JPH0344599B2 - - Google Patents

Info

Publication number
JPH0344599B2
JPH0344599B2 JP58501612A JP50161283A JPH0344599B2 JP H0344599 B2 JPH0344599 B2 JP H0344599B2 JP 58501612 A JP58501612 A JP 58501612A JP 50161283 A JP50161283 A JP 50161283A JP H0344599 B2 JPH0344599 B2 JP H0344599B2
Authority
JP
Japan
Prior art keywords
particle size
milling
slurry
milling stage
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58501612A
Other languages
Japanese (ja)
Other versions
JPS59500817A (en
Inventor
Maito Mikeru Masuiesen
Rarusu Ingemaru Giruberugu
Karuru Marutein Edoin Herusuten
Gonuoru Birugito Tora Karurotsuson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nouryon Surface Chemistry AB
Original Assignee
Berol Kemi AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20346752&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0344599(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Berol Kemi AB filed Critical Berol Kemi AB
Publication of JPS59500817A publication Critical patent/JPS59500817A/en
Publication of JPH0344599B2 publication Critical patent/JPH0344599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/322Coal-oil suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Crushing And Grinding (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粉砕炭素質物質の形の固体燃料のス
ラリーを製造するための方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a slurry of solid fuel in the form of pulverized carbonaceous material.

本発明の関係において使用される用語「固体燃
料」は種々のタイプの炭素質物質、例えば、歴青
炭、無煙炭、亜歴青炭および亜炭、木炭、および
精油コークス、アスフアルテンのような製油所の
固体副生物等から成る。
The term "solid fuel" as used in the context of the present invention refers to various types of carbonaceous materials, such as bituminous, anthracite, subbituminous and lignite, charcoal, and refinery coke, asphaltenes. Consists of solid by-products, etc.

今日熱の生成は液体または気体燃料の燃焼に大
きに依存しており、従つて既存のプラントはこれ
ら燃料を自然の形態で輸送し、貯蔵し、および燃
焼するように構成されている。塊炭への転換は大
規模な改造と新規の投資を伴うので、石炭を液体
または気体の燃料生成物に転換する種々の方法が
高い関心を引いているのは当然のことである。石
炭ををメタノールまたは炭化水素に化学転換する
他に、種合の液体、例えばメタノール、油、水と
油の混合物、または水のみ等を使用して石炭粉末
スラリーを製造ことも提案された。これにより石
炭のような固体燃料を処理して液体として輸送す
る一方、スラリー燃料に使用される油のような液
体燃料の量を少なくするかまたは省くことができ
る。
Heat production today relies heavily on the combustion of liquid or gaseous fuels, and existing plants are therefore configured to transport, store, and burn these fuels in their natural form. Since conversion to lump coal involves extensive modification and new investment, it is not surprising that various methods of converting coal into liquid or gaseous fuel products are of great interest. In addition to the chemical conversion of coal to methanol or hydrocarbons, it has also been proposed to use some kind of liquid, such as methanol, oil, a mixture of water and oil, or just water, to produce a coal powder slurry. This allows solid fuels such as coal to be processed and transported as liquids while reducing or eliminating the amount of liquid fuels such as oil used in slurry fuels.

多くの場合、石炭と水とのスラリーは最も実用
的でかつ経済的利点を提供する。固体燃料スラリ
ーに対し多くのことが要求されているが、最も重
要な要求は、スラリーが高い固体燃料含量を有す
る一方取扱に都合のよい性質、すなわち長い貯蔵
期間中でさえも低い見掛粘度と均質性を示すこと
である。スラリー燃料製造プロセスはいくつか既
に提案されている。
In many cases, a slurry of coal and water offers the most practical and economic advantages. There are many demands on solid fuel slurries, but the most important ones are that the slurry should have a high solid fuel content while also having convenient handling properties, i.e. low apparent viscosity even during long storage periods. It is to show homogeneity. Several slurry fuel production processes have already been proposed.

米国特許第4282006号には石炭水スラリー調製
法が開示されている。そこでは、粉砕石炭をボー
ルミルで摩砕し、摩砕された石炭を少量さらに別
のボールミルで摩砕して、スラリーに使用する圧
縮微粉炭のための十分な量の微細粒子を提供し、
その要求を満たすものである。このプロセスは完
全な連続式ではなく、第1ミルがスラリー中の最
大粒子と同じ大きさかまたはこれよりも小さい粒
子を生成することに特徴がある。従つて得られた
粒度分布は第1ミルにおける石炭粉砕方法に大い
に依存しており、望ましい粒度分布にする点で柔
軟性に乏しい。
US Pat. No. 4,282,006 discloses a method for preparing a coal water slurry. There, the crushed coal is ground in a ball mill, and a small amount of the ground coal is further ground in another ball mill to provide a sufficient amount of fine particles for compressed pulverized coal to be used in the slurry;
This meets that requirement. This process is not completely continuous and is characterized by the first mill producing particles as large as or smaller than the largest particles in the slurry. Therefore, the resulting particle size distribution is highly dependent on the method of coal crushing in the first mill, and there is little flexibility in achieving the desired particle size distribution.

カリフオルニア、アービンのオクシデンタル・
リサーチ・コーポレーシヨンは論文(「石炭−水
混合物の調製、取扱いおよび燃焼特性」コール・
テクノロジー′82、第5回国際石炭利用展示会お
よび会議、1982年12月7〜9日、テキサス州ヒユ
ーストン)を刊行し、その中にスラリー製造法を
開示している。これは最終スラリー粒径範囲内の
粒子を製造する第1の乾式粉砕工程を含み、また
第1のミル生成物の一部をさらに摩砕し十分な量
の微細粒子を生成する、第2の微粉砕工程を含
む。この粉砕方法は米国特許第4282006号に開示
されたものと同じタイプの欠点をもつ。
Occidental in Irvine, California
The Research Corporation published a paper (“Preparation, Handling and Combustion Properties of Coal-Water Mixtures”)
Technology '82, 5th International Coal Utilization Exhibition and Conference, December 7-9, 1982, Hyuston, Texas), in which he discloses a slurry production method. This includes a first dry milling step that produces particles within the final slurry particle size range, and a second dry milling step that further mills a portion of the first mill product to produce a sufficient amount of fine particles. Includes a pulverization process. This grinding method has the same type of drawbacks as disclosed in US Pat. No. 4,282,006.

さらに石炭水スラリー製造方法は、バージニア
州アレクサンドリアのアトランチツク・リサー
チ・コーポレーシヨンによつて開示され(エレク
トリツク、パワー・リサーチ・インスチユワー
ト・レポートCS−2287、1982年3月)ている。
そこでは摩砕する前に供給される石炭を2つに分
流している。1の流れは乾式ハンマミルと次いで
湿式ボールミルの2個のミルを通過し、中間の分
級がない。他の流れは自己完結式操作で乾式ケー
ジミルにより摩砕される。両方の流れで生成した
固体をスラリーに合流させる。この操作は、また
最終スラリー粒径範囲内の粒子を2平行流で生成
し、十分な柔軟性がないので、スラリー中に所望
の粒度分布を達成することがでない。
Additionally, a method for making a coal-water slurry has been disclosed by Atlantic Research Corporation of Alexandria, Virginia (Electric Power Research Institute Report CS-2287, March 1982).
There, the coal feed is split into two before being milled. Stream 1 passes through two mills, a dry hammer mill and then a wet ball mill, with no intermediate classification. The other stream is milled in a dry cage mill in a self-contained operation. The solids produced in both streams are combined into a slurry. This operation also produces particles within the final slurry particle size range in two parallel streams and is not flexible enough to achieve the desired particle size distribution in the slurry.

水性または非水性のスラリー中の粒度分布に関
して、所定の固体濃度において粒子凝集した懸濁
液の粘度を最小にするために、粒子凝集をの粒度
分布を最適にすることができることは良く知られ
ている事実である。これに関する理論はフアリス
によつて良く論じられている(Trans.Soc.
Rheology 12:2,281〜301頁、1968年)。
Regarding particle size distribution in aqueous or non-aqueous slurries, it is well known that the particle size distribution of particle agglomeration can be optimized to minimize the viscosity of the particle agglomerated suspension at a given solids concentration. It is a fact that The theory of this is well discussed by Faris (Trans.Soc.
Rheology 12:2, pp. 281-301, 1968).

1例として、フアリスの研究は、次表に示すよ
うに、1.2の充てん密度を仮定して、粒子最大粒
が200ミクロンの75重量%石炭/水スラリーに対
する最適粒度分布を与えている。
As an example, the Faris study gives an optimal particle size distribution for a 75 wt% coal/water slurry with a particle size of 200 microns, assuming a packing density of 1.2, as shown in the following table.

第1表 石炭重量% 粒 度(μm) 100 −200 92 −160 79 −100 70 −70 59 −44 42 −20 29 −10 スラリーの製造において、所定単位容量のスラ
リー中に固体粒子を高度に充てんすることを可能
とする粒度分布を達成することが一般に課題であ
る。実際の目的が、極めて高い固体含量のスラリ
ーを得ることではないとしても、高い固体含量を
与える粒度分布の固体粒子を使用することが好ま
しい。それは、この種のスラリーが任意のスラリ
ー液体含量においても貧弱な粒度分布の粒子を含
有するスラリーよりも一層有利なレオロジー特性
を示すからである。
Table 1 Coal weight % Particle size (μm) 100 −200 92 −160 79 −100 70 −70 59 −44 42 −20 29 −10 In the production of slurry, a predetermined unit volume of slurry is highly filled with solid particles. It is generally a challenge to achieve a particle size distribution that makes it possible to Even if the actual objective is not to obtain a slurry with a very high solids content, it is preferred to use solid particles with a particle size distribution that gives a high solids content. This is because this type of slurry exhibits more favorable rheological properties than slurries containing particles with a poor size distribution at any slurry liquid content.

発表されたフアリスの論文は、スラリー固体中
の所定の最大粒径において、他の分布よりは高い
固体含量を与える粒度分布があることを示してい
る。一般に、理想の分布は、典型的には単一の摩
砕工程で生成された量よりも多量の微細なおよび
粗大な物質を分布内に含む。開放摩砕回路、すな
わち内部的または外部的分級操作をしない摩砕回
路は、同一の最大粒径の生成物を生成する場合
に、封鎖した摩砕操作よりは平均して細かい物質
を生成するが、これは共に中間粒径範囲に生成物
を大量に集中させる傾向がある分布、すなわち狭
い分布を生成する。
The published Faris paper shows that there are particle size distributions that give higher solids content than other distributions at a given maximum particle size in a slurry solid. Generally, the ideal distribution will include a greater amount of fine and coarse material within the distribution than is typically produced in a single milling step. Open milling circuits, i.e., milling circuits without internal or external classification operations, produce on average a finer material than closed milling operations when producing products of the same maximum particle size; , this both produces a distribution that tends to heavily concentrate the product in the intermediate particle size range, ie a narrow distribution.

しかし、本発明は、次の工程を実施することに
よつて連続方法で所定の最大粒径にて所望の粒度
分布を達成する方法を提供する: 1 容易に摩砕できる粒径まで、あらかじめ小さ
く破砕された炭素質出発物質を第1ミルに導入
し、ここで所望のスラリー粒度分布よりは粗い
粒度分布に計画的に摩砕し、 2 第1ミルからの摩砕生成物を続いて分級装置
に導き粗い部分を除去する。微部分の最も粗い
粒子が最終スラリーの平均粒径よりも粗いかま
たは等しいが、最級スラリーの最大粒径よりも
小さいかまたは等しいように、好ましくは最終
スラリーの最大粒径に殆ど等しいようにカツト
ポイントを選ぶことが好ましい; 3 粗い部分を引続き1個または複数個の次段の
ミルに導入する。そこのミルでは、充てん物質
単位当り摩砕エネルギーを第1ミルの充てん物
質単位当り摩砕エネルギーから変化させること
ができる。従つて、次段の各ミルからの生成
物、即ち各ミルから分離した微細粉、および第
1ミルから分離した微細粉との配合に対してい
かなる粒径分布が必要とされようとも:オペレ
ーターは前記粗い部分を摩砕して理想または所
の粒度分布に近づけることができる。
However, the present invention provides a method to achieve the desired particle size distribution at a predetermined maximum particle size in a continuous manner by carrying out the following steps: 1. introducing the crushed carbonaceous starting material into a first mill where it is systematically milled to a coarser particle size distribution than the desired slurry particle size distribution; 2 the milled product from the first mill is subsequently passed through a classifier; to remove rough parts. such that the coarsest particles of the fine fraction are coarser than or equal to the average particle size of the final slurry, but less than or equal to the maximum particle size of the finest slurry, preferably approximately equal to the maximum particle size of the final slurry. It is preferable to choose a cutting point; 3. The coarse part is subsequently introduced into one or more subsequent mills. In that mill, the milling energy per unit of filler material can be varied from the milling energy per unit of filler material of the first mill. Therefore, whatever particle size distribution is required for the product from each subsequent mill, i.e. the fines separated from each mill, and the fines separated from the first mill: The coarse portion can be milled to approximate the ideal or desired particle size distribution.

これら工程を複数の摩砕段階において行うこと
ができ、分級機の使用が必要な第1摩砕段階を除
いて、各摩砕段階は少なくとも1個のミルおよび
必要に応じ設ける分級機から成る。好ましくは、
摩砕段階は全部で2段階である。最後の摩砕段階
に対しては、先段の摩砕段階の分級機を使用する
か、分級機を全く使用しない選択ができる。第1
摩砕段階からの微細粉と配合される、スラリー固
体を形成するために分離した微細粒部分が、その
最大粒径がスラリー中の最大粒径よりも小さいか
または等しいような粒度分布であるように、第1
の摩砕段階に続く各摩砕段階に設ける分級機を選
ぶことが好ましい。第1摩砕段階で分離した微細
粉と一緒にスラリーにされる次段の摩砕段階から
の微細粉の最大径と平均粒径とは、第1摩砕段階
で分離した微細粉の最大および平均粒径よりも、
それぞれ、等しいか小さい最大粒径および平均粒
径であることが好ましい。
These steps can be carried out in several milling stages, each milling stage consisting of at least one mill and an optional classifier, except for the first milling stage which requires the use of a classifier. Preferably,
There are a total of two milling stages. For the final milling stage, one can choose to use the classifier from the previous milling stage or not to use a classifier at all. 1st
The separated fine part, which is combined with the fines from the milling stage to form a slurry solid, is of a particle size distribution such that its maximum particle size is less than or equal to the maximum particle size in the slurry. In, the first
Preferably, a classifier is selected for each milling stage following the milling stage. The maximum diameter and average particle size of the fines from the next milling stage that are made into a slurry together with the fines separated in the first milling stage are the maximum and average particle diameters of the fines separated in the first milling stage. than the average particle size,
Preferably, the maximum and average particle sizes are equal or smaller, respectively.

従つて、最終的なスラリー中の十分粗い物質に
対する要求は特に第1摩砕段階で適えられるか、
第1摩砕段階で分離した粗い物質は特に次の摩砕
操作によつて一層細かい粒子部分の形成に寄与す
る。これにより各個別の摩砕操作における好まし
くない粒度分布を形成する傾向に関係なく、オペ
レーターは連続的に所望の粒度分布を達成するこ
とができる。
Therefore, the requirement for a sufficiently coarse material in the final slurry can be met especially in the first milling stage, or
The coarse material separated in the first milling stage contributes in particular to the formation of a finer particle fraction by the subsequent milling operation. This allows the operator to continuously achieve the desired particle size distribution, regardless of the tendency of each individual milling operation to form an undesirable particle size distribution.

他の利点は、通常の操作下で必要とされるもの
よりも高い能力のミルを次段の1個または次段の
複数個のミルに選ぶことによつて得られる。更
に、これは次段の摩砕操作で行われる摩砕作業を
増すことによつて予定されるものより粗い生成物
を第1の摩砕操作で生成させる原因となる操作上
の障害を克服することを可能としている。これに
よつて配合した微細粉の粒度分布を一定付近に保
持し、常にスラリーの性質をほぼ一定に確保する
ことができる。
Other advantages may be obtained by choosing a mill or mills of higher capacity than would be required under normal operation. Additionally, this overcomes operational obstacles that cause the first milling operation to produce a coarser product than expected by increasing the milling work performed in the subsequent milling operation. This makes it possible. As a result, the particle size distribution of the blended fine powder can be maintained around a constant level, and the properties of the slurry can always be maintained almost constant.

従つて本発明の目的は、所定の平均粒径および
所定の最大粒径から成る所定の粒度分布を有する
微粉砕炭素質物質のスラリーを生成する方法を提
供することにある。この方法は少なくとも2つの
摩砕段階から成る粉砕工程を含み摩砕した物質と
キヤリヤー液体とを混合してスラリーを調製する
方法であつて、 (a) 炭素質物質を第1摩砕段階で摩砕し; (b) (a)段階からの摩砕生成物を所定の粒度分布の
平均粒径よりも少なくとも大きい平均粒径を有
する粗い物質と粗い物質の平均粒径よりも小さ
い平均粒径を有する微細物質に区分し; (c) (b)段階からの粗い物質をさらに少なくとも1
の摩砕段階で摩砕し、少なくとも別の1の部分
の微細物質を生成し、その平均粒径が最終スラ
リーの平均粒径よりも小さく;および (d) 異なる段階からの微細物質を配合してスラリ
ーを生成することを特徴とする。
It is therefore an object of the present invention to provide a method for producing a slurry of pulverized carbonaceous material having a predetermined particle size distribution consisting of a predetermined average particle size and a predetermined maximum particle size. The method includes a grinding step comprising at least two grinding stages and mixing the ground material with a carrier liquid to form a slurry, the method comprising: (a) grinding the carbonaceous material in a first grinding stage; (b) grinding the milled product from step (a) into a coarse material having an average particle size at least greater than the average particle size of the given particle size distribution and an average particle size smaller than the average particle size of the coarse material; (c) the coarse material from step (b) is further divided into at least one
(d) blending the fine materials from the different stages; and (d) blending the fine materials from the different stages. It is characterized by generating slurry.

本発明のこの目的と他の目的および利点は、図
面に基づく以下の説明からさらに明らかであり第
1図および第2図はさらに、それぞれ、実施例1
および2に記載された本発明方法の2つの具体例
を示す。
This and other objects and advantages of the invention will become more apparent from the following description based on the drawings, in which FIGS. 1 and 2 further illustrate Example 1, respectively.
Two specific examples of the method of the present invention described in 2 and 2 are shown below.

各摩砕段階で行われる粉砕の量を制御し、分級
操作におけるカツトポイントを選択することによ
つて望ましい粒度分布を達成することでのオペレ
ーターに与える柔軟性は、最終スラリーにおける
好ましい充てん条件を達成することに劣らず重要
である。多くの場合、最良の分布を決定するた
め、多くのフアクターを互いに重みづける必要が
ある。考えられる主なフアクターを次に示す。
Flexibility given to the operator in controlling the amount of grinding performed at each milling stage and achieving the desired particle size distribution by selecting the cut point in the classification operation to achieve favorable packing conditions in the final slurry It is no less important than what you do. Many factors often need to be weighted together to determine the best distribution. The following are the main factors that can be considered.

− スラリー中の最大粒径。これは、通常予定さ
れたスラリーの最終用途、すなわち特定の燃焼
設備で十分に燃えつきるような最大粒径によつ
て決定される。
- Maximum particle size in the slurry. This is usually determined by the intended end use of the slurry, ie, the maximum particle size that is sufficient to burn out in a particular combustion installation.

− 使用した炭素質物質の選鉱特性。多くの場
合、スラリーをつくる前に、炭素質出発物質か
ら無機成分を除去することが望ましい。物質を
細かく砕く程多く無機物質が遊離する。従つ
て、最大粒径を引下げるかまたは粗い物質の量
を減少させるならば、オペレーターはスラリー
をつくる前に分離工程において不純物の除去の
向上を図ることができる。
− beneficiation properties of the carbonaceous material used; It is often desirable to remove inorganic components from the carbonaceous starting material before forming the slurry. The more finely a substance is crushed, the more inorganic substances will be liberated. Therefore, by lowering the maximum particle size or reducing the amount of coarse material, the operator can improve the removal of impurities in the separation process prior to creating the slurry.

− 摩砕コスト。スラリーの平均粒径が細かい
程、摩砕工程はコストが高くなる。
− Milling costs. The finer the average particle size of the slurry, the more costly the milling process.

− 摩砕生成物の有効表面積。最終スラリー組成
物はスラリー流の性質と安定性を高めるため化
学的添加剤を含むことが多い。この種の添加剤
は界面活性剤を含むことが多く、従つて大きい
有効表面積は添加剤濃度の増加をもたらす。
− effective surface area of the milling product; The final slurry composition often includes chemical additives to enhance the properties and stability of the slurry stream. Additives of this type often include surfactants, so a large effective surface area results in increased additive concentration.

上記フアクターと、高いスラリー粒子充てん性
を与える粒度分布を得るための要望を考慮に入れ
て、オペレーターは目標の粒度分布を選び、上述
のミルおよび分級装置を使用してこれを生成する
ことができる。通常最大粒径範囲は50〜500ミク
ロンであり、50〜250ミクロンが好ましい。第1
ミルからの物質の50〜95%はこの最大径である
か、またはこれより小さく、選択した最大径を超
える粒子の5〜50%を第1摩砕段階の分級工程に
おいて分離し、さらに第1摩砕段階において分離
した微細粉の平均粒径と等しいかまたは好ましく
はこれより小さい平均粒径に次段の1または複数
の摩砕段階において、分離した粒子を摩砕する。
好ましくは、第1の摩砕段階でスラリー中に含ま
れる十分な細かさの粒子の60〜85%を生成する。
Taking into account the above factors and the desire to obtain a particle size distribution that gives high slurry particle packing, the operator can choose a target particle size distribution and produce it using the mill and classifier described above. . Typically the maximum particle size range is 50-500 microns, preferably 50-250 microns. 1st
50-95% of the material from the mill is at or below this maximum size, and 5-50% of the particles exceeding the selected maximum size are separated in the classification step of the first milling stage, and The separated particles are ground in one or more subsequent grinding stages to an average particle size equal to or preferably smaller than the average particle size of the fines separated in the grinding stage.
Preferably, the first milling stage produces 60-85% of the particles of sufficient fineness contained in the slurry.

しかし、流動床における燃料スラリーの燃焼ま
たは燃料スラリーの溶鉱炉への注入のような適用
では、微粉砕炭素質物質の粒径は特に臨界的では
なく、燃料スラリーに比較的大きな粒子を含ませ
ても問題は生じない。しかし、粒子が大きすぎる
場合粒子沈澱の危険が生じるため、粒径は約0.5
mmを超えるべきでない。
However, in applications such as combustion of a fuel slurry in a fluidized bed or injection of a fuel slurry into a blast furnace, the particle size of the pulverized carbonaceous material is not particularly critical and even if the fuel slurry contains relatively large particles. No problems arise. However, if the particles are too large there is a risk of particle settling, so the particle size should be approximately 0.5
Should not exceed mm.

実施例 1 この実施例では添付した図面の第1図によるミ
ル装置を使用する。ミル装置は各段階において1
個の湿式ボールミルを有する2段階の摩砕段階を
含む。さらに特に、第1摩砕段階は第1ミル1お
よびシーブベンド2から成り、第2摩砕段階は第
2ミル3およびシーブベンド4から成る。
Example 1 In this example a mill apparatus according to FIG. 1 of the attached drawings is used. Mill equipment is 1 at each stage
It includes two milling stages with several wet ball mills. More particularly, the first milling stage consists of a first mill 1 and a sieve bend 2, and the second milling stage consists of a second mill 3 and a sieve bend 4.

シーブベンド2が、許容できるスラリー最大粒
径よりも粗い物質を分離し、シーブベンド4がミ
ル3にフイードバツクする粗い粒子または微細粒
子に分離するようにシーブベンドのメツシユ径を
選ぶ。物質の流れを次に示す: 炭素質出発物質(A)および十分な水を第1ミルに
導入し; 最終スラリー固体よりも粗い物質を5〜50%有
する摩砕生成物(B)はミルを出て; 5〜50%の粗い物質(C)をシーブベンド2で分離
し第2ミル3で摩砕し; 第2ミル3からの摩砕生成物(D)を第2シーブベ
ンド4に送り出し、そこで微細部分(E)を分離して
シーブベンド2からの微細物と合わせて最終摩砕
生成物(F)を生成し、; シーブベンド4からの粗生成物(G)を第2ミル3
に循環し; (F)をスラリー液体と合わせてスラリー生成物を
生成する。
The mesh size of the sieve bends is chosen such that sieve bend 2 separates material coarser than the maximum allowable slurry particle size and sieve bend 4 separates into coarse or fine particles which are fed back to mill 3. The material flow is as follows: Carbonaceous starting material (A) and sufficient water are introduced into the first mill; the milled product (B) having 5-50% coarser material than the final slurry solids is passed through the mill. Out; 5-50% coarse material (C) is separated in sieve bend 2 and ground in second mill 3; milled product (D) from second mill 3 is sent to second sieve bend 4 where it is The fines fraction (E) is separated and combined with the fines from sieve bend 2 to produce the final milled product (F); the crude product (G) from sieve bend 4 is passed to the second mill 3
(F) is combined with the slurry liquid to form a slurry product.

実施例 2 高揮発性歴青炭(例えばケープ・ブレトン・デ
ベロツプメント・コーポレーシヨンン、ノバ・ス
コチア、ハーバーシーム炭)を使用して水性スラ
リーを生成した。選択した最大スラリー粒径は
200ミクロンであり、スラリー充てん量を75重量
%になるように選択した。理想的フアリス分布は
次の分布を要した。
Example 2 A high volatility bituminous coal (eg, Cape Breton Development Corporation, Nova Scotia, Harbor Seam coal) was used to produce an aqueous slurry. The maximum slurry particle size selected is
200 microns, and the slurry loading was selected to be 75% by weight. The ideal Furis distribution required the following distribution.

第2表 粒子重量% 粒 径(μm) 100 −200 85.5 −125 76.5 −88 67.0 −63 59.5 −45 51.0 −31.5 42.0 −20 32.5 −12.5 湿式ボールミルにおいて石炭を摩砕し、ハイド
ロサイクロンで粗い粒子を分離して同じミルにフ
イードバツクして摩砕すると、次の分布を得た。
Table 2 Particle weight % Particle size (μm) 100 −200 85.5 −125 76.5 −88 67.0 −63 59.5 −45 51.0 −31.5 42.0 −20 32.5 −12.5 Coal was ground in a wet ball mill, and coarse particles were removed using a hydrocyclone. When separated and fed back to the same mill for milling, the following distribution was obtained.

第3表 粒子重量% 粒 径(μm) 100 −200 99 −125 94 −88 86 −63 75 −45 61 −31.5 43.5 −20 29 −12.5 このようにして達成された分布は不満足なもの
であつた。また結論として、理想的フアリス分布
は、燃料製造おいて過剰の添加剤を消費する。そ
れが故に、第2表に望ましいものとして示した粒
径よりも若干細かい粒径の粒子が少なく、しかも
75%充てんで十分な流動特性をもつスラリーを得
るために大きい粒径の十分な量を有する粒度分布
を生成することが決定された。これを達成するた
めに、第2図による摩砕装置を使用した。第2図
による摩砕装置は2段階の摩砕段階を含み、各段
階に1個の湿式ミルを用い、最終摩砕段階に別個
の分級機を用いていない。
Table 3 Particle weight % Particle diameter (μm) 100 −200 99 −125 94 −88 86 −63 75 −45 61 −31.5 43.5 −20 29 −12.5 The distribution thus achieved was unsatisfactory. . Also in conclusion, the ideal Furis distribution consumes excess additives in fuel production. Therefore, there are fewer particles with slightly finer diameters than those shown as desirable in Table 2, and
It was determined that 75% loading would produce a particle size distribution with a sufficient amount of large particle size to obtain a slurry with sufficient flow properties. To achieve this, a milling device according to FIG. 2 was used. The milling apparatus according to FIG. 2 includes two milling stages, with one wet mill in each stage and no separate classifier in the final milling stage.

第2図による構成では、スラリー最大粒径、
200ミクロンを超える粒子を分離し、さらにこれ
を第2摩砕段階で摩砕するように、シーブベンド
3のメツシユ径を選んだ。シーブベンド3の容量
は、両段階の摩砕による摩砕生成物から粗い物質
を有効に分離するのに十分な容量にした。
In the configuration shown in FIG. 2, the slurry maximum particle size,
The mesh diameter of sieve bend 3 was chosen to separate particles larger than 200 microns and further mill them in a second milling stage. The capacity of sieve bend 3 was sufficient to effectively separate the coarse material from the milling products of both stages of milling.

物質の流れを次に示す: 約50重量%の十分な水を含み、直径が30.8mm以
下(1.5インチ以下)の粒径の炭素質出発物質(A)
を第1摩砕段階のボールミル1に供給した。第1
ミル1からの生成物(B)は、運転中を通して200μm
を超える物質を30〜35%含み、これをシーブベン
ドで分離し、第2摩砕段階のボールミル2に供給
した。ここでさらに径が小さくなり、その後(D)は
第1段階のシーブベンドに移送され、合流して微
細粉流(E)となつた。これは次の径分布を示した。
The material flow is as follows: carbonaceous starting material (A) containing sufficient water to approximately 50% by weight and having a particle size of 30.8 mm (30.8 mm) or less (1.5 inches or less);
was fed to the ball mill 1 in the first milling stage. 1st
The product from mill 1 (B) is 200 μm throughout the run.
It contained 30-35% of material exceeding 30%, which was separated in a sieve bend and fed to the ball mill 2 for the second milling stage. Here, the diameter further decreased, and then (D) was transferred to the first stage sieve bend, where it merged and became a fine powder stream (E). This gave the following diameter distribution.

第4表 粒子重量% 粒 径(μm) 100 −200 90.5 −125 81.0 −88 70.0 −63 59.5 −45 49.0 −31.5 33.0 −20 21.5 −12.5 摩砕した生成物(E)から調製されたスラリーは75
重量%の固体濃度を有し満足なレオロジー特性を
示した。
Table 4 Particle weight % Particle size (μm) 100 −200 90.5 −125 81.0 −88 70.0 −63 59.5 −45 49.0 −31.5 33.0 −20 21.5 −12.5 The slurry prepared from the milled product (E) was 75
It had a solids concentration of % by weight and exhibited satisfactory rheological properties.

上記粉砕方法を実施した後、複数の摩砕段階か
らの微細粉部分を合流させ選択したキヤリヤ液体
と混合し、流動性を向上させる化学添加剤を用い
てまたは用いないで、微粉砕炭素質物質スラリー
を生成する。
After carrying out the above grinding method, the fine powder portions from the multiple grinding stages are combined and mixed with a carrier liquid of choice to form a finely ground carbonaceous material with or without flow-enhancing chemical additives. Generate slurry.

しかし、ある場合には、出発物質に同伴し、か
つ粉砕工程においてそこから遊離する無機不純物
を摩砕炭素質物質から除去するために、選鉱工程
を実施することが好ましい。特に生成すべきスラ
リーが水性である場合、湿式ミルにおいて粉砕工
程を行い次いで湿式選鉱処理を行うことが適当で
ある。このような場合に、粉砕工程で生成したス
ラリーは、粉砕工程に通常用いられる固体濃度50
〜25重量%から、有機粒子を無機粒子から分離す
る浮選セル装置において典型的には5〜20重量
%、好ましくは7〜15重量%に適当に希釈され
る。
However, in some cases it is preferable to carry out a beneficiation step in order to remove from the ground carbonaceous material the inorganic impurities that are entrained in the starting material and liberated therefrom during the grinding step. Particularly if the slurry to be produced is aqueous, it is appropriate to carry out the grinding step in a wet mill followed by a wet beneficiation treatment. In such cases, the slurry produced in the grinding process has a solids concentration of 50
From ~25% by weight, it is suitably diluted to typically 5 to 20% by weight, preferably 7 to 15% by weight in a flotation cell device that separates organic particles from inorganic particles.

ここでは、通常15〜45分の十分な保持時間が固
体の濃度および粒径に応じて与えられる。
Here, a sufficient holding time of usually 15 to 45 minutes is provided depending on the concentration and particle size of the solids.

通常は浮選工程を浮選セルの粗く選鉱する系列
次いで精製選鉱系列で行い、ここにおいて試薬、
例えば浮選剤、促進剤、および降下剤を各系列の
各セルに独立して添加することができる。
Usually, the flotation process is carried out in a coarse beneficiation series in a flotation cell followed by a refining beneficiation series, where reagents,
For example, flotation agents, accelerators, and depressants can be added independently to each cell of each series.

このように選鉱した炭素質微粉砕物質は沈降お
よび/またはろ過技術によつて35〜15重量%に脱
水した後、脱水したスラリーをそのまま使用する
かまたは流動性を向上させる化学添加剤を混合し
た後貯蔵所にポンプで移送する。
The carbonaceous pulverized material thus beneficiated is dehydrated to 35-15% by weight by sedimentation and/or filtration techniques, and the dehydrated slurry is used as is or mixed with chemical additives to improve fluidity. Then pump to storage.

非水性スラリーを生成しようとする場合、脱水
工程を適当に用いて更に低い含水量とした後、混
合工程においてスラリー液体と選鉱した微粉砕炭
素質物質とを合わせる。
If a non-aqueous slurry is to be produced, a dehydration step is suitably used to achieve an even lower water content before the slurry liquid is combined with the beneficent finely divided carbonaceous material in a mixing step.

結論として、上述の事から、本発明は粉砕段
階、希釈水相で行われる任意の選鉱段階およびス
ラリー混合段階を含む、微粉砕炭素質物質のスラ
リーを生成するための新規方法、ならびに炭素質
物質スラリーを生成するため前記粉砕工程を行う
新規方法を提供し、いずれも上記に列挙した特長
および利点を有することは明らかである。
In conclusion, from the foregoing, the present invention provides a novel method for producing a slurry of finely ground carbonaceous material, including a grinding stage, an optional beneficiation stage carried out in a dilute aqueous phase, and a slurry mixing stage, as well as a method for producing a slurry of finely ground carbonaceous material. It is clear that novel methods of carrying out the grinding step to produce a slurry are provided, both having the features and advantages listed above.

明らかな変更および等価物は当該技術分野の熟
練者に明らかであるのて、本発明は上に示し述べ
た操作の厳密な細部、または厳密な組成、方法、
操作、または具体例に制限されず、従つて本発明
は請求の範囲の全範囲によつてのみ制限されると
解されるべきである。
Obvious modifications and equivalents will be apparent to those skilled in the art, and the present invention does not rely on the precise details of operation, composition, method, or composition shown or described above.
Rather than being limited to operation or specific examples, the invention is therefore to be construed as limited only by the full scope of the claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るスラリー製造方法の実
施例1を実施する装置にフローシート図;第2図
は、本発明に係るスラリー製造方法の実施例2を
実施する装置のフローシート図である。 第1図、1…第1ミル、2…シーブベンド、3
…第2ミル、4…シーブベンド、A…炭素質出発
物質、B…最終スラリー固体よりも粗い物質を5
〜50%有する摩砕生成物、C…5〜50%の粗い物
質、D…第2ミルからの摩砕生成物、E…微細部
分、F…最終摩砕生成物、G…シーブベンドから
の粗生成物、第2図、1…第1ミル、2…第2ミ
ル、ボールミル、3…シーブベンド、A…炭素質
出発物質、B…第1ミルからの生成物、C…第2
ミルへの供給物質、D…第2ミルからの摩砕生成
物、E…微細部分。
FIG. 1 is a flow sheet diagram of an apparatus for implementing Example 1 of the slurry manufacturing method according to the present invention; FIG. 2 is a flow sheet diagram of an apparatus for implementing Example 2 of the slurry manufacturing method according to the present invention. be. Figure 1, 1...1st mill, 2...sieve bend, 3
... second mill, 4... sieve bend, A... carbonaceous starting material, B... material coarser than final slurry solids, 5...
-50% milled product, C...5-50% coarse material, D...milled product from second mill, E...fine fraction, F...final milled product, G...crude from sieve bend. Product, FIG. 2, 1...first mill, 2...second mill, ball mill, 3...sieve bend, A...carbonaceous starting material, B...product from first mill, C...second
Feed to the mill, D... milled product from the second mill, E... fines.

Claims (1)

【特許請求の範囲】 1 所定の平均粒径および所定の最大粒径からな
る所定の粒度分布を有する微粉砕炭素質物質のス
ラリー製造方法であつて、各々が少なくとも1個
のミルを有する少なくとも2段階の摩砕段階から
なる粉砕工程と、摩砕した物質とキヤリヤー液体
とを混合する工程とを有するスリラー製造方法に
おいて、 (a) 炭素質物質を第1摩砕段階で摩砕し; (b) 所定の粒度分布の平均粒径よりも大きい平均
粒径を有する粗い物質と粗い物質の平均粒径よ
りも小さい粒径を有する微細物質に、(a)段階か
らの摩砕生成物を区分し; (c) (b)段階からの粗い物質をさらに少なくとも別
の1の摩砕段階で摩砕して、少なくとも別の1
部分の微細物質を生成し、その別の1の部分の
微細物質の平均粒径が最終スラリーの平均粒径
よりも小さくし;および (d) 異なる段階からの微細物質を混合してスラリ
ーを生成することを特徴とする微粉砕炭素質物
質のスラリー製造方法。 2 最後の摩砕段階からの摩砕生成物が粗い物質
と微細物質に区分されることを特徴とする特許請
求の範囲1項記載の方法。 3 最後の摩砕段階を除いて異なる摩砕段階から
の粗い物質を全部次段の摩砕段階で摩砕すること
を特徴とする特許請求の範囲1項記載の方法。 4 最後の摩砕段階を除いて異なる摩砕段階から
の粗い物質を一部のみを次段の摩砕段階で摩砕す
る一方、同じ摩砕段階かまたは先行の摩砕段階で
繰り返し摩砕するため粗い物質の残りをフイード
バツクさせることを特徴とする特許請求の範囲1
項記載の方法。 5 最後の摩砕段階からの粗い物質を同じ摩砕段
階かまたは先行の摩砕段階で繰り返し摩砕するた
めフイードバツクさせることを特徴とする特許請
求の範囲2項記載の方法。 6 第1摩砕段階からの粗い物質が50〜500μmの
粒径を有することを特徴とする特許請求の範囲1
項記載の方法。 7 第1摩砕段階からの粗い物質が50〜250μmの
粒径を有することを特徴とする特許請求の範囲6
項記載の方法。 8 第1摩砕段階からの粗い物質が第1摩砕段階
に入る物質の全量の5〜50重量%から成ることを
特徴とする特許請求の範囲1項記載の方法。 9 第1摩砕段階において分離したい粗い物質の
粒径が少なくとも所定の粒度分布の最大粒径より
も大きいことを特徴とする特許請求の範囲1項記
載の方法。 10 特許請求の範囲1項に記載のスラリー製造
方法により生成した微粉砕炭素質物質のスラリ
ー。
[Scope of Claims] 1. A method for producing a slurry of pulverized carbonaceous material having a predetermined particle size distribution consisting of a predetermined average particle size and a predetermined maximum particle size, comprising at least two mills each having at least one mill. A process for making a chiller comprising a grinding step comprising a step of grinding and mixing the ground material with a carrier liquid, comprising: (a) grinding the carbonaceous material in a first grinding step; (b) ) dividing the milling product from step (a) into a coarse material having an average particle size larger than the average particle size of the predetermined particle size distribution and a fine material having a particle size smaller than the average particle size of the coarse material; (c) further grinding the coarse material from step (b) in at least one further milling stage to at least one further milling stage;
(d) mixing the fines from the different stages to form a slurry; and (d) mixing the fines from the different stages to form a slurry. A method for producing a slurry of finely ground carbonaceous material. 2. Process according to claim 1, characterized in that the milling product from the last milling stage is divided into coarse and fine material. 3. Process according to claim 1, characterized in that, except for the last milling stage, all of the coarse material from the different milling stages is milled in the next milling stage. 4. Only a portion of the coarse material from different milling stages except the last milling stage is milled in the next milling stage, while repeatedly milling in the same milling stage or in a preceding milling stage. Claim 1 characterized in that the remaining coarse material is fed back.
The method described in section. 5. Process according to claim 2, characterized in that the coarse material from the last milling stage is fed back for repeated milling in the same milling stage or in a previous milling stage. 6. Claim 1, characterized in that the coarse material from the first milling stage has a particle size of 50 to 500 μm.
The method described in section. 7. Claim 6, characterized in that the coarse material from the first milling stage has a particle size of 50 to 250 μm.
The method described in section. 8. Process according to claim 1, characterized in that the coarse material from the first milling stage comprises from 5 to 50% by weight of the total amount of material entering the first milling stage. 9. Process according to claim 1, characterized in that the particle size of the coarse material to be separated in the first milling stage is at least larger than the maximum particle size of the predetermined particle size distribution. 10. A slurry of pulverized carbonaceous material produced by the slurry production method according to claim 1.
JP58501612A 1982-05-07 1983-05-06 Slurry production method of finely ground carbonaceous material Granted JPS59500817A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8202879-6 1982-05-07
SE8202879A SE8202879L (en) 1982-05-07 1982-05-07 WATER SLUSHING OF A SOLID FUEL AND KITCHEN AND MEANS OF PREPARING THEREOF

Publications (2)

Publication Number Publication Date
JPS59500817A JPS59500817A (en) 1984-05-10
JPH0344599B2 true JPH0344599B2 (en) 1991-07-08

Family

ID=20346752

Family Applications (2)

Application Number Title Priority Date Filing Date
JP58501612A Granted JPS59500817A (en) 1982-05-07 1983-05-06 Slurry production method of finely ground carbonaceous material
JP58501616A Granted JPS59500970A (en) 1982-05-07 1983-05-06 Solid fuel aqueous slurry and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP58501616A Granted JPS59500970A (en) 1982-05-07 1983-05-06 Solid fuel aqueous slurry and method for producing the same

Country Status (14)

Country Link
US (3) US4565549A (en)
EP (3) EP0108767B1 (en)
JP (2) JPS59500817A (en)
AU (3) AU552216B2 (en)
CA (3) CA1192744A (en)
DE (3) DE3366402D1 (en)
DK (3) DK158792C (en)
FI (3) FI840041A (en)
IL (3) IL68608A0 (en)
IT (3) IT1161597B (en)
NO (3) NO840052L (en)
SE (1) SE8202879L (en)
WO (3) WO1983004045A1 (en)
ZA (3) ZA833255B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE32747T1 (en) * 1982-04-05 1988-03-15 Fluidcarbon International Ab COAL-WATER DISPERSION AND PROCESS FOR PRODUCTION.
EP0109740B1 (en) * 1982-10-22 1988-03-09 Imperial Chemical Industries Plc Combustible compositions containing coal, water and surfactant
CA1255905A (en) * 1983-07-05 1989-06-20 Hirofumi Kikkawa Process for producing a high concentration coal-water slurry
US4645514A (en) * 1983-07-21 1987-02-24 Oxce Fuel Company Coal-aqueous slurry
FR2567902B1 (en) * 1984-07-18 1986-12-26 Inst Francais Du Petrole AQUEOUS SUSPENSIONS OF AT LEAST ONE SOLID FUEL HAVING IMPROVED PROPERTIES
DE3435945A1 (en) * 1984-09-29 1986-04-03 Basf Ag, 6700 Ludwigshafen AQUEOUS COAL DISPERSIONS
US4597770A (en) * 1984-12-24 1986-07-01 The Procter & Gamble Company Coal-water slurry compositions
GB8508053D0 (en) * 1985-03-28 1985-05-01 Genetics Int Inc Graphite electrode
US4765926A (en) * 1986-03-18 1988-08-23 Vista Chemical Company Surfactant compositions and method therefor
DE3621319A1 (en) * 1986-06-26 1988-01-14 Bayer Ag Coal/water slurries having improved behaviour under shear stress
US5263848A (en) * 1986-11-24 1993-11-23 Canadian Occidental Petroleum, Ltd. Preparation of oil-in-aqueous phase emulsion and removing contaminants by burning
US4983319A (en) * 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
US5000872A (en) * 1987-10-27 1991-03-19 Canadian Occidental Petroleum, Ltd. Surfactant requirements for the low-shear formation of water continuous emulsions from heavy crude oil
US4978365A (en) * 1986-11-24 1990-12-18 Canadian Occidental Petroleum Ltd. Preparation of improved stable crude oil transport emulsions
US5083613A (en) * 1989-02-14 1992-01-28 Canadian Occidental Petroleum, Ltd. Process for producing bitumen
US5156652A (en) * 1986-12-05 1992-10-20 Canadian Occidental Petroleum Ltd. Low-temperature pipeline emulsion transportation enhancement
DE3711985A1 (en) * 1987-04-09 1988-10-20 Union Rheinische Braunkohlen USE OF POLYOLETHERS TO PREVENT OR REDUCE DEPOSITS IN MIXTURE PROCESSING SYSTEMS
IT1223119B (en) * 1987-11-13 1990-09-12 Eniricerche Spa Snamprogetti S FLUIDIFYING ADDITIVES FOR COAL DISPERSION IN WATER
IT1233848B (en) * 1988-01-21 1992-04-21 Snam Progetti PROCEDURE FOR THE PREPARATION OF A HIGH CONCENTRATION AQUEOUS COAL OR PETCOKE SUSPENSION
US4966235A (en) * 1988-07-14 1990-10-30 Canadian Occidental Petroleum Ltd. In situ application of high temperature resistant surfactants to produce water continuous emulsions for improved crude recovery
US5096461A (en) * 1989-03-31 1992-03-17 Union Oil Company Of California Separable coal-oil slurries having controlled sedimentation properties suitable for transport by pipeline
ES2064245B1 (en) * 1991-12-06 1997-10-16 Standart 90 MULTI-PURPOSE METHOD AND APPARATUS FOR GRINDING SOLID MATERIAL.
AU702510B2 (en) * 1996-10-25 1999-02-25 Jgc Corporation Coal-water slurry producing process, system therefor, and slurry transfer mechanism
US5830244A (en) * 1996-12-30 1998-11-03 Chevron Chemical Company Poly (oxyalkyene) benzyl amine ethers and fuel compositions containing the same
WO2003006694A1 (en) * 2001-07-10 2003-01-23 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Process for passivating sulfidic iron-containing rock
US7311786B2 (en) 2001-07-10 2007-12-25 University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Passivation of sulfidic iron-containing rock
US8642060B2 (en) * 2006-04-24 2014-02-04 Warsaw Orthopedic, Inc. Controlled release systems and methods for osteal growth
WO2010049821A2 (en) * 2008-10-27 2010-05-06 Chuluun Enkhbold A method of liquefaction of inflammable minerals
CN102732341A (en) * 2011-04-07 2012-10-17 通用电气公司 Coal water slurry and preparation method thereof
CN103849440B (en) * 2012-11-30 2018-03-27 通用电气公司 Prepare the apparatus and method of water-coal-slurry
CN103965981B (en) 2013-01-31 2016-05-25 通用电气公司 The apparatus and method of preparation water-coal-slurry
KR102229435B1 (en) * 2013-10-02 2021-03-19 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 Improved carbonaceous slurry fuel
EP3501726B1 (en) * 2017-12-20 2020-08-05 C.R.F. Società Consortile per Azioni A method for applying a reinforcement of metal material to a component of metal material, particularly in the construction of a motor-vehicle body or a sub-assembly thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1526174A1 (en) * 1965-11-06 1970-03-19 Bergwerksverband Gmbh Process for the production of a coal-water suspension ready to burn
US3762887A (en) * 1970-12-14 1973-10-02 Consolidation Coal Co Fuel composition
GB1522575A (en) * 1976-06-24 1978-08-23 Texaco Development Corp Production of solid fuel-water slurries
GB1600865A (en) * 1978-05-31 1981-10-21 English Clays Lovering Pochin Fuels
JPS5648543B2 (en) * 1979-09-03 1981-11-16
JPS5796090A (en) * 1980-10-17 1982-06-15 Atoranteitsuku Research Corp Manufacture of stable coal-water slurry and coal-water slurry
GB2099451A (en) * 1981-05-21 1982-12-08 Snam Progetti Aqueous coal suspension
JPS57200493A (en) * 1981-06-03 1982-12-08 Ruhrchemie Ag Manufacture of pumpable coal-water suspension

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2346151A (en) * 1940-05-18 1944-04-11 Standard Oil Co Process of treating coal
US2359325A (en) * 1940-09-24 1944-10-03 Standard Oil Co Preparation of coal slurries for transportation
GB675511A (en) * 1948-08-10 1952-07-09 Fuel Res Corp Improvements in the manufacture of stable suspensions of particles of solid material in liquid media
US2652341A (en) * 1950-03-25 1953-09-15 Lubrizol Corp Asphalt emulsion
US2842319A (en) * 1952-11-05 1958-07-08 Reerink Wilhelm Method of producing ultra-clean coal
US3100230A (en) * 1959-12-15 1963-08-06 Rohm & Haas Method of preparing dialkylphenol-ethylene oxide adducts with relatively narrow molecular weight distribution
US3012826A (en) * 1960-04-28 1961-12-12 Ruhrgas Ag Hydraulic conveying method
US3168350A (en) * 1961-08-29 1965-02-02 Consolidation Coal Co Transportation of coal by pipeline
FR1308112A (en) * 1961-12-01 1962-11-03 Hoechst Ag Process for reducing the water content of coal sludge to equal viscosity
US3524682A (en) * 1962-03-07 1970-08-18 American Cyanamid Co Coal suspension pumping using polyelectrolytes
US3254682A (en) * 1962-11-16 1966-06-07 American Tech Mach Co Twisting mechanism
US3420453A (en) * 1966-04-06 1969-01-07 Yahagi Iron Co Ltd Damp grinding for agglomeration
GB1227345A (en) * 1967-10-19 1971-04-07
GB1323295A (en) * 1970-01-06 1973-07-11 Smidth & Co As F L Dry grinding of raw materials
AT323679B (en) * 1973-10-02 1975-07-25 Waagner Biro Ag METHOD AND APPARATUS FOR SELECTIVE CLASSIFICATION OF FINE GRAIN IN VISCOSE MUDDES
US3912174A (en) * 1974-10-16 1975-10-14 Bethlehem Steel Corp Process for preparation ores for concentration
US4099537A (en) * 1976-03-08 1978-07-11 Texaco Inc. Method for transportation of viscous hydrocarbons by pipeline
US4162045A (en) * 1976-05-19 1979-07-24 The Dow Chemical Company Ore grinding process
US4162044A (en) * 1976-05-19 1979-07-24 The Dow Chemical Company Process for grinding coal or ores in a liquid medium
US4094810A (en) * 1976-06-01 1978-06-13 Kerr-Mcgee Corporation Aqueous slurry of ash concentrate composition and process for producing same
US4076505A (en) * 1976-11-22 1978-02-28 Mobil Oil Corporation Coal desulfurization process
GB1553634A (en) * 1977-01-17 1979-09-26 Shell Int Research Process for the preparation and pipeline transportation of a slurry of coal particles in water
ZA782568B (en) * 1977-05-10 1979-04-25 Broken Hill Pty Co Ltd Treatment of slurries
AT370763B (en) * 1977-05-31 1983-05-10 Scaniainventor Ab CARBON SUSPENSION CONTAINING POWDERED COAL, WATER AND DISPERSING AGENTS, AND METHOD FOR THE PRODUCTION THEREOF
US4242098A (en) * 1978-07-03 1980-12-30 Union Carbide Corporation Transport of aqueous coal slurries
US4282006A (en) * 1978-11-02 1981-08-04 Alfred University Research Foundation Inc. Coal-water slurry and method for its preparation
GB2038202B (en) * 1978-12-29 1982-12-01 Smidth & Co As F L Dry grinding a granular material
JPS5620090A (en) * 1979-07-26 1981-02-25 Kao Corp Dispersant for slurry of coal powder in water
WO1981001296A1 (en) * 1979-11-08 1981-05-14 E Cottell Process for beneficiating and stabilizing coal/oil/water fuels
US4358293A (en) * 1981-01-29 1982-11-09 Gulf & Western Manufacturing Co. Coal-aqueous mixtures
SE436136B (en) * 1981-08-03 1984-11-12 Fluidcarbon Ab COOL-WATER DISPERSION WITH ADDITIVE COMPOSITION OF SWITZERIONIC TENSID AND CONNECTING HYDROPHILIC POLYMERS
JPS5847092A (en) * 1981-09-14 1983-03-18 Dai Ichi Kogyo Seiyaku Co Ltd Viscosity depressant for highly concentrated coal/water slurry
ES515682A0 (en) * 1981-09-14 1983-10-01 Dai Ichi Kogyo Seiyaku Co Ltd "PROCEDURE FOR PREPARING AN AQUEOUS SUSPENSION OF A COMPOSITION OF CARBON POWDER".
JPS58122991A (en) * 1982-01-19 1983-07-21 Kao Corp Coal/water slurry composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1526174A1 (en) * 1965-11-06 1970-03-19 Bergwerksverband Gmbh Process for the production of a coal-water suspension ready to burn
US3762887A (en) * 1970-12-14 1973-10-02 Consolidation Coal Co Fuel composition
GB1522575A (en) * 1976-06-24 1978-08-23 Texaco Development Corp Production of solid fuel-water slurries
GB1600865A (en) * 1978-05-31 1981-10-21 English Clays Lovering Pochin Fuels
JPS5648543B2 (en) * 1979-09-03 1981-11-16
JPS5796090A (en) * 1980-10-17 1982-06-15 Atoranteitsuku Research Corp Manufacture of stable coal-water slurry and coal-water slurry
GB2099451A (en) * 1981-05-21 1982-12-08 Snam Progetti Aqueous coal suspension
JPS57200493A (en) * 1981-06-03 1982-12-08 Ruhrchemie Ag Manufacture of pumpable coal-water suspension

Also Published As

Publication number Publication date
FI76590B (en) 1988-07-29
WO1983004044A1 (en) 1983-11-24
SE8202879L (en) 1983-11-08
ZA833255B (en) 1984-01-25
DK4884A (en) 1984-01-05
US4887383A (en) 1989-12-19
CA1192744A (en) 1985-09-03
NO840050L (en) 1984-01-06
EP0108105A1 (en) 1984-05-16
IT8320977A0 (en) 1983-05-06
EP0107697A1 (en) 1984-05-09
DE3366402D1 (en) 1986-10-30
FI840042A0 (en) 1984-01-05
JPS59500970A (en) 1984-05-31
DK4584A (en) 1984-01-05
DE3368678D1 (en) 1987-02-05
FI840042A (en) 1984-01-05
IT1163319B (en) 1987-04-08
FI76589B (en) 1988-07-29
FI76589C (en) 1988-11-10
IT8320982A0 (en) 1983-05-06
EP0108105B1 (en) 1986-09-24
NO840052L (en) 1984-01-06
DK158792C (en) 1990-11-19
IL68609A (en) 1986-08-31
US4549881A (en) 1985-10-29
FI840041A0 (en) 1984-01-05
FI840040A (en) 1984-01-05
AU555687B2 (en) 1986-10-02
IL68607A0 (en) 1983-09-30
EP0107697B2 (en) 1992-07-08
EP0108767B1 (en) 1986-08-06
AU557408B2 (en) 1986-12-18
WO1983004045A1 (en) 1983-11-24
ZA833256B (en) 1984-06-27
ZA833257B (en) 1984-01-25
DK160434B (en) 1991-03-11
AU1514883A (en) 1983-12-02
AU1515183A (en) 1983-12-02
AU552216B2 (en) 1986-05-22
DK4584D0 (en) 1984-01-05
CA1199176A (en) 1986-01-14
EP0108767A1 (en) 1984-05-23
AU1514983A (en) 1983-12-02
US4565549A (en) 1986-01-21
IT1161597B (en) 1987-03-18
DK160434C (en) 1991-08-19
FI840040A0 (en) 1984-01-05
DE3365101D1 (en) 1986-09-11
IT8320981A0 (en) 1983-05-06
DK4684A (en) 1984-01-05
FI76590C (en) 1988-11-10
IL68609A0 (en) 1983-09-30
JPH0323117B2 (en) 1991-03-28
NO840051L (en) 1984-01-06
IT1161829B (en) 1987-03-18
EP0107697B1 (en) 1986-12-30
JPS59500817A (en) 1984-05-10
DK4884D0 (en) 1984-01-05
IL68608A0 (en) 1983-09-30
IT8320981A1 (en) 1984-11-06
CA1192743A (en) 1985-09-03
FI840041A (en) 1984-01-05
IT8320982A1 (en) 1984-11-06
DK158792B (en) 1990-07-16
WO1983004046A1 (en) 1983-11-24
DK4684D0 (en) 1984-01-05

Similar Documents

Publication Publication Date Title
JPH0344599B2 (en)
CA1178568A (en) Methods for processing coal
DE3537485C2 (en) Coal ash removal process
JPH0260714B2 (en)
JPH0711268A (en) Production of deashed high-concentration coal-water slurry
US4526588A (en) Process for the production of a coal-water suspension which is suitable for use in coal gasification under elevated pressure
JPH0257840B2 (en)
CA1141353A (en) Integrated coal cleaning and slurry preparation process
JPH0315957B2 (en)
JP2573136B2 (en) Method for producing deashed high concentration coal water slurry
JPH0225395B2 (en)
JPH06108069A (en) Coal/water mixture and its production
JPS6366292A (en) Production of multipurpose coal-water slurry
JPH0259197B2 (en)
JPS6157688A (en) Production of coal-water slurry
JPS6160789A (en) Production of coal/water slurry
JPH0794670B2 (en) Coal water slurry composition based on low grade carbonaceous solids
JPS5958093A (en) Preparation of coal slurry
JPH0315958B2 (en)
GB2068056A (en) A method of transporting coal as a coal/water slurry through a pipeline
JPS59176394A (en) Preparation of coal slurry
JPS62158793A (en) Production of deashed and highly concentrated coal-water slurry
JPS6270490A (en) Production of high-concentration coal-water slurry
JPS5852392A (en) Coal/water slurry deashing
JPS6181487A (en) Production of deashed coal-water slurry