不凝縮性ガスの分圧より高いので、殆ど
不凝縮性ガスは導出されず、大部分冷媒蒸気で導
出される現象が生じている。多量の冷媒蒸気が凝
縮器に導入されると、この冷媒蒸気は凝縮器内で
冷却水に冷却され冷媒液となつてしまい、本来吸
収器で凝縮潜熱を発生し熱エネルギーとして回収
されるべき機能を果たさなくなる。すなわち、冷
媒蒸気は蒸発器で発生し、そのまま凝縮器に導入
されて冷媒液となるということを繰り返すだけ
で、熱回収されず熱損失になるという問題があ
る。加えて、吸収器における不凝縮性ガスの分圧
が、冷媒蒸気に比べ低いために取り出しが困難で
あるという問題がある。
In an absorption heat pump that is composed of vacuum vessels such as an evaporator, absorber, regenerator, and condenser, water as a refrigerant and an aqueous lithium bromide solution as an absorption liquid are circulated in the form of liquid or refrigerant vapor. This allows hot water or steam to be obtained in the absorber. In such an absorption heat pump, the internal pressure of the evaporator and absorber is approximately 500 mmHg, and the internal pressure of the regenerator and condenser is approximately 40 mmHg. Therefore, although airtightness is achieved by welding, etc., a small amount of air may still get in.
An iron vacuum container is oxidized by the moisture in the refrigerant and absorption liquid, forming an oxide film. The hydrogen gas generated at this time and the air that enters are noncondensable gases and remain in the vacuum container. Among them, the non-condensable gas in the evaporator is introduced into the absorber together with the refrigerant vapor,
It collects in the tube bank along with the non-condensable gases of the absorber. Further, as described above, the non-condensable gas in the regenerator is introduced into the condenser together with the refrigerant vapor and collects in the tube group of the condenser. These non-condensable gases significantly reduce the heat recovery ability in the tube group of the absorber, and also cause a significant decrease in the heat transfer effect in the tube group of the condenser. Therefore, in order to discharge such non-condensable gases to the outside, conventional absorption heat pumps focus on the fact that the internal pressure of the absorber is higher than that of the condenser, and remove all the non-condensable gases from the condenser. It accumulates in the air and is discharged as a mixture with refrigerant vapor using a bleed pump. However, when non-condensable gas and refrigerant vapor are delivered from the absorber to the condenser, the partial pressure of the refrigerant vapor is higher than the partial pressure of the non-condensable gas, so very little non-condensable gas is delivered, and most of the non-condensable gas is A phenomenon is occurring in which refrigerant vapor is extracted. When a large amount of refrigerant vapor is introduced into the condenser, this refrigerant vapor is cooled by cooling water in the condenser and becomes refrigerant liquid, which generates latent heat of condensation in the absorber, a function that should originally be recovered as thermal energy. I will not be able to fulfill my purpose. In other words, refrigerant vapor is generated in the evaporator and is introduced into the condenser as it is to become refrigerant liquid, which is simply repeated, resulting in heat loss without being recovered. In addition, there is a problem in that the partial pressure of the non-condensable gas in the absorber is lower than that of refrigerant vapor, making it difficult to extract.

〔考案の目的〕[Purpose of invention]

本考案は上述の問題を解消するためにされたも
ので、吸収器内の不凝縮性ガスや冷媒蒸気を導出
し、冷媒蒸気を熱エネルギーとして再利用すると
共に、不凝縮性ガスを容易に取り出すことのでき
る吸収ヒートポンプにおける不凝縮性ガス排出装
置を提供することを目的とする。
This invention was developed to solve the above-mentioned problems, and it extracts the non-condensable gas and refrigerant vapor in the absorber, reuses the refrigerant vapor as thermal energy, and easily extracts the non-condensable gas. It is an object of the present invention to provide a non-condensable gas evacuation device in an absorption heat pump that can be used in an absorption heat pump.

〔考案の構成〕[Structure of the idea]

本考案の特徴とするところを第1図を参照して
説明すると、蒸発器9と再生器19とに廃熱を供
給し、凝縮器8に冷却水を通し、再生器19から
吸収器3に向かう濃度の高い吸収液と吸収器3か
ら再生器19に向かう濃度の低い吸収液とを熱交
換し、凝縮器8の冷媒液を移送ポンプ18で蒸発
器9に移送し、蒸発器9で発生した冷媒蒸気を吸
収器3に導入し、吸収器3で高温の熱を回収する
吸収ヒートポンプであつて、吸収器3内で滞留す
る水素ガスを含む不凝縮性ガスや冷媒蒸気を絞り
5を介して導入すると共に凝縮器8から蒸発器9
に向かう冷媒液の一部を流入して冷媒蒸気を凝縮
させる凝縮室6を設け、この凝縮室6で分離され
た不凝縮性ガスを凝縮器8に導入させる導入管路
12に絞り13を介在させ、凝縮室6を流過した
冷媒液を蒸発器9へ供給する供給管路11を設
け、凝縮室6で凝縮された冷媒液を凝縮器8に還
流する還流管路14を設けた吸収ヒートポンプに
おける不凝縮性ガス排出装置としたことである。
The features of the present invention will be explained with reference to FIG. Heat is exchanged between the high-concentration absorbing liquid heading from the absorber 3 and the low-concentrating absorbing liquid heading from the absorber 3 to the regenerator 19, and the refrigerant liquid in the condenser 8 is transferred to the evaporator 9 by the transfer pump 18. This is an absorption heat pump that introduces the refrigerant vapor into the absorber 3 and recovers high-temperature heat in the absorber 3. is introduced from the condenser 8 to the evaporator 9.
A condensing chamber 6 is provided in which a part of the refrigerant liquid heading to the condensing chamber 6 flows in to condense the refrigerant vapor, and a throttle 13 is interposed in the introduction pipe 12 through which the noncondensable gas separated in the condensing chamber 6 is introduced into the condenser 8. The absorption heat pump is provided with a supply pipe 11 for supplying the refrigerant liquid that has passed through the condensation chamber 6 to the evaporator 9, and a reflux pipe 14 that returns the refrigerant liquid condensed in the condensation chamber 6 to the condenser 8. This is a non-condensable gas exhaust device.

〔実施例〕〔Example〕

以下に本考案の吸収ヒートポンプをその実施例
を示す図面に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the absorption heat pump of this invention will be explained in detail based on the drawing which shows the Example.

第1図は本考案の1実施例である不凝縮性ガス
排出装置1を含む吸収ヒートポンプ2の系統図で
ある。吸収器3には不凝縮性ガスや冷媒蒸気を導
出できる管群中に導出管路4の管端が設けられて
いる。導出管路4には絞り5が介在され、その先
端は凝縮室6に連結されている。この凝縮室6に
は、導入された不凝縮性ガスや冷媒蒸気を冷却す
るための冷媒液を流入する流入管路7が設けら
れ、その他端は移送ポンプ18により凝縮器8の
冷媒液を蒸発器9に移送する管路10の分岐点1
0Aに接続されている。一方、管路10の他の分
岐点10Bと凝縮室6内を流過した後の冷媒液の
出口とが供給管路11で連結されている。なお、
この供給管路11は直接蒸発器9に連結されてい
てもよい。凝縮室6の上部6Aには不凝縮性ガス
を凝縮器8に導入させるための導入管路12の一
端が連結され、その他端は不凝縮性ガスを減圧す
る絞り13を介して、凝縮器8の管群中に突出さ
れている。凝縮室6の底部6Bには凝縮室6内で
凝縮された冷媒液を凝縮器8に還流させる還流管
路14が設けられ、その他端は凝縮器8の液溜り
8a近傍に連結されている。凝縮器8の管群中に
は不凝縮性ガスや冷媒蒸気を導出する管路15の
管端が設けられている。この管路15には不凝縮
性ガスを排出する抽気ポンプ16が介在されてい
る。
FIG. 1 is a system diagram of an absorption heat pump 2 including a non-condensable gas discharge device 1, which is an embodiment of the present invention. The absorber 3 is provided with a pipe end of a lead-out pipe line 4 in a group of pipes from which non-condensable gas and refrigerant vapor can be led out. A constrictor 5 is interposed in the outlet conduit 4, and its tip is connected to a condensing chamber 6. This condensation chamber 6 is provided with an inflow pipe 7 through which a refrigerant liquid flows in to cool the introduced non-condensable gas and refrigerant vapor, and the other end is used to evaporate the refrigerant liquid in the condenser 8 using a transfer pump 18. Branch point 1 of pipe line 10 to be transferred to vessel 9
Connected to 0A. On the other hand, another branch point 10B of the pipe line 10 and the outlet of the refrigerant liquid after flowing through the condensing chamber 6 are connected by a supply pipe line 11. In addition,
This supply line 11 can also be connected directly to the evaporator 9 . One end of an introduction pipe 12 for introducing non-condensable gas into the condenser 8 is connected to the upper part 6A of the condensing chamber 6, and the other end is connected to the condenser 8 through a throttle 13 for reducing the pressure of the non-condensable gas. It is protruded into the tube group of. A reflux pipe 14 is provided at the bottom 6B of the condensing chamber 6 for refluxing the refrigerant liquid condensed in the condensing chamber 6 to the condenser 8, and the other end is connected to the vicinity of the liquid reservoir 8a of the condenser 8. In the tube group of the condenser 8, a tube end of a conduit 15 for leading out noncondensable gas and refrigerant vapor is provided. A bleed pump 16 for discharging non-condensable gas is interposed in this conduit 15.

このような構成によれば、次のように作動させ
ることができる。
According to such a configuration, it can be operated as follows.

吸収器3と蒸発器9内の圧力はほぼ500mmHg、
凝縮器8と再生器19内の圧力は40mmHgといつ
たような真空になつており、外部から侵入した空
気や内部で発生する水素ガスを含む不凝縮性ガス
は管群中に滞留している。これらの不凝縮性ガス
のうち、蒸発器9の不凝縮性ガスは管路20を介
して吸収器3へ、再生器19の不凝縮性ガスは管
路21を介して凝縮器8へそれぞれ冷媒蒸気と共
に導入される。そのうち吸収器3に導入された低
い分圧を有する不凝縮性ガスや高い分圧を有する
冷媒蒸気は導出管路4の絞り5で減圧され、多量
の冷媒蒸気のみが導出されるのを抑制しながら
徐々に凝縮室6に導入される。一方、凝縮器8か
ら蒸発器9へ向かう冷媒液の一部が、管路10の
分岐点10Aから流入管路7を介して凝縮室6に
流入される。この冷媒液により前述の不凝縮性ガ
スや冷媒蒸気は冷却され、それぞれの分圧は凝縮
室6内の低い圧力とほぼ等しくなる。この不凝縮
性ガスは導入管路12を介し絞り13で減圧され
ながらより低圧の凝縮器8に導入される。導入さ
れた不凝縮性ガスは、凝縮器8内に滞留する不凝
縮性ガスや冷媒蒸気と一緒に管路15を介して抽
気ポンプ16により外部に放出される。前述の凝
縮室6に導入された冷媒蒸気は冷媒液に冷却され
ると共に、その分圧は既に不凝縮性ガスのそれと
等しいか低くなつているので、導入管路12に排
出されることなく凝縮され冷媒液となる。その結
果、冷媒液は還流管路14を介して凝縮器8の液
溜り8aに還流される。液溜り8aの冷媒液は移
送ポンプ18により管路10を移送されて蒸発器
9の液溜り9aに流れ込む。このとき冷媒液の一
部は分岐点10Aで分流され凝縮室6で上述した
作動が行なわれる。凝縮室6を出た冷媒液は、供
給管路11を介して分岐点10Bで管路10を移
送されてきた残部の冷媒液と合流し蒸発器9の液
溜り9aに流れ込む。
The pressure inside absorber 3 and evaporator 9 is approximately 500mmHg,
The pressure inside the condenser 8 and the regenerator 19 is a vacuum of 40 mmHg, and non-condensable gases including air entering from the outside and hydrogen gas generated inside remain in the tube group. . Among these non-condensable gases, the non-condensable gas in the evaporator 9 is sent to the absorber 3 via a pipe 20, and the non-condensable gas in the regenerator 19 is sent to the condenser 8 via a pipe 21 as a refrigerant. Introduced with steam. Among them, the non-condensable gas having a low partial pressure and the refrigerant vapor having a high partial pressure introduced into the absorber 3 are depressurized by the restrictor 5 of the outlet pipe 4 to prevent only a large amount of refrigerant vapor from being drawn out. while gradually being introduced into the condensing chamber 6. On the other hand, a part of the refrigerant liquid heading from the condenser 8 to the evaporator 9 flows into the condensation chamber 6 from the branch point 10A of the pipe line 10 via the inlet pipe line 7. The above-mentioned non-condensable gas and refrigerant vapor are cooled by this refrigerant liquid, and their respective partial pressures become approximately equal to the low pressure within the condensing chamber 6. This non-condensable gas is introduced into the lower pressure condenser 8 through the introduction pipe 12 while being reduced in pressure by the throttle 13. The introduced non-condensable gas is discharged to the outside by a bleed pump 16 through a pipe 15 together with the non-condensable gas and refrigerant vapor remaining in the condenser 8 . The refrigerant vapor introduced into the condensing chamber 6 is cooled to refrigerant liquid, and its partial pressure is already equal to or lower than that of the non-condensable gas, so it is condensed without being discharged to the inlet pipe 12. and becomes a refrigerant liquid. As a result, the refrigerant liquid is returned to the liquid reservoir 8a of the condenser 8 via the return pipe line 14. The refrigerant liquid in the liquid reservoir 8a is transferred through the pipe line 10 by the transfer pump 18 and flows into the liquid reservoir 9a of the evaporator 9. At this time, a part of the refrigerant liquid is separated at the branch point 10A, and the above-described operation is performed in the condensing chamber 6. The refrigerant liquid leaving the condensing chamber 6 joins with the remaining refrigerant liquid transferred through the pipe line 10 via the supply pipe line 11 at a branch point 10B, and flows into the liquid reservoir 9a of the evaporator 9.

なお、凝縮器8の管路15に介在された抽気ポ
ンプ16の上流に前述の凝縮室6と同様の別の図
示しない凝縮室を設ければ、一層凝縮器8から不
凝縮性ガスを能率よく排出することができる。
Note that if another condensing chamber (not shown) similar to the aforementioned condensing chamber 6 is provided upstream of the extraction pump 16 interposed in the conduit 15 of the condenser 8, non-condensable gas can be removed from the condenser 8 more efficiently. Can be discharged.

〔考案の効果〕[Effect of idea]

本考案は以上詳細に説明したように、吸収器に
滞留する不凝縮性ガスや冷媒蒸気を導出した後、
凝縮室で不凝縮性ガスと冷媒蒸気とを分離し、冷
媒蒸気は凝縮されて冷媒液となり熱エネルギーと
して再利用される一方、不凝縮性ガスは凝縮器か
ら排出されるようにしたので、従来技術のところ
で説明したように吸収器から導出された冷媒蒸気
をそのまま凝縮器で冷却することはなく有効に熱
回収できる。加えて、不凝縮性ガスを排出できる
ので、真空容器内の管群での熱伝達がよくなり外
部からの供給熱量を有効に利用できる。その結
果、吸収ヒートポンプの熱回収を高めることが可
能となる。
As explained in detail above, the present invention, after extracting the non-condensable gas and refrigerant vapor accumulated in the absorber,
Non-condensable gas and refrigerant vapor are separated in the condensing chamber, and the refrigerant vapor is condensed into refrigerant liquid and reused as thermal energy, while the non-condensable gas is discharged from the condenser. As explained in the technical section, heat can be effectively recovered without directly cooling the refrigerant vapor drawn out from the absorber in the condenser. In addition, since non-condensable gas can be discharged, heat transfer in the tube group inside the vacuum container is improved and the amount of heat supplied from the outside can be used effectively. As a result, it becomes possible to increase the heat recovery of the absorption heat pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の不凝縮性ガス排出装置を含む
吸収ヒートポンプの系統図である。 1……不凝縮性ガス排出装置、2……吸収ヒー
トポンプ、3……吸収器、5,13……絞り、6
……凝縮室、8……凝縮器、9……蒸発器、11
……供給管路、12……導入管路、14……還流
管路、18……移送ポンプ、19……再生器。
FIG. 1 is a system diagram of an absorption heat pump including the non-condensable gas discharge device of the present invention. 1... Non-condensable gas discharge device, 2... Absorption heat pump, 3... Absorber, 5, 13... Throttle, 6
... Condensation chamber, 8 ... Condenser, 9 ... Evaporator, 11
... Supply pipe line, 12... Introductory pipe line, 14... Return pipe line, 18... Transfer pump, 19... Regenerator.

Claims (1)

【実用新案登録請求の範囲】 蒸発器と再生器とに廃熱を供給し、凝縮器に冷
却水を通し、再生器から吸収器に向かう濃度の高
い吸収液と吸収器から再生器に向かう濃度の低い
吸収液とを熱交換し、凝縮器の冷媒液を移送ポン
プで蒸発器に移送し、蒸発器で発生した冷媒蒸気
を吸収器に導入し、吸収器で高温の熱を回収する
吸収ヒートポンプにおいて、 前記吸収器内で滞留する水素ガスを含む不凝縮
性ガスや冷媒蒸気を絞りを介して導入すると共に
前記凝縮器から蒸発器に向かう冷媒液の一部を流
入して前記冷媒蒸気を凝縮させる凝縮室を設け、
この凝縮室で分離された不凝縮性ガスを前記凝縮
器に導入させる導入管路に絞りを介在させ、前記
凝縮室を流過した冷媒液を前記蒸発器へ供給する
供給管路を設け、前記凝縮室で凝縮された冷媒液
を前記凝縮器に還流する還流管路を設けたことを
特徴とする吸収ヒートポンプにおける不凝縮性ガ
ス排出装置。
[Claims for Utility Model Registration] Waste heat is supplied to the evaporator and regenerator, cooling water is passed through the condenser, and a highly concentrated absorbent flows from the regenerator to the absorber and a concentrated absorbent flows from the absorber to the regenerator. An absorption heat pump that exchanges heat with an absorbing liquid with a low temperature, transfers the refrigerant liquid from the condenser to the evaporator using a transfer pump, introduces the refrigerant vapor generated in the evaporator to the absorber, and recovers high-temperature heat in the absorber. In this step, noncondensable gas containing hydrogen gas and refrigerant vapor remaining in the absorber are introduced through a throttle, and a part of the refrigerant liquid heading from the condenser to the evaporator is flowed in to condense the refrigerant vapor. A condensation chamber is installed to
A throttle is interposed in an introduction pipe for introducing the non-condensable gas separated in the condensing chamber into the condenser, and a supply pipe is provided for supplying the refrigerant liquid that has passed through the condensing chamber to the evaporator. 1. A non-condensable gas discharge device for an absorption heat pump, characterized in that a recirculation pipe is provided for recirculating the refrigerant liquid condensed in the condensing chamber to the condenser.
JP6694384U 1984-05-07 1984-05-07 Noncondensable gas evacuation device in absorption heat pump Granted JPS60178776U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6694384U JPS60178776U (en) 1984-05-07 1984-05-07 Noncondensable gas evacuation device in absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6694384U JPS60178776U (en) 1984-05-07 1984-05-07 Noncondensable gas evacuation device in absorption heat pump

Publications (2)

Publication Number Publication Date
JPS60178776U JPS60178776U (en) 1985-11-27
JPH0345088Y2 true JPH0345088Y2 (en) 1991-09-24

Family

ID=30600307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6694384U Granted JPS60178776U (en) 1984-05-07 1984-05-07 Noncondensable gas evacuation device in absorption heat pump

Country Status (1)

Country Link
JP (1) JPS60178776U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160250A (en) * 2008-01-08 2009-07-23 Fujifilm Corp Endoscope cleaning and disinfecting system and method

Also Published As

Publication number Publication date
JPS60178776U (en) 1985-11-27

Similar Documents

Publication Publication Date Title
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
CN107741103A (en) A kind of ammonia absorption type refrigeration combines carbon capturing device
CN206304539U (en) The water reclamation system of desulfurization fume
JPH0345088Y2 (en)
CN107869857A (en) One kind is based on the second kind absorption type mixing heat pump
CN107062933A (en) A kind of heat-exchange method of efficient energy-saving condenser steam injection vacuum system and its heat exchanger
CN207113648U (en) A kind of efficient energy-saving condenser steam injection vacuum system
JP3524582B2 (en) Non-azeotropic mixed fluid cycle plant
CN207856340U (en) A kind of small reduction ratio thermo-compression evaporation enrichment facility of action of forced stirring
CN206626979U (en) A kind of desalinization inversely cools down fixed gas system with multistage condenser
CN205860800U (en) A kind of it is applicable to the stagewise condensing heat exchanger rich in volatile organic gas
CN115823567B (en) Continuous drainage upgrading recovery system
CN219932271U (en) System for high Wen Shu drainage and steam by using low-temperature condensate water of steam turbine
JP2018096673A (en) Absorption type heat exchanging system
CN208458531U (en) A kind of big flow superheated steam condensing unit
JPH0345089Y2 (en)
JPH0354376Y2 (en)
KR100364773B1 (en) puvging device in ammonia absorption heat pump
SU1254179A1 (en) Power plant
JP4020569B2 (en) Absorption chiller / heater
JPH0429339Y2 (en)
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
IT202100018419A1 (en) ABSORPTION HEAT PUMP IMPROVED FOR USE IN HEATING SYSTEMS AND/OR DOMESTIC HOT WATER PRODUCTION WITH HIGH OPERATING TEMPERATURES
JPS6135897Y2 (en)
JP2001082838A (en) Absorption heat pump device