JPH0344842B2 - - Google Patents

Info

Publication number
JPH0344842B2
JPH0344842B2 JP58108883A JP10888383A JPH0344842B2 JP H0344842 B2 JPH0344842 B2 JP H0344842B2 JP 58108883 A JP58108883 A JP 58108883A JP 10888383 A JP10888383 A JP 10888383A JP H0344842 B2 JPH0344842 B2 JP H0344842B2
Authority
JP
Japan
Prior art keywords
metal plate
shadow mask
roughness
surface roughness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58108883A
Other languages
Japanese (ja)
Other versions
JPS59232607A (en
Inventor
Akira Ikeda
Kiwa Watanabe
Tadahiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP10888383A priority Critical patent/JPS59232607A/en
Publication of JPS59232607A publication Critical patent/JPS59232607A/en
Publication of JPH0344842B2 publication Critical patent/JPH0344842B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes
    • H01J9/142Manufacture of electrodes or electrode systems of non-emitting electrodes of shadow-masks for colour television tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシヤドウマスク用金属板の製造法に関
し、より詳しくは表面粗度が比較的あらく、かつ
粗度の緻密度が高い高品位シヤドウマスク用金属
板の製造法に関する。 従来、シヤドウマスク用金属板は低炭素熱延鋼
帯もしくはアンバー等の高合金鋼帯を一次冷延し
た後、箱型焼鈍(オープンコイル焼鈍を含む)法
もしくは連続焼鈍法によつて歪取り焼鈍を行い、
しかる後二次冷延するか或いは更に二次冷延後調
質圧延してスリツトコイルにするという工程を基
本工程として製造されている。従つて製品である
シヤドウマスク用金属板の表面仕上げは、仕上げ
圧延である二次冷延乃至調質圧延工程で調製さ
れ、その表面状態が最終製品であるカラーブラウ
ン管の性能に影響する。そしてより具体的には上
記仕上げ圧延に用いられるワークロールの表面仕
上げ自体が該金属板に相当の忠実度を以て転写さ
れるので、ワークロールの表面仕上げが最も重要
な要件となる。 次にシヤドウマスク用金属板を素材とするシヤ
ドウマスクの製造について述べる。以下シヤドウ
マスク用金属板を単に素材と呼ぶことがある。 第1図はシヤドウマスクの製造工程図である。 第1図において先づ素材を脱脂等の前処理した
後、素材両面にフオトレジストを塗布し、ついで
その上に原版を密着させるための真空引きを行
い、原版が素材表面に完全密着した後、両面より
同時露光して原版パターンを素材に焼付ける。つ
いで現像工程でフオトレジストの非露光部を除去
し、バーニング工程で、フオトレジスト露光部を
焼付硬化させ、耐酸性の被膜とする。そしてエツ
チング工程において塩化第二鉄溶液を用いて素材
露出部を穿孔し、素材は剪断、検査工程へ送られ
る。この様にしてフラツトマスクが出来上がる。 次にこのフラツトマスクに加工性を与えるた
め、ドライまたはウエツト雰囲気中でマスク焼鈍
を行い、ついで形状修正及びリユーダースライン
予防のために数回レベラを通し(レベリング工
程)、プレス成形して球面状に加工する。次に工
程中の防錆及び電子ビームの散乱防止等のために
水蒸気及び/もしくはガス中で黒化処理を施し、
シヤドウマスクが完成する。 なお、上記マスク焼鈍及びレベリングは施さな
いこともある。この場合はシヤドウマスク用金属
板の製造工程で仕上げ圧延後予め焼鈍され、調質
圧延もしくはレベリングされる。 以上がシヤドウマスク用金属板(素材)からシ
ヤドウマスクを製造する工程であるが、次に本発
明に拘わる真空引き露光工程について更に詳細に
説明する。 第2図はフオトレジスト2塗布後の金属板1を
真空引きして原版3を密着させる状態を示す斜視
図である。第2図中、真空ポンプに結ばれた脱気
管4は気密に保たれた領域内のフオトレジスト2
と原版3の表面との間の空間に残存した空気を吸
引排気する。 第3図は片面におけるフオトレジストと原版間
残存空気の脱気状態を示す真空引き中の断面図で
ある。 第3図において、フオトレジスト2は金属板1
に密着しているが原版3との間には部分的に空間
があつて内部に空気が残存している。これを矢印
Vの方向に真空引きすると残存空気が脱気され、
大気圧によつて原版3は矢印Aの方向に加圧さ
れ、フオトレジストと密着する。この現象が全面
に亘つて一様に起こることが望ましいが、現実に
は被脱気面積に比して脱気管を一様に多数配置す
ることが出来ないため(真空脱気管は周縁の一部
にしか配置出来ない。)、脱気の経路閉塞が生じて
脱気に長時間を要する傾向があり、また短時間で
脱気しようとするとどうしても完全な脱気は困難
であり、脱気管開口部の周辺以外の部分に空隙
(非密着部)が残つてしまう傾向が避けられなか
つた。 すなわち少ない脱気管で短時間に充分な脱気を
行い、効率的な真空引きをなす事は、従来の素材
粗度では極めて困難であつた。 そこで、本発明者等は緻密でかつミクロ的断面
において山谷標高差の大きい粗度を有するシヤド
ウマスク用金属板を製造する必要に迫られ、種々
の試験研究の結果、仕上げ圧延ワークロールとし
て液体ホーニング加工ロールを用いる事により、
上記問題点を解決し得ることを見出し、本発明に
到達した。 本発明に至る経過を以下に略述する。 すなわち、従来シヤドウマスク用金属板製造用
仕上げ圧延ワークロールは、(1)粗目の砥石研磨、
もしくは(2)シヨツトブラストによつてその表面を
仕上げられていた。ところが(1)の方法は、砥石の
スクラツチ目が金属板に転写され、エツチング後
シヤドウマスクの孔形状が異形となる傾向がある
ため、適当でなかつた。また(2)の方法では、ロー
ル表面粗度断面形状にうねり(ミクロ的に大波状
の高低)と突起が生じ、これが結局シヤドウマス
ク孔形状に悪影響を及ぼす傾向があつた。すなわ
ち前記うねりは特にシヤドウマスクスロツト孔の
直線部を非直線にし、前記突起はシヤドウマスク
スロツト孔にクレータと呼ばれる欠落部を生じ
る。従つて(2)の方法も不適当であつた。そこで(2)
の方法を改善するためにシヨツトブラスト後の表
面をビニル砥石等の軟質砥石で仕上げたロールで
試験してみたが、シヤドウマスク孔のクレータ発
生はなくなつたが、うねりによる影響は改善され
なかつた。以上が本発明に至るまでの研究経過で
あり、従つて液体ホーニングロールを採用するこ
とは、単なる思い付きでは決してない。 本発明の目的は、シヤドウマスク製造工程にお
いて短時間でムラのない真空引きを達成出来るシ
ヤドウマスク用金属板の製造法を提供するにあ
る。 本発明の他の目的は、緻密でしかもRa粗度の
大きいシヤドウマスク用金属板の製造法を提供す
るにある。 本発明の更に他の目的は、高品位カラー受像管
に適した、正確な孔形状の得られるシヤドウマス
ク素材であるシヤドウマスク用金属板の製造法を
提供するにある。 本発明により、 仕上げ冷間圧延もしくは調質圧延において、表
面粗度が0.5〜4.0μmRaであり、かつ粗度の緻密
度が20〜80HSC/2.5mmである液体ホーニング加
工ロールをワークロールとして用いる事を特徴と
するシヤドウマスク用金属板の製造法 が提供される。 以下に実施例を用いて本発明を詳細に説明す
る。 第4図は触針式表面粗さ計で測定した従来のシ
ヨツトブラスト法によるワークロール表面粗度プ
ロフイル図(比較例)であり、第5図は同じスケ
ールにおける液体ホーニング加工されたワークロ
ールの表面粗度プロフイル図(実施例)である。
いづれも横方向の倍率は50倍、縦方向の倍率は
2000倍である。 第4図及び第5図の表面粗度を数値で表わした
ものが第1表である。
The present invention relates to a method for manufacturing a metal plate for a shadow mask, and more particularly to a method for manufacturing a high-quality metal plate for a shadow mask that has a relatively rough surface roughness and a high density of roughness. Conventionally, metal plates for shadow masks are produced by first cold rolling a low carbon hot rolled steel strip or a high alloy steel strip such as invar, and then subjecting it to strain relief annealing using a box annealing method (including open coil annealing) or a continuous annealing method. conduct,
The basic manufacturing process is to then perform secondary cold rolling, or further secondary cold rolling and temper rolling to form a slit coil. Therefore, the surface finish of the metal plate for a shadow mask, which is a product, is prepared in the secondary cold rolling or temper rolling process, which is finish rolling, and the surface condition affects the performance of the color cathode ray tube, which is the final product. More specifically, the surface finish of the work roll used for the finish rolling is itself transferred to the metal plate with considerable fidelity, so the surface finish of the work roll is the most important requirement. Next, the production of a shadow mask using a metal plate for a shadow mask will be described. Hereinafter, the metal plate for a shadow mask may be simply referred to as a material. FIG. 1 is a diagram showing the manufacturing process of a shadow mask. In Fig. 1, the material is first pretreated by degreasing, etc., then a photoresist is applied to both sides of the material, and then a vacuum is applied to make the original plate adhere to the surface of the material.After the original plate is completely adhered to the surface of the material, The original pattern is printed onto the material by exposing both sides simultaneously. Then, in a developing process, the unexposed areas of the photoresist are removed, and in a burning process, the exposed areas of the photoresist are baked and hardened to form an acid-resistant film. Then, in the etching step, a ferric chloride solution is used to perforate the exposed portion of the material, and the material is sent to a shearing and inspection step. In this way, a flat mask is completed. Next, in order to give workability to this flat mask, the mask is annealed in a dry or wet atmosphere, then passed through a leveler several times to correct the shape and prevent Reuders lines (leveling process), and then press-formed into a spherical shape. Process. Next, blackening treatment is performed in steam and/or gas to prevent rust and scattering of electron beams during the process.
The shadow mask is completed. Note that the above mask annealing and leveling may not be performed. In this case, in the manufacturing process of the metal plate for the shadow mask, the metal plate is pre-annealed after finish rolling, followed by skin pass rolling or leveling. The above is the process of manufacturing a shadow mask from a metal plate (material) for a shadow mask.Next, the vacuum exposure process according to the present invention will be explained in more detail. FIG. 2 is a perspective view showing a state in which the metal plate 1 after the photoresist 2 has been applied is evacuated and the original plate 3 is brought into close contact with the metal plate 1. In Fig. 2, a degassing pipe 4 connected to a vacuum pump is connected to a photoresist 2 in an airtight area.
The air remaining in the space between the surface of the original plate 3 and the surface of the original plate 3 is suctioned and exhausted. FIG. 3 is a cross-sectional view during evacuation showing the state of degassing the air remaining between the photoresist and the original plate on one side. In FIG. 3, the photoresist 2 is attached to the metal plate 1.
Although it is in close contact with the original plate 3, there is a partial space between it and the original plate 3, and air remains inside. When this is vacuumed in the direction of arrow V, the remaining air is removed,
The original plate 3 is pressurized in the direction of arrow A by atmospheric pressure and comes into close contact with the photoresist. It is desirable for this phenomenon to occur uniformly over the entire surface, but in reality it is not possible to uniformly arrange a large number of degassing pipes compared to the area to be degassed (vacuum degassing pipes are only available at a portion of the periphery). ), the deaeration path tends to be blocked and deaeration takes a long time, and complete deaeration is difficult if you try to deaeration in a short period of time. There was an unavoidable tendency for voids (non-adhesive areas) to remain in areas other than the periphery of the area. In other words, it is extremely difficult to perform sufficient degassing in a short period of time with a small number of degassing tubes and to create an efficient vacuum with conventional material roughness. Therefore, the inventors of the present invention were faced with the need to manufacture a metal plate for shadow masks that is dense and has a roughness with a large difference in peak and valley heights in its microscopic cross section, and as a result of various tests and studies, liquid honing was used as a finish rolling work roll. By using rolls,
The inventors have discovered that the above problems can be solved, and have arrived at the present invention. The progress leading to the present invention will be briefly described below. In other words, conventional finish rolling work rolls for manufacturing metal plates for shadow masks require (1) coarse grindstone polishing;
or (2) the surface was finished by shot blasting. However, method (1) was not suitable because the scratch marks of the grinding wheel were transferred to the metal plate and the holes in the shadow mask tended to have irregular shapes after etching. In addition, in method (2), waviness (microscopically large wave-like heights and lows) and protrusions were generated in the cross-sectional shape of the roll surface roughness, which tended to have an adverse effect on the shadow mask hole shape. That is, the undulations particularly make the straight portion of the shadow mask slot hole non-linear, and the protrusion creates a missing portion called a crater in the shadow mask slot hole. Therefore, method (2) was also inappropriate. Therefore (2)
In order to improve this method, we tested a roll whose surface was finished with a soft grindstone such as a vinyl grindstone after shot blasting, but although the occurrence of craters in the shadow mask holes disappeared, the effect of waviness was not improved. . The above is the research progress that led to the present invention, and therefore, the adoption of a liquid honing roll was by no means a mere idea. An object of the present invention is to provide a method for manufacturing a metal plate for a shadow mask that can achieve uniform evacuation in a short period of time in the shadow mask manufacturing process. Another object of the present invention is to provide a method for manufacturing a metal plate for a shadow mask that is dense and has a high Ra roughness. Still another object of the present invention is to provide a method for manufacturing a metal plate for a shadow mask, which is a shadow mask material suitable for high-quality color picture tubes and capable of obtaining accurate hole shapes. According to the present invention, a liquid honed roll having a surface roughness of 0.5 to 4.0 μmRa and a roughness density of 20 to 80 HSC/2.5 mm can be used as a work roll in finish cold rolling or temper rolling. A method for manufacturing a metal plate for a shadow mask is provided. The present invention will be explained in detail below using Examples. Figure 4 is a work roll surface roughness profile (comparative example) measured by the conventional shot blasting method using a stylus type surface roughness meter, and Figure 5 is a diagram of the work roll surface roughness processed by liquid honing on the same scale. It is a surface roughness profile diagram (Example).
In both cases, the horizontal magnification is 50x, and the vertical magnification is
It is 2000 times more. Table 1 shows numerical values for the surface roughness shown in FIGS. 4 and 5.

【表】 ここにRaは中心線平均粗さであつて、低域カ
ツトオフされた粗さ曲線から、その中心線の方向
に測定長さLの部分を抜き取り、その部分の中心
線をx軸、縦倍率の方向をy軸とし、粗さ曲線を
y=f(x)で表わした時、次の式で与えられる
μm単位の表示である。 Ra=1/L∫L 0|f(x)|dx (JIS B 0601による。) またHSCは単位長さ当りの山数(High Spot
Count)の事であり、 断面曲線からある測定長さL(この場合L=2.5
mmとした。)を抜き取り、その平均線より上の位
置にあるかどうかで山と谷を区別した時の山数で
表わされる。 扨て、第1表において、Raは比較例、本発明
実施例ともに殆ど変りないが、HSCで比較する
と実施例では比較例に比して約3倍と多く、すな
わち粗度の緻密度が極めて高い事を示している。
そしてこの事実は第4図と第5図を比較する事に
よつても明らかである。本発明実施例(第5図)
の粗度を、仕上げ圧延において転写されたシヤド
ウマスク用金属板はほぼ同様の粗度プロフイルを
示すから、前述のとおり真空引きの際に排気通路
が確保され、短時間の真空引きでも原版がレジス
ト塗布金属板に密着する。従つてパフオーマンス
として孔形状の良いシヤドウマスクが得られる。 なおワークロールの表面粗度を0.5〜4.0μmRa
とした理由は、Raが0.5μmより小さいと真空引
きの際の排気通路閉塞が生じるからであり、Ra
が4.0μmより大きいとシヤドウマスクの孔形状が
反つて不正確となるからである。 またワークロール表面粗度の緻密度を20〜
80HSC/2.5mmとした理由は、HSCが20未満であ
ると従来例(第4図参照)の如く粗度が凹凸の少
ないプレーンなものとなつてシヤドウマスク孔形
状が悪くなり、HSCが80を越すものは現状の液
体ホーニング技術では工業的に実施困難であるか
らである。 製品金属板の表面粗度の限定理由もワークロー
ル表面粗度のそれと同じである。但し、転写率の
関係で、経験的にRaのみ0.2〜2.4μmとした。 なお、ワークロール表面粗度(Ra)の製品金
属板への転写率は通常40〜60%程度である。 また金属板の材質は軟鋼の他、アンバー、42%
Ni−Fe合金、コバール(Fe−Ni−Co合金)パー
マロイ等があるが、これ等以外の材質にも適用出
来ることは云う迄もない。 以上本発明を実施することにより、前記目的の
すべてが達成され、高品位シヤドウマスクの工業
的生産が可能となつた。
[Table] Here, Ra is the center line average roughness, and from the low-frequency cut-off roughness curve, extract a part of measurement length L in the direction of the center line, and set the center line of that part on the x-axis, When the direction of vertical magnification is taken as the y-axis and the roughness curve is expressed as y=f(x), it is expressed in units of μm given by the following formula. Ra=1/L∫ L 0 |f(x)|dx (according to JIS B 0601) HSC is the number of peaks per unit length (High Spot
Count), and a certain measurement length L from the cross-sectional curve (L = 2.5 in this case)
mm. ) is extracted and the peaks and valleys are distinguished based on whether they are above the average line.It is expressed as the number of peaks. Therefore, in Table 1, Ra is almost the same in both the comparative example and the inventive example, but when compared with HSC, the example is about three times as large as the comparative example, which means that the density of roughness is extremely high. It shows something high.
This fact is also clear by comparing Figures 4 and 5. Example of the present invention (Fig. 5)
The roughness of the shadow mask metal plate transferred during finish rolling shows almost the same roughness profile, so as mentioned above, an exhaust passage is secured during vacuuming, and the original plate can be coated with resist even during short-time vacuuming. Closely adheres to the metal plate. Therefore, a shadow mask with good pore shape in terms of performance can be obtained. The surface roughness of the work roll should be 0.5 to 4.0μmRa.
The reason for this is that if Ra is smaller than 0.5 μm, the exhaust passage will be blocked during evacuation.
This is because if the diameter is larger than 4.0 μm, the hole shape of the shadow mask will be warped and become inaccurate. In addition, the density of the work roll surface roughness is 20~
The reason for setting 80HSC/2.5mm is that if HSC is less than 20, the roughness will be plain with few irregularities as in the conventional example (see Figure 4), resulting in poor shadow mask hole shape, and if HSC exceeds 80. This is because it is difficult to implement industrially with the current liquid honing technology. The reason for limiting the surface roughness of the product metal plate is the same as that of the work roll surface roughness. However, due to the transfer rate, only Ra was set to 0.2 to 2.4 μm empirically. Note that the transfer rate of the work roll surface roughness (Ra) to the product metal plate is usually about 40 to 60%. In addition to mild steel, the material of the metal plate is amber, 42%
Examples include Ni-Fe alloy, Kovar (Fe-Ni-Co alloy), permalloy, etc., but it goes without saying that it can also be applied to materials other than these. By carrying out the present invention as described above, all of the above objectives have been achieved and it has become possible to industrially produce high quality shadow masks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシヤドウマスクの製造工程図、第2図
は真空引き工程の斜視図、第3図は真空引き工程
の断面図、第4図及び第5図は夫々比較例と本発
明実施例のワークロール表面粗度プロフイル図で
ある。 1……金属板、2……フオトレジスト、3……
原版、4……脱気管。
Fig. 1 is a manufacturing process diagram of a shadow mask, Fig. 2 is a perspective view of the evacuation process, Fig. 3 is a sectional view of the evacuation process, and Figs. 4 and 5 are workpieces of a comparative example and an example of the present invention, respectively. It is a roll surface roughness profile diagram. 1...Metal plate, 2...Photoresist, 3...
Original version, 4... Degassing pipe.

Claims (1)

【特許請求の範囲】 1 仕上げ冷間圧延もしくは調質圧延において、
表面粗度が0.5〜4.0μmRaであり、かつ粗度の緻
密度が20〜80HSC/2.5mmである液体ホーニング
加工ロールをワークロールとして用いる事を特徴
とするシヤドウマスク用金属板の製造法。 2 製品金属板の表面粗度が0.2〜2.4μmRaであ
り、かつ粗度の緻密度が20〜80HSC/2.5mmであ
る特許請求の範囲第1項記載の製造法。
[Claims] 1. In finish cold rolling or temper rolling,
A method for manufacturing a metal plate for a shadow mask, characterized in that a liquid honed roll having a surface roughness of 0.5 to 4.0 μm Ra and a roughness density of 20 to 80 HSC/2.5 mm is used as a work roll. 2. The manufacturing method according to claim 1, wherein the product metal plate has a surface roughness of 0.2 to 2.4 μm Ra and a roughness density of 20 to 80 HSC/2.5 mm.
JP10888383A 1983-06-16 1983-06-16 Manufacture of metallic plate for shadow mask Granted JPS59232607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10888383A JPS59232607A (en) 1983-06-16 1983-06-16 Manufacture of metallic plate for shadow mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10888383A JPS59232607A (en) 1983-06-16 1983-06-16 Manufacture of metallic plate for shadow mask

Publications (2)

Publication Number Publication Date
JPS59232607A JPS59232607A (en) 1984-12-27
JPH0344842B2 true JPH0344842B2 (en) 1991-07-09

Family

ID=14496006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10888383A Granted JPS59232607A (en) 1983-06-16 1983-06-16 Manufacture of metallic plate for shadow mask

Country Status (1)

Country Link
JP (1) JPS59232607A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139344A (en) * 1984-07-31 1986-02-25 Toshiba Corp Shadow mask
JPS62238003A (en) * 1986-04-07 1987-10-19 Nisshin Steel Co Ltd Stock for shadow mask and its production
JPH0739612B2 (en) * 1986-06-04 1995-05-01 日本鋼管株式会社 Method for manufacturing shadow mask original plate excellent in press formability
JPH071675B2 (en) * 1990-08-22 1995-01-11 大日本スクリーン製造株式会社 Shadow mask manufacturing method and shadow mask plate material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437999A (en) * 1977-08-31 1979-03-20 Mitsubishi Electric Corp Method of processing roll type works with electric discharge
JPS5741801A (en) * 1980-08-26 1982-03-09 Nippon Steel Corp Manufacture of stainless steel sheet prevented from generating gold-dust flaw

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437999A (en) * 1977-08-31 1979-03-20 Mitsubishi Electric Corp Method of processing roll type works with electric discharge
JPS5741801A (en) * 1980-08-26 1982-03-09 Nippon Steel Corp Manufacture of stainless steel sheet prevented from generating gold-dust flaw

Also Published As

Publication number Publication date
JPS59232607A (en) 1984-12-27

Similar Documents

Publication Publication Date Title
KR920005228A (en) Manufacturing method of shadow mask and shadow mask plate material
GB2332650A (en) Etching photoresist patterned metal substrate with specific surface roughness
JPH0549727B2 (en)
JPH0344842B2 (en)
JPH0452585B2 (en)
JP2672491B2 (en) Shadow mask
JPH02197301A (en) Stock for shadow mask and its manufacture
KR100516410B1 (en) Shadow mask for color picture tube
EP0454112B1 (en) Plate material for shadow mask
US6384523B1 (en) Color selection electrode, method of producing color selection electrode and cathode ray tube
EP0996139A1 (en) Shadow mask and base material therefor
JP3049388B2 (en) Method of manufacturing material for shadow mask
JP2002237254A (en) Extension type shadow mask and material for the same
JPH05290724A (en) Manufacture of shadow mask
JPH09262603A (en) Metallic sheet for shadow mask and its manufacture
JP2771372B2 (en) Aperture grill and method of manufacturing the same
JP3063373B2 (en) Method for producing thin plate for Fe-Ni-based alloy shadow mask with excellent etching properties
JPH0373640B2 (en)
JP2002241901A (en) Material for shadow mask, and its manufacturing method
JPH0669567B2 (en) Method for manufacturing shadow mask material
JP3122442B2 (en) Plate material for shadow mask
JP2005144466A (en) Manufacturing method of iron-nickel based alloy thin sheet for shadow mask with excellent etching performance
MXPA99009619A (en) Shadow mask and base material for the mi
JPH10130868A (en) Figuring method for etching of metallic thin film
JPS60187682A (en) Manufacture of shadow mask