JPH0344987A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH0344987A
JPH0344987A JP17894689A JP17894689A JPH0344987A JP H0344987 A JPH0344987 A JP H0344987A JP 17894689 A JP17894689 A JP 17894689A JP 17894689 A JP17894689 A JP 17894689A JP H0344987 A JPH0344987 A JP H0344987A
Authority
JP
Japan
Prior art keywords
inp
lattice constant
quantum well
semiconductor laser
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17894689A
Other languages
Japanese (ja)
Inventor
Kunishige Oe
尾江 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17894689A priority Critical patent/JPH0344987A/en
Publication of JPH0344987A publication Critical patent/JPH0344987A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor laser capable of high output performance with a minimum of temperature dependence using a material whose lattice constant in its active layer is smaller than that of a substrate and further reducing its thickness to minimize a band gap. CONSTITUTION:A semiconductor laser's active layer comprises GaInAsP quantum well barrier layers 6, 8, and 10, whose lattice constant is identical to an InP substrate 1, and GaInAs quantum well layers 7 and 9, which are provided with a lattice constant smaller than InP and whose one layer is thinner than a critical thickness in which a misfit dislocation is generated. Under this construction, the quantum well layers 7 and 9 are subject to tensile stress and produces lattice deformation due to mismatching of lattice so that the lattice constant of the substrate in a parallel direction may conform to that of InP and reduce the value in a vertical direction. As a result, the band gap is reduced compared with the absence of stress. It is, therefore, possible to improve the temperature dependence and carry out continuous oscillation at high temperature and high output performance at high temperature as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光伝送システムの光源に用いられる半導体レ
ーザに関するものである3、 〔従来の技術〕 半導体レーザは、光伝送システムの光源としてずぐれ7
’C特徴を持っており1従来よシ広く用いられてきて−
る。特に、Ga I nAsP/I nPダブ/L、ヘ
テロ構造音用いた長波長帯の半導体レーザは、その発振
波長が光ファイバの低損失領域と一致するため、長距離
伝送用光源として重要であう、波長1.3μm及び波長
1.55μmのレーザが実用化されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor laser used as a light source in an optical transmission system.3 [Prior Art] A semiconductor laser is not used as a light source in an optical transmission system. Gure 7
It has C characteristics and has been used more widely than before.
Ru. In particular, long-wavelength semiconductor lasers using Ga I nAsP/I nP DUB/L and heterostructure sound have wavelengths that are important as light sources for long-distance transmission because their oscillation wavelengths match the low-loss region of optical fibers. Lasers with wavelengths of 1.3 μm and 1.55 μm have been put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このGaInAgP/InP Ly−ザの問題
点は、周囲温度が上昇したときに、そのしきい値電流が
大きく上昇する、つまりしきい値電流の温度依存性が大
き−ことであった。己のため、100℃以上の温度での
連続発振は容易ではなく、筐た高温での高出力動作が困
難であるという欠点があった。
However, the problem with this GaInAgP/InP Ly laser is that when the ambient temperature rises, its threshold current increases significantly, that is, the temperature dependence of the threshold current is large. Because of their own characteristics, continuous oscillation at temperatures above 100° C. is not easy, and high output operation at high temperatures is difficult.

本発明の目的は、しきい値電流の温度依存性が大きいと
いう長波長帯半導体レーザの問題点を解決し、温度依存
性を小さくして高温1で連続発振をし、また、高温での
高出力動作が可能な半導体レーザを提供することにある
The purpose of the present invention is to solve the problem of long-wavelength semiconductor lasers in which the threshold current has a large temperature dependence, reduce the temperature dependence, and enable continuous oscillation at high temperatures. The object of the present invention is to provide a semiconductor laser capable of output operation.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、InP基板上
に形成された半導体レーザに釦いて、該半導体レーザの
活性層が、InPと格子定数の等しいGaInAsP量
子井戸パリア層と、InPよシ小さい格子定数を持つ、
かつその一層の厚みがミスフィツト転位の発生する臨界
厚さよシ薄いQaInAs量子井戸層よシ構成されてい
ることを特徴とするものである。
In order to achieve the above object, the present invention provides a semiconductor laser formed on an InP substrate, in which the active layer of the semiconductor laser includes a GaInAsP quantum well pariah layer having a lattice constant equal to that of InP, and a semiconductor laser formed on an InP substrate. has a small lattice constant,
The device is characterized in that it is composed of a QaInAs quantum well layer whose thickness is thinner than the critical thickness at which misfit dislocations occur.

〔作用〕[Effect]

本発明にかいては、活性層の半導体薄膜の格子定数が基
板やクラッド層の格子定数よシ小さい材料を用い、しか
もその一層の厚みtミスフィツト転位が発生する臨界厚
さよシ薄くして、非発光中心を導入しないで活性層のバ
ンドギャップを小さくすることによシ、高温でもしきい
値電流があ1シ上昇しない半導体レーザを得ることがで
きる。
In the present invention, a material in which the lattice constant of the semiconductor thin film of the active layer is smaller than that of the substrate and the cladding layer is used, and the thickness of one layer is made thinner than the critical thickness at which misfit dislocations occur. By reducing the bandgap of the active layer without introducing a light-emitting center, it is possible to obtain a semiconductor laser in which the threshold current does not increase even at high temperatures.

ところで、従来よう、光フィバ−の損失が一番小さい波
長である1、55μmで発振する半導体レーザの研究が
さかんに行なわれている。一番多いものは、格子定数が
InPと一致し、その発光波長が1.55μmであるG
aInAsP四元混晶を活性層に、InP’i基板とク
ラッド層に用いたレーザである。
Incidentally, research has been actively conducted on semiconductor lasers that oscillate at a wavelength of 1.55 μm, which is the wavelength at which optical fiber loss is minimal. The most common one is G whose lattice constant matches that of InP and whose emission wavelength is 1.55 μm.
This is a laser that uses an aInAsP quaternary mixed crystal for the active layer, an InP'i substrate, and a cladding layer.

この場合、しきい値電流Ithの温度依存性を表わす特
性温度To (ただし、工th ” axp (T/T
o ) )は、・50〜60にであう、100℃以上で
連続発振させるのはかなう難しく、特に高光出力を得る
のは不可能であった。このため、しきい値電流の温度依
存性の小さいレーザ、つt!+Toの大きいレーザを目
ざして、格子定数がInPと一致するGa6.47In
(1,51AllやGaInAmP混晶で超格子構造と
したものを活性層に用いたレーザが研究された。しかし
ながら、Toの値はあ筐り変化せず、高温での高光出力
は得られていない。
In this case, the characteristic temperature To (however, the characteristic temperature To representing the temperature dependence of the threshold current Ith
o)) It is difficult to achieve continuous oscillation at temperatures above 100° C., which corresponds to .50 to 60° C., and in particular, it has been impossible to obtain high optical output. For this reason, a laser with a small temperature dependence of threshold current, t! Aiming for a laser with large +To, Ga6.47In whose lattice constant matches InP
(Lasers using 1,51All or GaInAmP mixed crystals with a superlattice structure in the active layer have been studied. However, the value of To does not change at all, and high optical output at high temperatures has not been obtained. .

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を説明する半導体レーザの断
面図である。図において、1はn型InP基板、2はp
型InPクラッド層、3はp型GaInAsPキャップ
層、4はFs  ドープ高抵抗InP埋め込み層、5は
TnPに格子整合する波長1゜15μmのn111Ga
InAsPガイド層、6,8及び10はInPに格子整
合する波長1.3μmのGILInAIP量子井戸パリ
ア層、7,9は格子定数がInPよシも小さいGa6.
ByIno、43Al量子井戸層、11は前記n型Ga
InAsPガイド層5と同じ組成のp型GaInAsP
ガイド層をあられし、これらn型GaInAsPガイド
層5〜p型GaInAiPガイド層11で量子井戸活性
層を構成している。また、12はp型電極、13はn型
電極である。ここで、n型InP基板1はn型InPク
ラッド層の役割もかねそなえている。
FIG. 1 is a sectional view of a semiconductor laser illustrating an embodiment of the present invention. In the figure, 1 is an n-type InP substrate, 2 is a p-type InP substrate, and 2 is a p-type InP substrate.
3 is a p-type GaInAsP cap layer, 4 is an Fs-doped high-resistance InP buried layer, and 5 is an n111Ga layer with a wavelength of 1°15 μm that is lattice matched to TnP.
InAsP guide layers 6, 8 and 10 are GILInAIP quantum well pariah layers with a wavelength of 1.3 μm that are lattice matched to InP, and 7 and 9 are Ga6.
ByIno, 43Al quantum well layer, 11 is the n-type Ga
p-type GaInAsP with the same composition as InAsP guide layer 5
The n-type GaInAsP guide layer 5 to the p-type GaInAiP guide layer 11 constitute a quantum well active layer. Further, 12 is a p-type electrode, and 13 is an n-type electrode. Here, the n-type InP substrate 1 also serves as an n-type InP cladding layer.

さて、かかる構造の半導体レーザの発振波長を決定する
のは、cao、gγIno、4sA−量子井戸層T及び
9のバンドギャップであるが、この量子井戸層7.9は
、格子不整合のために2軸の引つ張シ応力(t・n5i
on)を受けて格子変形し、基板の平行方向の格子定数
はInPと一致し、垂直方向は小さくなっている(第2
図)。その結果、この量子井戸層7,9のバンドギャッ
プは、応力のない場合の値に比べて、小さくなる。ただ
し、第2図は本実施例のレーザを構成する量子井戸層の
格子変形の様子を示し、図中21はInPと格子整合し
たGaInAaPパリア層の格子を、22はGILD、
57In(1,43Asの格子をそれぞれ示し、また2
3は2軸の引つ張す応力を示している。
Now, what determines the oscillation wavelength of a semiconductor laser with such a structure is the band gap of the cao, gγIno, 4sA-quantum well layers T and 9, but the quantum well layer 7.9 is Biaxial tensile stress (t・n5i
on), and the lattice constant in the parallel direction of the substrate matches that of InP, while the lattice constant in the vertical direction becomes smaller (second
figure). As a result, the band gap of quantum well layers 7 and 9 becomes smaller than the value without stress. However, FIG. 2 shows the state of lattice deformation of the quantum well layer constituting the laser of this example, in which 21 is the lattice of the GaInAaP pariah layer lattice-matched to InP, 22 is the lattice of the GILD,
57In (1,43As lattice is shown respectively, and 2
3 indicates biaxial tensile stress.

第3図は、この応力とバンドギャップの変化量の関係を
示したものであう、格子定数がInPよシ大きい場合は
、バンドギャップが大きく、小さい場合は、バンドギャ
ップが小さくなっている。Cab、 S? In0.4
3As量子井戸層1,9は、InPと格子定数が同じG
aInAsP層上に成長じた時、バンドギャップが元の
0.86sVから0.80eVへと変化している。そし
てこの量子井戸層を持った第1図の構造のレーザは、1
,55μmで発振する。このレーザの発振しきい値電流
Ithの温度依存性を第4図に示すが、特性温度T。
FIG. 3 shows the relationship between this stress and the amount of change in band gap. When the lattice constant is larger than that of InP, the band gap is large, and when it is small, the band gap is small. Cab, S? In0.4
The 3As quantum well layers 1 and 9 are made of G having the same lattice constant as InP.
When grown on the aInAsP layer, the bandgap changes from the original 0.86 sV to 0.80 eV. The laser with the structure shown in Figure 1, which has this quantum well layer, has 1
, oscillates at 55 μm. The temperature dependence of the oscillation threshold current Ith of this laser is shown in FIG. 4, where the characteristic temperature T.

の値は100Kに改善されてふ・す、高温での連続発振
動作が容易となっている。これは従来の1.55μmレ
ーザに比べて、本発明のし〜ザは、引つ張シ応力の効果
で、オージェ効果等の非発光再結合現象金抑制で′I!
!たためである。またこの結果、100℃で5 rnW
以上の高光出力を得ることができた。
The value has been improved to 100K, making continuous oscillation operation at high temperatures easier. Compared to the conventional 1.55 μm laser, the laser of the present invention suppresses non-radiative recombination phenomena such as the Auger effect due to the effect of tensile stress.
! This is because of this. Also, as a result, 5 rnW at 100℃
We were able to obtain high optical output.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、活性層のバンドギャッ
プを決定する量子井戸層の格子定数が基板やクラッド層
の格子定数より小さい材料を用い、しかもその一層の厚
みをミスフィツト転位が発生する臨界厚さよシ薄くして
、非発光中心を導入しないで活性層のバンドギャップを
小さくすることにより、高温でもしきい値゛電流があま
シ上昇しない半導体レーザを得られる利点がある。
As explained above, the present invention uses a material in which the lattice constant of the quantum well layer, which determines the bandgap of the active layer, is smaller than that of the substrate or cladding layer, and furthermore, the thickness of one layer is reduced to a critical point where misfit dislocations occur. By reducing the thickness and reducing the bandgap of the active layer without introducing non-emissive centers, there is an advantage that a semiconductor laser whose threshold current does not increase significantly even at high temperatures can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体レーザの断面図
、第2図は上記実施例の半導体レーザを構成する量子井
戸層の格子変形の様子を示す図、第3図は同じく上記実
施例における格子不整合とバンドギャップ変化量の関係
を示す図、第4図は同じく上記実施例におけるしきい値
電流の温度依存性を示す図である。 1・・・・n型InP基板、2・・・・p型InPクラ
ッド層、3・・・・p型QaInAmPキャップ層、4
−・・・F・ ドープ高抵抗ニー理め込み層、5・・・
・InPに格子整合する波長1.15μmのn型GaI
nAmPガイド層、6,8.1・・・・InPに格子整
合する波長1.3μmのGa1nAsP全1nAsP量
子井7,9・・・・InPよシも格子定数が小さいGa
 Q、57 In O,43As量子井戸層、11・・
・・p型GaInAsPガイド層、12・・・・p型電
極、13・・・・n型電極。
FIG. 1 is a cross-sectional view of a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a diagram showing the state of lattice deformation of the quantum well layer constituting the semiconductor laser of the above embodiment, and FIG. 3 is a diagram showing the same embodiment as above. FIG. 4 is a diagram showing the relationship between the lattice mismatch and the amount of change in band gap in FIG. 4, and FIG. 4 is a diagram showing the temperature dependence of the threshold current in the above embodiment. 1...n-type InP substrate, 2...p-type InP cladding layer, 3...p-type QaInAmP cap layer, 4
-...F. Doped high-resistance knee reinforcement layer, 5...
・N-type GaI with a wavelength of 1.15 μm that is lattice matched to InP
nAmP guide layer, 6, 8.1... All 1nAsP quantum wells with a wavelength of 1.3 μm that lattice-matches to InP 7, 9... Ga, which has a smaller lattice constant than InP.
Q, 57 In O, 43 As quantum well layer, 11...
... p-type GaInAsP guide layer, 12 ... p-type electrode, 13 ... n-type electrode.

Claims (1)

【特許請求の範囲】[Claims] InP基板上に形成された半導体レーザにおいて、該半
導体レーザの活性層が、InPと格子定数の等しいGa
InAsP量子井戸パリア層と、InPより小さい格子
定数を持つ、かつその一層の厚みがミスフイツト転位の
発生する臨界厚さより薄いGaInAs量子井戸層より
構成されていることを特徴とする半導体レーザ。
In a semiconductor laser formed on an InP substrate, the active layer of the semiconductor laser is made of Ga having the same lattice constant as InP.
A semiconductor laser comprising an InAsP quantum well pariah layer and a GaInAs quantum well layer which has a lattice constant smaller than that of InP and whose thickness is thinner than the critical thickness at which misfit dislocations occur.
JP17894689A 1989-07-13 1989-07-13 Semiconductor laser Pending JPH0344987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17894689A JPH0344987A (en) 1989-07-13 1989-07-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17894689A JPH0344987A (en) 1989-07-13 1989-07-13 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0344987A true JPH0344987A (en) 1991-02-26

Family

ID=16057415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17894689A Pending JPH0344987A (en) 1989-07-13 1989-07-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0344987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521397A (en) * 1992-08-25 1996-05-28 Olympus Optical Co., Ltd. Optical device having quantum well structure and barrier layers
WO2007097255A1 (en) 2006-02-24 2007-08-30 Ns Planning Inc. Containing bag

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437889A (en) * 1987-08-04 1989-02-08 Fujitsu Ltd Semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437889A (en) * 1987-08-04 1989-02-08 Fujitsu Ltd Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521397A (en) * 1992-08-25 1996-05-28 Olympus Optical Co., Ltd. Optical device having quantum well structure and barrier layers
WO2007097255A1 (en) 2006-02-24 2007-08-30 Ns Planning Inc. Containing bag

Similar Documents

Publication Publication Date Title
JPS6218082A (en) Semiconductor laser device
JPH0381317B2 (en)
JP2724827B2 (en) Infrared light emitting device
JP2553731B2 (en) Semiconductor optical device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP3306892B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JPH0344987A (en) Semiconductor laser
JP3128788B2 (en) Semiconductor laser
JP3041381B2 (en) Quantum well semiconductor laser device
JPS61242090A (en) Semiconductor laser
WO2021199297A1 (en) Optical waveguide, method for producing optical waveguide, and optical semiconductor element
JPH0467353B2 (en)
JPH0278290A (en) Semiconductor laser device
JP3049916B2 (en) Semiconductor laser
JPS59218786A (en) Single axial mode semiconductor laser
Asano et al. Temperature insensitive characteristics of 1.06/spl mu/m strain-compensated single quantum well laser diodes (SQW-LDs)
JPS5986282A (en) Semiconductor laser
JPS59149078A (en) Semiconductor laser
JPH03145787A (en) Semiconductor laser element
JPS62291190A (en) Semiconductor light-emitting device
JPS6016488A (en) Semiconductor laser device
JPH0856047A (en) Semiconductor device and its manufacture
JPH11251676A (en) Semiconductor laser
JPH09307187A (en) Secondary harmonic component generating semiconductor laser
GB2127218A (en) Semiconductor laser