JPH0315958B2 - - Google Patents

Info

Publication number
JPH0315958B2
JPH0315958B2 JP12104583A JP12104583A JPH0315958B2 JP H0315958 B2 JPH0315958 B2 JP H0315958B2 JP 12104583 A JP12104583 A JP 12104583A JP 12104583 A JP12104583 A JP 12104583A JP H0315958 B2 JPH0315958 B2 JP H0315958B2
Authority
JP
Japan
Prior art keywords
coal
concentration
slurry
stage
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12104583A
Other languages
Japanese (ja)
Other versions
JPS6013890A (en
Inventor
Hirobumi Yoshikawa
Kazunori Shoji
Yasuyuki Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12104583A priority Critical patent/JPS6013890A/en
Priority to CA000458233A priority patent/CA1255905A/en
Priority to DE8484304602T priority patent/DE3463394D1/en
Priority to EP84304602A priority patent/EP0130849B1/en
Priority to AU30297/84A priority patent/AU568660B2/en
Publication of JPS6013890A publication Critical patent/JPS6013890A/en
Priority to US06/931,878 priority patent/US4747548A/en
Publication of JPH0315958B2 publication Critical patent/JPH0315958B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は低粘度化高濃度石炭−水スラリの製造
方法に係り、特に製造コストの低減に好適な石炭
−水スラリの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly concentrated coal-water slurry with low viscosity, and particularly to a method for producing a coal-water slurry suitable for reducing production costs.

最近、火力発電所を中心に、高騰化を続ける石
油に代えて石炭を多用する動きが活発となつてい
る。しかし、固体燃料である石炭はハンドリング
が困難であり、輸送費が石炭格に及ぼす影響も大
きい。そこで、石炭をスラリ化し、流体として取
扱うための技術開発が盛んに行われている。
Recently, there has been a growing movement to use coal in place of oil, which continues to rise in price, mainly in thermal power plants. However, coal, which is a solid fuel, is difficult to handle, and transportation costs have a large impact on coal grade. Therefore, technology development for turning coal into a slurry and handling it as a fluid is actively being carried out.

その一つに、重油と石炭とを混合したCOM
(Coal and Oil Mixture)が知られている。し
かし、このものは重油と石炭の重量比が一般に約
1:1の混合物であるため、完全な脱石油燃料と
はいえず、価格上もメリツトが少ない。また、メ
タノールと石炭との混合物であるいわゆるメタコ
ールも知られているが、このものも高価なメタノ
ールを使用するため価格が高く、実用段階には至
つていない。
One of them is COM, which is a mixture of heavy oil and coal.
(Coal and Oil Mixture) is known. However, since this fuel is generally a mixture of heavy oil and coal in a weight ratio of about 1:1, it cannot be said to be a completely petroleum-free fuel and has little merit in terms of price. Also, so-called methanol, which is a mixture of methanol and coal, is known, but this is also expensive because it uses expensive methanol, and has not yet reached the practical stage.

これらに対し、石炭と水との混合物である
CWM(Coal and Water Mixture)価格の点で
も十分実用的であり、最近注目を集めている。し
かし、CWMは、含有の水分の割合が高いと燃焼
時の熱効率が低下し、逆に水分の割合が低いと
CWMの粘度が上昇して輸送時の圧力損失が大き
くなるという問題がある。また、CWMは石炭粒
子と水とから構成されているため、時間の経過と
ともに石炭粒子が沈降して水と分離するという貯
蔵上の問題もある。これらの欠点をなくすため、
石炭粒子の粒径を調整することによつて、高石炭
濃度であつても低粘度でかつ安定性のよいCWM
を製造しようとする試みが行われている。
In contrast, a mixture of coal and water
CWM (Coal and Water Mixture) is quite practical in terms of price and has been attracting attention recently. However, when CWM contains a high moisture content, the thermal efficiency during combustion decreases, and conversely, when the moisture content is low,
There is a problem in that the viscosity of CWM increases and the pressure loss during transportation increases. Furthermore, since CWM is composed of coal particles and water, there is a storage problem in that the coal particles settle and separate from the water over time. In order to eliminate these drawbacks,
By adjusting the particle size of coal particles, CWM with low viscosity and good stability even at high coal concentrations can be achieved.
Attempts are being made to manufacture .

高石炭濃度で低粘度かつ安定性のよいCWMス
ラリを製造するためには、石炭を充填率が可及的
に高くなるような粒径分布になるように粉砕する
ことが好ましいといわれている。このような粒径
分布に石炭を粉砕する方法の一つとして、一般に
60〜80%(重量%、以下同じ)の高濃度下で石炭
を粉砕する高濃度湿式粉砕法が知られている。し
かし、このように石炭濃度が高くなるとスラリの
粘度も高くなり、粉砕効率の低下、換言すればミ
ルでの消費動力の増大という問題が避けられなく
なる。また、高濃度湿式粉砕法では、粉砕を促進
させるために界面活性剤等の添加剤を添加しなけ
ればならないが、その必要添加量は石炭当り1%
程度に達するので、CWMの製造コストに及ぼす
影響が無視できない。
In order to produce a CWM slurry with a high coal concentration, low viscosity, and good stability, it is said that it is preferable to crush the coal so that it has a particle size distribution that makes the filling rate as high as possible. One of the methods of crushing coal into such a particle size distribution is generally
A high-concentration wet pulverization method is known in which coal is pulverized at a high concentration of 60 to 80% (weight %, same hereinafter). However, as the coal concentration increases, the viscosity of the slurry also increases, which inevitably leads to a decrease in pulverization efficiency, or in other words, an increase in power consumption in the mill. In addition, in the high-concentration wet pulverization method, additives such as surfactants must be added to promote pulverization, but the required amount is 1% per coal.
The impact on the manufacturing cost of CWM cannot be ignored.

本発明の目的は、上記した従来技術の欠点をな
くし、製造コストの増大をともなうことなく、高
濃度下であつても低粘度でかつ安定性のよい
CWMを製造することのできる方法を提供するこ
とにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a material with low viscosity and good stability even under high concentration, without increasing production costs.
The objective is to provide a method by which CWM can be manufactured.

上記の目的を達成するため、本発明は、石炭を
湿式ミルへ供給し、粉砕する際に、上記石炭の供
給を多段状に分割して行うことを特徴とする。
In order to achieve the above object, the present invention is characterized in that when coal is supplied to a wet mill and pulverized, the supply of coal is divided into multiple stages.

本発明において、石炭の供給を多段状に分割し
て行う方法としては、任意の公知の方法でよい
が、特に1台のミルについて石炭を多段に供給す
る方法、連設された2台以上のミルにそれぞれ石
炭を供給し、実質的に多段の供給状態とする方法
等を好適例としてあげることができる。
In the present invention, any known method may be used to divide the supply of coal into multiple stages, but in particular, the method of supplying coal in multiple stages for one mill, the method of supplying coal in multiple stages for one mill, A preferred example is a method in which coal is supplied to each mill, thereby creating a substantially multi-stage supply state.

本発明において多段粉砕法を採用する理由は以
下のとおりである。すなわち、先ず650mm径、
1250mm長のチユーブミルを用いてハードグローブ
指数(HGI、JIS−M8801)52の瀝青炭(以下、
A炭と称する)を粉砕し、そのときのボンド
(Bond)仕事指数Wi〔以下(1)式参照〕と石炭濃度
との関係を求めたところ、第1図の結果となり、
またその際、F80は2830μm、P80=105μmとなつ
た。
The reason why the multi-stage pulverization method is adopted in the present invention is as follows. In other words, first, the diameter is 650mm,
A hard globe index (HGI, JIS-M8801) 52 bituminous coal (hereinafter referred to as
The relationship between the Bond work index Wi [see equation (1) below] and the coal concentration was obtained by pulverizing the A coal (referred to as A coal), and the results shown in Figure 1 were obtained.
At that time, F 80 was 2830 μm and P 80 = 105 μm.

〔式中、F80は原炭の80%が通過する際のふるい
の目開き(μm)、P80は粉砕物の80%が通過する
際のふるいの目開き(μm)である〕 第1図から明らかなように、A炭の粉砕では石
炭濃度が60%を超えると粉砕効率だ急激に低下
(Wiは増大)するので、60%以下の濃度で粉砕す
ることが好ましいことがわかる。ただし、石炭濃
度が低くなり過ぎると第2段目での粉砕必要量
(消費動力)が増加するため、55〜60%程度が最
適濃度といえる。
[In the formula, F 80 is the sieve opening (μm) when 80% of the raw coal passes through, and P 80 is the sieve opening (μm) when 80% of the pulverized material passes through.] 1st As is clear from the figure, when pulverizing A coal, when the coal concentration exceeds 60%, the pulverization efficiency decreases rapidly (Wi increases), so it is found that it is preferable to pulverize at a concentration of 60% or less. However, if the coal concentration becomes too low, the required amount of pulverization (power consumption) in the second stage will increase, so about 55 to 60% can be said to be the optimum concentration.

次に、上記の粉砕を平均滞留時間1時間で実施
したのち、別途原料石炭を加えて石炭濃度を70%
としてさらに粉砕した場合A(2段供給法)と、
石炭濃度70%、平均滞留時間1時間で単に粉砕し
た場合B(1段供給法)とにつき、それぞれ得ら
れたスラリ中の石炭粒径分布を求めたところ、第
2図のような結果が得られた。第2図から、2段
供給法Bのほうが1段供給法Aより粒径分布が広
く、従つてスラリ粘度も低くなることがわかる。
さらに、平均粒径および上記P80も2段供給法B
のほうが小さくなり、粉砕効率もよくなることが
わかる。なお第2図中のCは、参考のために示し
た原料炭の粒度分布線である。
Next, after carrying out the above pulverization with an average residence time of 1 hour, raw material coal is added separately to bring the coal concentration to 70%.
When further pulverized as A (two-stage feeding method),
When the coal particle size distribution in the resulting slurry was determined for B (one-stage feeding method), where the coal was simply pulverized with a coal concentration of 70% and an average residence time of 1 hour, the results shown in Figure 2 were obtained. It was done. From FIG. 2, it can be seen that the two-stage feeding method B has a wider particle size distribution than the one-stage feeding method A, and therefore the slurry viscosity is also lower.
Furthermore, the average particle size and the above P 80 were also determined using the two-stage feeding method B.
It can be seen that the size is smaller and the crushing efficiency is also better. Note that C in FIG. 2 is a particle size distribution line of raw coal shown for reference.

以上に説明したように、石炭供給を多段化する
ことによつて粉砕効率を向上させ得ることがわか
る。
As explained above, it can be seen that the pulverization efficiency can be improved by providing multiple stages of coal supply.

以下、実施例により本発明を図面によりさらに
詳しく説明する。
Hereinafter, the present invention will be explained in more detail by way of examples and drawings.

第3図は、本発明の実施に好適なミル1台を用
いる石炭2段供給型湿式粉砕装置の系統図であ
る。この装置おにいて、バンカ1に貯蔵された石
炭はフイーダ2を経てミル3内へ供給され、供給
管4から導入される水および添加剤の存在下に粉
砕される。このときの石炭濃度は炭種により一様
でないが、一般に40〜70%、好ましくは50〜65%
である。上記の粉砕により得られた石炭含有スラ
リは、次いでバンカ1A、フイーダ2Aを経て供
給される石炭と所定の石炭濃度(一般に60〜80
%)になるように混合されたのち、さらに粉砕さ
れる。そして所定の粒度に粉砕されたのち、ミル
3の出口から排出されてスラリ調整槽5に貯えら
れ、以後必要に応じてポンプ6により燃焼装置等
(図示省略)へ輸送される。なお、上記のフイー
ダ2から供給される石炭は、水および添加剤と予
め混合されたものでもよく、またフイーダ2Aか
らの石炭はミルの入り口付近または出口付近のい
ずれかまたは両方から供給することも可能であ
る。
FIG. 3 is a system diagram of a two-stage coal feed type wet crushing apparatus using one mill suitable for carrying out the present invention. In this apparatus, coal stored in a bunker 1 is fed into a mill 3 via a feeder 2 and is pulverized in the presence of water and additives introduced through a feed pipe 4. The coal concentration at this time is not uniform depending on the coal type, but is generally 40 to 70%, preferably 50 to 65%.
It is. The coal-containing slurry obtained by the above-mentioned pulverization is then mixed with coal supplied via bunker 1A and feeder 2A to a predetermined coal concentration (generally 60 to 80
%) and then further crushed. After being pulverized to a predetermined particle size, it is discharged from the outlet of the mill 3 and stored in a slurry adjustment tank 5, and then transported to a combustion device or the like (not shown) by a pump 6 as required. Note that the coal supplied from the feeder 2 may be pre-mixed with water and additives, and the coal from the feeder 2A may be supplied from either or both near the entrance or exit of the mill. It is possible.

次に、第4図は本発明の他の実施例を示す装置
系統図であり、第3図の装置と異なる点は、ミル
3の他にバンカ1B、フイーダ2Bおよびスラリ
調整槽5Bを備えたミル3Bをポンプを介して連
設し、これにより実質的な2段の石炭供給構造と
したことである。
Next, FIG. 4 is a system diagram of an apparatus showing another embodiment of the present invention, which differs from the apparatus shown in FIG. The mill 3B is connected via a pump, thereby creating a substantial two-stage coal supply structure.

この装置においても、第3図の場合と同様に石
炭の粉砕を好適に行うことができる。
In this apparatus as well, coal can be suitably pulverized similarly to the case shown in FIG.

以下、具体的実施例により本発明をさらに詳し
く説明する。
Hereinafter, the present invention will be explained in more detail with reference to specific examples.

実施例 1 第3図に示す装置のミル3内へフイーダ2から
既述のA炭(HGI=52の瀝青炭)を供給し、こ
れを供給管4から供給される水および添加剤の存
在下に石炭濃度60%、平均滞留時間1時間で粉砕
し、その後石炭濃度が70%になるように石炭をフ
イーダ2Aから供給しながらP80≒105μmの粒子
が得られるまでさらに粉砕した。このときの仕事
指数Wiは41(Kwh/ton)であり、この値は当初
から石炭濃度を70%に保つて粉砕した場合のWi
=50(Kwh/ton)より大幅に低い値であつた。
またスラリ粘度も前者の2段供給法の場合には
1500cpであり、後者の1段供給法における
1800cpより低い値であつた。
Example 1 The above-mentioned A coal (bituminous coal with HGI = 52) was supplied from the feeder 2 into the mill 3 of the apparatus shown in FIG. 3, and in the presence of water and additives supplied from the supply pipe 4. The powder was pulverized at a coal concentration of 60% and an average residence time of 1 hour, and then further pulverized until particles of P 80 ≈105 μm were obtained while feeding coal from the feeder 2A so that the coal concentration was 70%. The work index Wi at this time is 41 (Kwh/ton), and this value is the Wi when the coal concentration is maintained at 70% from the beginning.
= 50 (Kwh/ton).
In addition, the slurry viscosity is also
1500 cp, in the latter one-stage supply method.
The value was lower than 1800 cp.

なお、本実施例では、陰イオン系の界面活性剤
を石炭当り0.7%添加するのみで十分であつた。
このように、本実施例によれば、添加剤の使用量
と使用効力が少なくて済むので、製造コストの大
幅な低減が可能となる。
In this example, it was sufficient to add only 0.7% of anionic surfactant per coal.
As described above, according to this embodiment, the amount and efficacy of additives used can be reduced, making it possible to significantly reduce manufacturing costs.

実施例 2 HGI=90の瀝青炭(以下、B炭と称する)を
用いて実施例1と同様にしてスラリを製造した。
ただし、本実施例では当初石炭濃度65%で粉砕
し、そののち75%になるまで石炭を追加した。
P80≒105μmとなるまで粉砕したときの仕事指数
Wiは、1段供給では58(Kwh/ton)であるのに
対し、2段供給では49(Kwh/ton)となり低い
値であつた。また、そのときのスラリ粘度はそれ
ぞれ2200cpおよび1950cpであり、2段供給法に
おいてはスラリ粘度の低減効果も認められた。
Example 2 A slurry was produced in the same manner as in Example 1 using bituminous coal of HGI=90 (hereinafter referred to as B coal).
However, in this example, the coal was initially pulverized at a coal concentration of 65%, and then coal was added until the coal concentration reached 75%.
Work index when crushed until P 80 ≒ 105 μm
Wi was 58 (Kwh/ton) in the one-stage supply, while it was 49 (Kwh/ton) in the two-stage supply, which was a low value. Furthermore, the slurry viscosity at that time was 2200 cp and 1950 cp, respectively, and the effect of reducing slurry viscosity was also observed in the two-stage feeding method.

実施例 3 界面活性剤の添加量を石炭当り0.5%とする以
外は実施例1と同様にして2段供給法でスラリを
製造した。このときのスラリ粘度は1800cpであ
り、界面活性剤の添加量を減少させたにもかかわ
らず、実施例1の1段供給法で界面活性剤を0.7
%添加した場合と同じ粘度のスラリが得られた。
Example 3 A slurry was produced by the two-stage feeding method in the same manner as in Example 1 except that the amount of surfactant added was 0.5% based on coal. The slurry viscosity at this time was 1800 cp, and even though the amount of surfactant added was reduced, the one-stage feeding method of Example 1 was used to reduce the amount of surfactant to 0.7 cp.
A slurry of the same viscosity as when % was added was obtained.

実施例 4 実施例2で用いたB炭とHGI=36の瀝青炭
(以下、C炭と称する)とを重量比1:1で混合
したものを石炭濃度70%でミルへ1段供給し、こ
れをP80≒105μmになるまで粉砕したところ、仕
事指数Wiは58(Kwh/ton)という高い値となつ
た。これに対し、当初C炭のみを石炭濃度54%で
粉砕し、そののちB炭を追加する以外は実施例1
と同様にして2段供給法でスラリを製造したとこ
ろ、仕事指数Wiは45(Kwh/ton)という低い値
となつた。また、B炭とC炭の供給順序を変える
以外は上記と同様にして2段供給法を実施例した
ところ、仕事指数Wiは上記よりやや高いが、50
(Kwh/ton)という低い値となつた。
Example 4 A mixture of B coal used in Example 2 and bituminous coal with HGI = 36 (hereinafter referred to as C coal) at a weight ratio of 1:1 was supplied to the mill in one stage at a coal concentration of 70%, and this When it was crushed to a P 80 ≒ 105 μm, the work index Wi reached a high value of 58 (Kwh/ton). In contrast, Example 1 except that initially only C coal was pulverized at a coal concentration of 54%, and then B coal was added.
When slurry was produced using the two-stage feeding method in the same manner as above, the work index Wi was as low as 45 (Kwh/ton). In addition, when the two-stage feeding method was carried out in the same manner as above except for changing the feeding order of B coal and C coal, the work index Wi was slightly higher than the above, but 50
(Kwh/ton).

以上、本発明によれば、湿式ミルへの石炭供給
を多段状に分割して行うことにより、高濃度下で
あつても低粘度持性を与えることのできる広粒度
分布幅の石炭スラリを、少ない添加剤の使用下お
よび低動力下で製造することが可能となり、これ
により石炭−水スラリの製造コストを大幅に低減
することができる。
As described above, according to the present invention, by dividing the coal supply to the wet mill into multiple stages, a coal slurry with a wide particle size distribution width that can provide low viscosity even under high concentration can be produced. It becomes possible to produce the coal-water slurry using fewer additives and with lower power, which can significantly reduce the production cost of the coal-water slurry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、石炭濃度が石炭粉砕効率に与える影
響を説明する図、第2図は、本発明において採用
する2段供給法の効果を説明する図、第3図は、
本発明の実施に好適な石炭2段供給型湿式粉砕装
置の系統図、第4図は、本発明の実施に好適な他
の石炭2段供給湿式粉砕装置の系統図である。 1,1A,1B…バンカ、2,2A,2B…フ
イーダ、3,3B…湿式ミル、4…供給管、5,
5B…スラリ調整槽、6…ポンプ。
FIG. 1 is a diagram explaining the influence of coal concentration on coal pulverization efficiency, FIG. 2 is a diagram explaining the effect of the two-stage feeding method adopted in the present invention, and FIG.
FIG. 4 is a system diagram of a two-stage coal supply wet pulverizer suitable for carrying out the present invention. FIG. 4 is a system diagram of another two-stage coal supply wet pulverizer suitable for carrying out the present invention. 1, 1A, 1B... bunker, 2, 2A, 2B... feeder, 3, 3B... wet mill, 4... supply pipe, 5,
5B...Slurry adjustment tank, 6...Pump.

Claims (1)

【特許請求の範囲】 1 石炭を湿式ミルへ供給して粉砕し、石炭−水
スラリを製造する方法において、上記石炭の供給
を多段状に分割して行うことを特徴とする低粘度
化高濃度石炭−水スラリの製造方法。 2 特許請求の範囲第1項において、上記石炭の
多段状供給を、最終的に得られる石炭−水スラリ
中の石炭濃度が60〜80重量%になるように行うこ
とを特徴とする低粘度化高濃度石炭−水スラリの
製造方法。
[Claims] 1. A method for producing a coal-water slurry by supplying coal to a wet mill and pulverizing it, characterized in that the supply of the coal is divided into multiple stages. Method for producing coal-water slurry. 2. The method of reducing viscosity according to claim 1, characterized in that the coal is fed in multiple stages so that the coal concentration in the final coal-water slurry is 60 to 80% by weight. Method for producing highly concentrated coal-water slurry.
JP12104583A 1983-07-05 1983-07-05 Production of coal-water slurry having high concentration and lowered viscosity Granted JPS6013890A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12104583A JPS6013890A (en) 1983-07-05 1983-07-05 Production of coal-water slurry having high concentration and lowered viscosity
CA000458233A CA1255905A (en) 1983-07-05 1984-07-05 Process for producing a high concentration coal-water slurry
DE8484304602T DE3463394D1 (en) 1983-07-05 1984-07-05 Process for producing a high concentration coal-water slurry
EP84304602A EP0130849B1 (en) 1983-07-05 1984-07-05 Process for producing a high concentration coal-water slurry
AU30297/84A AU568660B2 (en) 1983-07-05 1984-07-05 Coal-water slurry
US06/931,878 US4747548A (en) 1983-07-05 1986-11-17 Process for producing a high concentration coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12104583A JPS6013890A (en) 1983-07-05 1983-07-05 Production of coal-water slurry having high concentration and lowered viscosity

Publications (2)

Publication Number Publication Date
JPS6013890A JPS6013890A (en) 1985-01-24
JPH0315958B2 true JPH0315958B2 (en) 1991-03-04

Family

ID=14801456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12104583A Granted JPS6013890A (en) 1983-07-05 1983-07-05 Production of coal-water slurry having high concentration and lowered viscosity

Country Status (1)

Country Link
JP (1) JPS6013890A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225292A (en) * 1985-03-29 1986-10-07 Kubota Ltd Production of coal-water slurry
CN103013595B (en) * 2011-09-21 2014-10-15 兖矿集团有限公司 Novel slurrying technology of low-rank coal

Also Published As

Publication number Publication date
JPS6013890A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
JPH0257840B2 (en)
CN1034227C (en) Production method of high-concentration coal-water slurry
JPH0315958B2 (en)
EP0130849B1 (en) Process for producing a high concentration coal-water slurry
JPH0315957B2 (en)
AU656184B2 (en) Production method of high-concentration coal-water slurry
JPH0259197B2 (en)
JPH036960B2 (en)
JPH0768529B2 (en) Method for producing high-concentration coal / water slurry
JPS6053596A (en) Production of coal-water slurry
JPH06108069A (en) Coal/water mixture and its production
JPS6042491A (en) Preparation of coal/water slurry
JPH0576986B2 (en)
JPS63196688A (en) Production of solid fuel-water slurry
JPH0576991B2 (en)
JPH0415277B2 (en)
JPH01178595A (en) Production of high-concentration coal/water slurry
JPH0552359B2 (en)
JPH0412755B2 (en)
JPH07228877A (en) Production of coal/water slurry having high concentration
JPH0323116B2 (en)
JPH0315959B2 (en)
JPH0576990B2 (en)
JPH0552879B2 (en)
JPS60156795A (en) Manufacture of highly concentrated coal-water slurry