JPH0345089Y2 - - Google Patents

Info

Publication number
JPH0345089Y2
JPH0345089Y2 JP6694584U JP6694584U JPH0345089Y2 JP H0345089 Y2 JPH0345089 Y2 JP H0345089Y2 JP 6694584 U JP6694584 U JP 6694584U JP 6694584 U JP6694584 U JP 6694584U JP H0345089 Y2 JPH0345089 Y2 JP H0345089Y2
Authority
JP
Japan
Prior art keywords
liquid
absorption liquid
absorption
condensable gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6694584U
Other languages
Japanese (ja)
Other versions
JPS60178777U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6694584U priority Critical patent/JPS60178777U/en
Publication of JPS60178777U publication Critical patent/JPS60178777U/en
Application granted granted Critical
Publication of JPH0345089Y2 publication Critical patent/JPH0345089Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は不凝縮性ガス排出装置を備えた吸収ヒ
ートポンプに関する。これは、凝縮器内の水素ガ
スを含む不凝縮性ガスや冷媒蒸気を導出した後低
温の冷媒液により吸収液の温度を下げ、抽気室内
で冷媒蒸気の吸収液への吸収を高めて、かつ抽気
室の圧力を凝縮器の圧力より低くすることにより
不凝縮性ガスの円滑な排出と吸収された冷媒蒸気
の再利用とを図る分野で利用されるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an absorption heat pump equipped with a non-condensable gas evacuation device. This is done by lowering the temperature of the absorption liquid with a low-temperature refrigerant liquid after extracting the non-condensable gas including hydrogen gas and refrigerant vapor in the condenser, and increasing the absorption of refrigerant vapor into the absorption liquid in the bleed chamber. It is used in the field of smooth discharge of non-condensable gas and reuse of absorbed refrigerant vapor by lowering the pressure in the bleed chamber than the pressure in the condenser.

〔従来技術〕[Prior art]

蒸発器、吸収器、再生器および凝縮器などの真
空容器から構成されている吸収ヒートポンプにお
いては、例えば冷媒である水と吸収液である臭化
リチウム水溶液とが、液体または冷媒蒸気の状態
で循環することにより、吸収器で温水または蒸気
が得られるようになつている。このような吸収ヒ
ートポンプでは、蒸発器と吸収器の内部圧力はお
よそ500mmHg、再生器と凝縮器の内部圧力はおよ
そ40mmHgといつたような真空となつている。し
たがつて、溶接などによつて気密が図られている
が、それにも拘わらず僅かな空気が侵入したり、
鉄製の真空容器が冷媒および吸収液の水分により
酸化され酸化被膜が生成される。このとき発生す
る水素ガスや侵入した空気は不凝縮性ガスで、真
空容器内で滞留している。そのうち再生器の不凝
縮性ガスは管路を介して冷媒蒸気と共に凝縮器に
導入され凝縮器の管群中に集まる。この不凝縮性
ガスは凝縮器の管群における伝熱効果を著しく低
下させると共に管群の腐蝕の原因にもなつてい
る。したがつて、このような不凝縮性ガスを外部
に能率よく排出させることが吸収ヒートポンプに
とつて非常に重要な課題である。そのため、従来
の吸収ヒートポンプの不凝縮性ガス排出装置は、
第1図示すように凝縮器1内の不凝縮性ガスや冷
媒蒸気を、エジエクター効果を利用して不凝縮性
ガス導出管路2より抽気室3に送出するようにな
つている。すなわち、再生器4の液溜り4aに貯
留されている吸収液を吸収液ポンプ5により移送
し、これを熱交換器6で外部から供給される冷水
や冷却水によつて冷却する。この吸収液を抽気室
3内で貯留状態にある吸収液に流落させ、このと
きのエジエクター作用により、不凝縮性ガスや冷
媒蒸気を混入させる。そして、不凝縮性ガスを抽
気室3、送気管7、気液分離室8、送出管9、不
凝縮性ガスタンク10を介して外部に排出させる
ことができる。なお、抽気室3内で冷媒蒸気が混
入吸収された吸収液は、吸収液帰還管路11より
再生器4の液溜り4aに帰還される。ところで、
吸収液を外部からの冷水や冷却水で冷却するの
は、冷媒蒸気の吸収液への吸収を高め、冷媒蒸気
が吸収液内を比重の軽い気泡の状態で浮遊するこ
とを防止して、かつ抽気室3内の圧力を凝縮器1
の圧力より低くして不凝縮性ガスを能率よく送気
管より排出させるためである。しかし、吸収液を
冷却するのに、外部の冷水や冷却水を使用すると
吸収液の熱が一部外部へ捨てられることになるの
で、熱損失が大きくなる問題がある。
In an absorption heat pump that is composed of vacuum vessels such as an evaporator, absorber, regenerator, and condenser, water as a refrigerant and an aqueous lithium bromide solution as an absorption liquid are circulated in the form of liquid or refrigerant vapor. This allows hot water or steam to be obtained in the absorber. In such an absorption heat pump, the internal pressure of the evaporator and absorber is approximately 500 mmHg, and the internal pressure of the regenerator and condenser is approximately 40 mmHg. Therefore, although airtightness is achieved by welding, etc., a small amount of air may still get in.
An iron vacuum container is oxidized by the moisture in the refrigerant and absorption liquid, forming an oxide film. The hydrogen gas generated at this time and the air that enters are noncondensable gases and remain in the vacuum container. Among them, non-condensable gas from the regenerator is introduced into the condenser together with refrigerant vapor through a pipe line and collected in a group of tubes of the condenser. This noncondensable gas significantly reduces the heat transfer effect in the tube group of the condenser and also causes corrosion of the tube group. Therefore, it is a very important issue for absorption heat pumps to efficiently discharge such non-condensable gases to the outside. Therefore, the non-condensable gas evacuation device of the conventional absorption heat pump is
As shown in FIG. 1, non-condensable gas and refrigerant vapor in a condenser 1 are sent to a bleed chamber 3 through a non-condensable gas outlet pipe 2 by utilizing the ejector effect. That is, the absorption liquid stored in the liquid reservoir 4a of the regenerator 4 is transferred by the absorption liquid pump 5, and is cooled by the heat exchanger 6 with cold water or cooling water supplied from the outside. This absorption liquid is allowed to flow down into the absorption liquid stored in the bleed chamber 3, and non-condensable gas and refrigerant vapor are mixed in by the effluent action at this time. The non-condensable gas can then be discharged to the outside via the bleed chamber 3, the air supply pipe 7, the gas-liquid separation chamber 8, the delivery pipe 9, and the non-condensable gas tank 10. Note that the absorption liquid into which refrigerant vapor has been mixed and absorbed in the bleed chamber 3 is returned to the liquid reservoir 4a of the regenerator 4 through the absorption liquid return pipe 11. by the way,
Cooling the absorption liquid with external cold water or cooling water increases the absorption of refrigerant vapor into the absorption liquid, prevents the refrigerant vapor from floating in the absorption liquid in the form of light bubbles, and The pressure inside the bleed chamber 3 is transferred to the condenser 1.
This is to efficiently discharge non-condensable gas from the air pipe by lowering the pressure below that of . However, if external cold water or cooling water is used to cool the absorption liquid, a portion of the heat of the absorption liquid will be discarded to the outside, resulting in a problem of increased heat loss.

〔考案の目的〕[Purpose of invention]

本考案は上述の問題を解消するためにされたも
ので、抽気タンクに流落される吸収液の冷却を系
内の熱を利用することによつて行なうと共に、冷
却後の冷媒液を再利用して熱回収に供し得るよう
にした不凝縮性ガス排出装置を備えた吸収ヒート
ポンプを提供することを目的とする。
This invention was developed to solve the above-mentioned problems, and it uses the heat within the system to cool the absorption liquid flowing into the extraction tank, and also reuses the refrigerant liquid after cooling. An object of the present invention is to provide an absorption heat pump equipped with a non-condensable gas discharge device that can be used for heat recovery.

〔考案の構成〕[Structure of the idea]

本考案の特徴とするところを第2図を参照して
説明すると、凝縮器1内の水素ガスを含む不凝縮
ガスや冷媒蒸気を凝縮器1内の冷媒液面上の空間
から導出する不凝縮性ガス導出管路2と、再生器
4底部に貯留する吸収液を吸収液ポンプ15を介
して導出する吸収液導出管路13とが設けられ、
この吸収液導出管路13からの吸収液を貯留状態
にある吸収液に流落させることにより不凝縮性ガ
ス導出管路2より送出された不凝縮性ガスを吸収
液内に混入させた後、落差を利用して送出管20
を介し気液分離室18に送出する抽気室3が、気
液分離室18から再生器4に吸収液を帰還させる
吸収液帰還管路19の帰還口4Aより高い位置に
設けられ、気液分離室18内で吸収液より分離さ
れた不凝縮性ガスが送気管22を介して導入され
ると共にそれを貯留する不凝縮性ガスタンク21
が、吸収液帰還管路19の帰還口4Aより高い位
置に設けられた吸収ヒートポンプにあつて、蒸発
器23に移送される凝縮器1の冷媒液により、吸
収液導出管路13を流過する吸収液を冷却する熱
交換器25が設けられた不凝縮性ガス排出装置を
備えた吸収ヒートポンプとしたことである。
The features of the present invention will be explained with reference to FIG. 2. The non-condensable gas and refrigerant vapor containing hydrogen gas in the condenser 1 are led out from the space above the refrigerant liquid level in the condenser 1. A gas derivation conduit 2 and an absorption liquid derivation conduit 13 for deriving the absorption liquid stored at the bottom of the regenerator 4 via an absorption liquid pump 15 are provided,
The absorption liquid from this absorption liquid delivery pipe 13 is allowed to fall into the stored absorption liquid, and the non-condensable gas delivered from the non-condensable gas delivery pipe 2 is mixed into the absorption liquid, and then the head Using the delivery pipe 20
A bleed chamber 3 is provided at a position higher than the return port 4A of the absorption liquid return pipe 19 that returns the absorption liquid from the gas-liquid separation chamber 18 to the regenerator 4. The non-condensable gas separated from the absorption liquid in the chamber 18 is introduced via the air pipe 22 and is stored in the non-condensable gas tank 21.
However, in the case of an absorption heat pump installed at a position higher than the return port 4A of the absorption liquid return pipe 19, the refrigerant liquid in the condenser 1 transferred to the evaporator 23 flows through the absorption liquid outlet pipe 13. The absorption heat pump is equipped with a non-condensable gas discharge device equipped with a heat exchanger 25 for cooling the absorption liquid.

〔実施例〕〔Example〕

以下に本考案の吸収ヒートポンプを、その実施
例を示す図面に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the absorption heat pump of this invention will be explained in detail based on the drawing which shows the Example.

第2図は本考案の1実施例である不凝縮性ガス
排出装置12を含む吸収ヒートポンプの系統図で
ある。凝縮器1には不凝縮性ガスや冷媒蒸気を導
出できる冷媒液面上の空間に突出した不凝縮性ガ
ス導出管路2が設けられ、その他端は抽気室3に
連結されている。この抽気室3には再生器4の液
溜り4aより吸収液を移送させる吸収液導出管路
13の一端が内部に突出して設けられている。な
お、本実施例では、この吸収液導出管路13は液
溜り4aの吸収液を吸収器14に移送する吸収液
ポンプ15の吐出側分岐点16に接続されてい
る。抽気室3の底面3Aには、その内部で貯留状
態にある吸収液の水位の上限を保持するために、
溢流管17の上端が連結され、その下端は吸収液
が送出される気液分離室18の上面18Aに連結
されている。この気液分離室18内部は吸収液に
より充満されており、送入された吸収液を再生器
4の液溜り4aに帰還させる吸収液帰還管路19
が、再生器4の帰還口4Aに連結されている。と
ころで、前述の抽気室3の底面3Aには、帰還口
4Aと抽気タンク3内吸収液面との落差を利用し
て、不凝縮性ガスを送出する送出管20も設けら
れ、その管の下端は気液分離室18内部に突出さ
れている。加えて、気液分離室18に送出された
不凝縮性ガスを不凝縮性ガスタンク21に貯留す
るための送気管22がその間に設けられている。
なお、この送気管22の内部は少なくとも再生器
4の帰還口4Aと同レベルまで吸収液が入つた状
態となるが、その吸収液面が気液分離室18まで
押し下げられた時点では、その落差分だけ不凝縮
性ガスタンク21内の不凝縮性ガス圧力が高めら
れ、そのガスの外部への排出が助長されるように
なつている。一方、凝縮器1には、その液溜り1
aに貯留する冷媒液を蒸発器23に移送させる冷
媒液管路24が設けられ、この冷媒液管路24と
前述の吸収液導出管13とで熱交換させる熱交換
器25が備えられている。
FIG. 2 is a system diagram of an absorption heat pump including a non-condensable gas discharge device 12, which is an embodiment of the present invention. The condenser 1 is provided with a non-condensable gas lead-out conduit 2 that protrudes into a space above the refrigerant liquid level through which non-condensable gas and refrigerant vapor can be led out, and the other end is connected to a bleed chamber 3. This bleed chamber 3 is provided with one end of an absorbent liquid lead-out conduit 13 for transferring the absorbent liquid from the liquid reservoir 4a of the regenerator 4 so as to protrude inside. In this embodiment, the absorption liquid outlet pipe 13 is connected to a discharge side branch point 16 of an absorption liquid pump 15 that transfers the absorption liquid in the liquid reservoir 4a to the absorber 14. On the bottom surface 3A of the bleed chamber 3, in order to maintain the upper limit of the water level of the absorption liquid stored therein,
The upper end of the overflow pipe 17 is connected, and the lower end thereof is connected to the upper surface 18A of the gas-liquid separation chamber 18 to which the absorption liquid is sent. The inside of this gas-liquid separation chamber 18 is filled with absorption liquid, and an absorption liquid return pipe 19 returns the introduced absorption liquid to the liquid reservoir 4a of the regenerator 4.
is connected to the return port 4A of the regenerator 4. By the way, on the bottom surface 3A of the above-mentioned air bleed chamber 3, there is also a delivery pipe 20 that sends out non-condensable gas by utilizing the head difference between the return port 4A and the absorption liquid level in the bleed tank 3. protrudes into the gas-liquid separation chamber 18. In addition, an air supply pipe 22 for storing the non-condensable gas sent to the gas-liquid separation chamber 18 in the non-condensable gas tank 21 is provided therebetween.
Note that the inside of this air supply pipe 22 is filled with absorption liquid to at least the same level as the return port 4A of the regenerator 4, but when the absorption liquid level is pushed down to the gas-liquid separation chamber 18, the head The pressure of the non-condensable gas in the non-condensable gas tank 21 is increased accordingly, and the discharge of the gas to the outside is facilitated. On the other hand, in the condenser 1, the liquid pool 1
A refrigerant liquid pipe line 24 is provided to transfer the refrigerant liquid stored in the evaporator 23 to the evaporator 23, and a heat exchanger 25 is provided to exchange heat between the refrigerant liquid pipe line 24 and the above-mentioned absorption liquid outlet pipe 13. .

このような構成によれば、次のように作動させ
ることができる。
According to such a configuration, it can be operated as follows.

蒸発器23と吸収器14内の圧力はほぼ500mm
Hg、凝縮器1と再生器4内の圧力は40mmHgとい
つたような真空になつており、外部から侵入した
空気や内部で発生する水素ガスを含む不凝縮性ガ
スは管群中に滞留している。これらの不凝縮性ガ
スのうち、再生器4の不凝縮性ガスは管路26を
介して凝縮器1へ冷媒蒸気と共に導入される。一
方、再生器4の液溜り4aに貯留される吸収液は
吸収液ポンプ15により移送され、その一部が分
岐点16、吸収液導出管路13、熱交換器25よ
り抽気室3に供給される。このとき、流落された
吸収液がエジエクター効果を発揮し、凝縮器1内
の不凝縮性ガスや冷媒蒸気が不凝縮性ガス導出管
路2を介して抽気室3に導入され、それらが吸収
液内に混入される。ところで、再生器4より凝縮
器1に導入された冷媒蒸気は、管路27より導入
される冷却水によつて低温の冷媒液になり液溜り
1aに溜る。この冷媒液が冷媒液管路24により
蒸発器23に移送される途中、熱交換器25で再
生器4から抽気室3に向かう吸収液を冷却して、
温度が高められた後蒸発器23の液溜り23aに
流れ込む。その結果、この冷媒液が昇温するの
で、蒸発器23で外部から導入された熱源により
加熱される際冷媒蒸気になるのが助長される。他
方、熱交換器25で温度の低くなつた極性は過冷
却され冷媒蒸気を吸収し易い状態になると共に抽
気室3の圧力を凝縮器1の圧力より下げる。この
状態で吸収液が抽気室3内で流落されると冷媒蒸
気は吸収液に吸収されるので、気泡の状態で送出
管20内を浮遊することなく、また抽気室3の圧
力が凝縮器1の圧力より低いことにより不凝縮性
ガスは順調に吸収液と共に下方の気液分離室18
に流過される。気液分離室18に流入した吸収液
は、抽気室3と再生器4の帰還口4Aとの落差に
より吸収液帰還管路19を介して再生器4に帰還
される。一方、不凝縮性ガスは気液分離室18で
停滞する吸収液から離脱し、送気管22より不凝
縮性ガスタンク21に貯留される。不凝縮性ガス
が不凝縮性ガスタンク21に充満すると、送気管
22内部の吸収液を押し下げながら圧力を高め、
管路28より外部へ放出される。
The pressure inside the evaporator 23 and absorber 14 is approximately 500mm.
Hg, the pressure inside condenser 1 and regenerator 4 is a vacuum of 40 mmHg, and non-condensable gases including air entering from the outside and hydrogen gas generated inside remain in the tube group. ing. Among these non-condensable gases, the non-condensable gas in the regenerator 4 is introduced into the condenser 1 via the pipe 26 together with the refrigerant vapor. On the other hand, the absorption liquid stored in the liquid reservoir 4a of the regenerator 4 is transferred by the absorption liquid pump 15, and a part of it is supplied to the bleed chamber 3 through the branch point 16, the absorption liquid outlet pipe 13, and the heat exchanger 25. Ru. At this time, the absorbed liquid exerts an ejector effect, and the non-condensable gas and refrigerant vapor in the condenser 1 are introduced into the bleed chamber 3 via the non-condensable gas outlet pipe 2, and the absorbed liquid mixed in. By the way, the refrigerant vapor introduced into the condenser 1 from the regenerator 4 is turned into a low-temperature refrigerant liquid by the cooling water introduced through the pipe line 27, and accumulates in the liquid reservoir 1a. While this refrigerant liquid is being transferred to the evaporator 23 through the refrigerant liquid pipe line 24, the absorption liquid heading from the regenerator 4 to the bleed chamber 3 is cooled by the heat exchanger 25.
After the temperature is raised, the liquid flows into the liquid reservoir 23a of the evaporator 23. As a result, the temperature of this refrigerant liquid increases, so that when it is heated by the heat source introduced from the outside in the evaporator 23, it is promoted to become refrigerant vapor. On the other hand, the polarity whose temperature has become lower in the heat exchanger 25 is supercooled and becomes in a state where it is easy to absorb refrigerant vapor, and the pressure in the bleed chamber 3 is lowered than the pressure in the condenser 1. When the absorption liquid flows down in the bleed chamber 3 in this state, the refrigerant vapor is absorbed by the absorption liquid, so that the refrigerant vapor does not float in the delivery pipe 20 in the form of bubbles, and the pressure in the bleed chamber 3 is reduced to the condenser 1. Since the pressure is lower than that of
is passed through. The absorption liquid that has flowed into the gas-liquid separation chamber 18 is returned to the regenerator 4 via the absorption liquid return pipe 19 due to the head difference between the bleed chamber 3 and the return port 4A of the regenerator 4. On the other hand, the non-condensable gas is separated from the absorption liquid stagnant in the gas-liquid separation chamber 18 and stored in the non-condensable gas tank 21 via the air pipe 22. When the non-condensable gas fills the non-condensable gas tank 21, the pressure is increased while pushing down the absorption liquid inside the air supply pipe 22.
It is released from the pipe 28 to the outside.

〔考案の効果〕[Effect of idea]

本考案は以上詳細に説明したように、抽気室に
導入する吸収液を凝縮器の冷媒液で冷却する熱交
換器を設けたので、従来技術のところで説明した
ように吸収液の熱の一部を外部へ捨てるといつた
ような熱損失を回避できる。また、吸収液を冷却
した後の冷媒液は蒸発器に移送され、熱回収に貢
献させることができる。
As explained in detail above, the present invention is equipped with a heat exchanger that cools the absorption liquid introduced into the bleed chamber with the refrigerant liquid of the condenser. By discarding the heat to the outside, you can avoid the heat loss described above. In addition, the refrigerant liquid after cooling the absorption liquid is transferred to the evaporator and can contribute to heat recovery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の不凝縮性ガス排出装置を備えた
吸収ヒートポンプの系統図、第2図は本考案の不
凝縮性ガス排出装置を備えた吸収ヒートポンプの
系統図である。 1……凝縮器、2……不凝縮性ガス導出管路、
3……抽気室、4……再生器、4A……帰還口、
13……吸収液導出管路、15……吸収液ポン
プ、18……気液分離室、19……吸収液帰還管
路、20……送出管、21……不凝縮性ガスタン
ク、22……送気管、23……蒸発器、25……
熱交換器。
FIG. 1 is a system diagram of an absorption heat pump equipped with a conventional non-condensable gas discharge device, and FIG. 2 is a system diagram of an absorption heat pump equipped with a non-condensable gas discharge device of the present invention. 1...Condenser, 2...Noncondensable gas outlet pipe,
3...Bleed chamber, 4...Regenerator, 4A...Return port,
13... Absorption liquid outlet pipe line, 15... Absorption liquid pump, 18... Gas-liquid separation chamber, 19... Absorption liquid return pipe line, 20... Delivery pipe, 21... Non-condensable gas tank, 22... Air pipe, 23...Evaporator, 25...
Heat exchanger.

Claims (1)

【実用新案登録請求の範囲】 凝縮器内の水素ガスを含む不凝縮性ガスや冷媒
蒸気を凝縮器内の冷媒液面上の空間から導出する
不凝縮性ガス導出管路と、再生器底部に貯留する
吸収液を吸収液ポンプを介して導出する吸収液導
出管路とが設けられ、この吸収液導出管路からの
吸収液を貯留状態にある吸収液に流落させること
により前記不凝縮性ガス導出管路より送出された
不凝縮性ガスを吸収液内に混入させた後、落差を
利用して送出管を介し気液分離室に送出する抽気
室が、気液分離室から再生器に吸収液を帰還させ
る吸収液帰還管路の帰還口より高い位置に設けら
れ、気液分離室内で吸収液より分離された不凝縮
性ガスが送気管を介して導入されると共にそれを
貯留する不凝縮性ガスタンクが、前記帰還口より
高い位置に設けられた吸収ヒートポンプにおい
て、 蒸発器に移送される前記凝縮器の冷媒液により
前記吸収液導出管路を流過する吸収液を冷却する
熱交換器が設けられ、前記抽気室での冷媒蒸気の
吸収効果を高めると共に不凝縮性ガスの排出を向
上させることができるようにしたことを特徴とす
る不凝縮性ガス排出装置を備えた吸収ヒートポン
プ。
[Scope of Claim for Utility Model Registration] A non-condensable gas derivation pipe for deriving non-condensable gas including hydrogen gas and refrigerant vapor from the space above the refrigerant liquid level in the condenser, and a regenerator bottom part. An absorption liquid outlet pipe is provided to draw out the stored absorption liquid via an absorption liquid pump, and the non-condensable gas is removed by causing the absorption liquid from the absorption liquid outlet line to flow down into the stored absorption liquid. After mixing the non-condensable gas sent out from the outlet pipe into the absorption liquid, the bleed chamber uses the head to send it to the gas-liquid separation chamber via the delivery pipe. A non-condensing system is installed at a position higher than the return port of the absorption liquid return pipe that returns the liquid, and the non-condensable gas separated from the absorption liquid in the gas-liquid separation chamber is introduced via the air supply pipe and stored. In an absorption heat pump in which a reactive gas tank is provided at a position higher than the return port, a heat exchanger is provided that cools the absorption liquid flowing through the absorption liquid outlet pipe by the refrigerant liquid in the condenser that is transferred to the evaporator. 1. An absorption heat pump equipped with a non-condensable gas discharge device, characterized in that the absorption heat pump is provided with a non-condensable gas discharge device, and is capable of enhancing the absorption effect of refrigerant vapor in the bleed chamber and improving the discharge of non-condensable gas.
JP6694584U 1984-05-07 1984-05-07 Absorption heat pump with non-condensable gas evacuation device Granted JPS60178777U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6694584U JPS60178777U (en) 1984-05-07 1984-05-07 Absorption heat pump with non-condensable gas evacuation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6694584U JPS60178777U (en) 1984-05-07 1984-05-07 Absorption heat pump with non-condensable gas evacuation device

Publications (2)

Publication Number Publication Date
JPS60178777U JPS60178777U (en) 1985-11-27
JPH0345089Y2 true JPH0345089Y2 (en) 1991-09-24

Family

ID=30600311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6694584U Granted JPS60178777U (en) 1984-05-07 1984-05-07 Absorption heat pump with non-condensable gas evacuation device

Country Status (1)

Country Link
JP (1) JPS60178777U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542985B2 (en) * 2005-11-25 2010-09-15 株式会社荏原製作所 Absorption heat pump

Also Published As

Publication number Publication date
JPS60178777U (en) 1985-11-27

Similar Documents

Publication Publication Date Title
CN106766391A (en) For the tank-type heat exchanger of heat pump
JPH0345089Y2 (en)
CN210186461U (en) Vacuum device for evaporation system
US3452550A (en) Maintaining effectiveness of additives in absorption refrigeration systems
CN212141520U (en) Flash distillation condensation recovery unit
US2510730A (en) Low-pressure absorption refrigerating system
CN208779756U (en) A kind of heat pump case tube heat exchanger of band flash distillation function
JPH0345091Y2 (en)
JPH0345088Y2 (en)
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
CN208379674U (en) Condensation evaporation device and air water machine
JPS6311574Y2 (en)
JPS60599Y2 (en) low temperature generator
JPH0345090Y2 (en)
KR100241623B1 (en) Absorbent way of refrigerator
JPH0117015Y2 (en)
JPH047502Y2 (en)
KR200149062Y1 (en) Generator of absorption type air-conditioner
KR900002146B1 (en) Sorption type hot and cold water supplier
JPH0325258A (en) Air cooled absorption type cold and hot water supplier
JP4020569B2 (en) Absorption chiller / heater
CN108413657A (en) A kind of high-performance solar heat pump evaporator
JPH0784970B2 (en) Extraction device for cold / heat switching absorption refrigerator
JPH0355756B2 (en)
CN118637701A (en) Open evaporation sewage purification system and method coupled with open solution absorption