JPH036960B2 - - Google Patents

Info

Publication number
JPH036960B2
JPH036960B2 JP58030874A JP3087483A JPH036960B2 JP H036960 B2 JPH036960 B2 JP H036960B2 JP 58030874 A JP58030874 A JP 58030874A JP 3087483 A JP3087483 A JP 3087483A JP H036960 B2 JPH036960 B2 JP H036960B2
Authority
JP
Japan
Prior art keywords
coal
mill
slurry
water slurry
ball mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58030874A
Other languages
Japanese (ja)
Other versions
JPS59157184A (en
Inventor
Kazunori Shoji
Hirobumi Yoshikawa
Yasuyuki Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3087483A priority Critical patent/JPS59157184A/en
Publication of JPS59157184A publication Critical patent/JPS59157184A/en
Publication of JPH036960B2 publication Critical patent/JPH036960B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は石炭−水スラリーの製造装置に係り、
特に高濃度−水スラリーを製造するに好適な連続
湿式ボールミル装置を用いた石炭−水スラリーの
製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing coal-water slurry,
In particular, the present invention relates to a coal-water slurry production apparatus using a continuous wet ball mill apparatus suitable for producing highly concentrated water slurry.

石炭を分散剤等を添加した水で懸濁してスラリ
ー化した石炭−水スラリーは、輸送や貯蔵等のハ
ンドリングの容易さからボイラ等の燃料として使
用することが検討されている。本発明者らの検討
によれば、安定かつ直接燃焼可能なスラリーの条
件は、石炭粒度が200メツシユ通過70〜80重量%
程度であり、かつスラリーの粘度が約2000cp以
下である。そのためには、(1)幅の広い粒度分布を
調整して充填密度を増して高濃度化を達成し、ま
た(2)適切な添加剤の添加により粒子表面をぬらし
て帯電させ、粒子同志を反発分散させることによ
り粘度低下をはかる必要がある。
Coal-water slurry, which is made by suspending coal in water with a dispersant added thereto, is being considered for use as a fuel for boilers and the like because of its ease of handling such as transportation and storage. According to the studies of the present inventors, the conditions for a stable and directly combustible slurry are such that the coal particle size is 70 to 80% by weight passing through a 200 mesh.
and the viscosity of the slurry is about 2000 cp or less. To achieve this, it is necessary to (1) adjust the wide particle size distribution and increase the packing density to achieve high concentration, and (2) add appropriate additives to wet the particle surface and charge it, thereby attracting particles from each other. It is necessary to reduce the viscosity by repulsive dispersion.

このような高濃度石炭−水スラリーを連続的に
製造する場合、湿式ボールミルを使用するのが一
般的である。第1図は、このような湿式ボールミ
ルを用いる石炭−水スラリー製造設備の系統図で
あるが、例えば約5mm以下に粗砕された石炭はバ
ンカ1から給炭機2を経て、内部にスチールボー
ルを有するボールミル3に供給され、一方、水1
00で希釈された添加剤102を含む添加剤液は
ミル入口の石炭濃度が約60重量%以上になるよう
にその添加量が調整された後、ミル3に供給され
る。ミル内で石炭は、ボール間あるいはボールと
ミル内壁間で衝撃、摩砕、剪断作用を受け、200
メツシユ通過量が約60〜85重量%、粘度が約100
〜2000cp程度になるまで粉砕混合され、ミル3
の出口から排出され、タンク4に一旦貯蔵された
後、ポンプ5によつて次工程へ輸送される。
When continuously producing such a highly concentrated coal-water slurry, a wet ball mill is generally used. Figure 1 is a system diagram of a coal-water slurry production facility using such a wet ball mill. For example, coal coarsely crushed to about 5 mm or less is passed from bunker 1 to coal feeder 2, and is then fed into steel balls inside. while water 1 is supplied to a ball mill 3 having
The additive liquid containing the additive 102 diluted with 0.00 is supplied to the mill 3 after its addition amount is adjusted so that the coal concentration at the mill inlet is about 60% by weight or more. In the mill, the coal is subjected to impact, abrasion, and shear between the balls or between the balls and the inner wall of the mill.
The amount of mesh passing through is approximately 60 to 85% by weight, and the viscosity is approximately 100%.
It is ground and mixed until it reaches ~2000 cp, then mill 3
After being discharged from the outlet of the tank 4 and temporarily stored in the tank 4, it is transported to the next process by the pump 5.

前述したように、石炭−水スラリーの高濃度化
を達成するには、石炭の粒度分布を広くする必要
がある。一般に粉砕機および粉砕方式が決ると、
粉砕によつて生ずる粉度分布は石炭の粉砕性に依
存することが知られている。例えばハードグロー
ブ粉砕性指数(HGI)の小さいものほど粉砕性
が悪く、粒度分布の幅が狭い(Coal
Preparation,4th Edition,Chapter7,edited
by J.W.Leanard,published by AIME,New
York,1979)。従つて粉砕方式が決るとHGI値の
小さいものほどスラリーの高濃化、低粘度は難し
くなる。ちなみに第1図に示した従来法において
は、HGI<50の石炭の最大到達濃度は、粘度
2000cpで、70重量%以下である。また第1図に
示した従来法における添加剤使用量は乾炭に対し
て約1重量%程度と多量であり経済的にも問題で
ある。
As mentioned above, in order to achieve a high concentration of coal-water slurry, it is necessary to widen the particle size distribution of coal. Generally, once the crusher and crushing method are decided,
It is known that the fineness distribution produced by pulverization depends on the pulverizability of the coal. For example, the smaller the Hard Glove Grindability Index (HGI), the worse the grindability and the narrower the particle size distribution (Coal
Preparation, 4th Edition, Chapter 7, edited
by JWLeanard, published by AIME, New
York, 1979). Therefore, once the grinding method is determined, the smaller the HGI value, the more difficult it is to thicken the slurry and reduce its viscosity. By the way, in the conventional method shown in Figure 1, the maximum concentration of coal with HGI < 50 is determined by the viscosity.
2000cp, less than 70% by weight. Furthermore, the amount of additive used in the conventional method shown in FIG. 1 is as large as about 1% by weight based on dry coal, which is also an economical problem.

本発明の目的は、上記従来技術の欠点を解消
し、添加剤の使用量が少なく、より高濃度で、か
つ低粘度で、粒度分布の変動の少ない石炭−水ス
ラリーを製造することができる石炭−水スラリー
の製造装置を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to produce a coal-water slurry that uses less additives, has a higher concentration, has a lower viscosity, and has less variation in particle size distribution. - To provide an apparatus for producing water slurry.

本発明は、石炭を貯溜する石炭バンカと、該石
炭バンカから供給される石炭を水とともに粉砕す
る湿式ボールミルと、湿式粉砕された石炭−水ス
ラリーを一旦貯溜する、撹拌手段を有するスラリ
ータンクとを備えた石炭−水スラリーの製造装置
において、前記スラリータンクの後流に分配器を
設けて石炭−水スラリの一部を前記湿式ボールミ
ル入口に分配するようにしたことを特徴とする石
炭−水スラリーの製造装置に関する。
The present invention comprises a coal bunker for storing coal, a wet ball mill for pulverizing the coal supplied from the coal bunker together with water, and a slurry tank having a stirring means for temporarily storing the wet-pulverized coal-water slurry. A coal-water slurry manufacturing apparatus comprising: a distributor disposed downstream of the slurry tank to distribute a portion of the coal-water slurry to the inlet of the wet ball mill. This invention relates to manufacturing equipment.

本発明によれば、石炭−水スラリーの一部を循
環させて再粉砕するため、石炭粒子の微粉砕化が
可能で、幅の広い粒度分布が得られるとともに、
一旦貯溜された石炭−水スラリを撹拌し、その一
部を循環させているため、原炭の性状や供給量な
どの変動による石炭粒子の粒度分布の変動を吸収
でき、粒度分布の変動を少ない安定した製品を得
ることができる。
According to the present invention, since a part of the coal-water slurry is circulated and re-pulverized, coal particles can be pulverized and a wide particle size distribution can be obtained.
Since the coal-water slurry that is once stored is stirred and a portion of it is circulated, it is possible to absorb fluctuations in the particle size distribution of coal particles due to changes in raw coal properties and supply amount, reducing fluctuations in particle size distribution. You can get stable products.

本発明の方法を実施例に基いてさらに詳細に説
明する。
The method of the present invention will be explained in more detail based on Examples.

第2図は本発明の一実施例を示す石炭−水スラ
リー調製装置の系統図である。第2図において、
ミル容積の35%を約50〜20mmのスチールボールで
占められたミル8の入口部には石炭給炭機7が接
続されており、添加剤液供給管14がミル入口部
からミル内に開口している。またミル出口部から
他の添加剤液供給管15がミル内に開口してい
る。ミル出口下にはスラリータンク9が設置さ
れ、タンク9内に添加剤がフイーダ11により供
給され、撹拌機10によつて混合されるようにな
つている。スラリータンク9で調整されたスラリ
ーはポンプ12によつて分配器13に輸送され、
ここで一部が分配されてミルに戻され、残りは製
品として取出される。上記分配器13としては、
例えば振り分け式のフイーダーなどがあげられる
が、石炭粒子を分級せずに、そのままの状態で分
配できるものであれば、どのような形式のもので
もよい。
FIG. 2 is a system diagram of a coal-water slurry preparation apparatus showing an embodiment of the present invention. In Figure 2,
A coal feeder 7 is connected to the inlet of the mill 8, in which 35% of the mill volume is occupied by steel balls of about 50 to 20 mm, and an additive liquid supply pipe 14 opens into the mill from the mill inlet. are doing. Further, another additive liquid supply pipe 15 opens into the mill from the mill outlet. A slurry tank 9 is installed below the mill outlet, and additives are supplied into the tank 9 by a feeder 11 and mixed by a stirrer 10. The slurry adjusted in the slurry tank 9 is transported to a distributor 13 by a pump 12,
Here, a portion is distributed and returned to the mill, and the remainder is removed as product. As the distributor 13,
For example, a distribution type feeder may be used, but any type of feeder may be used as long as it can distribute the coal particles as they are without classifying them.

約5mm以下に粗粉砕された石炭はバンカ6から
給炭機7を経てミル8へ定量供給される。石炭濃
度が原炭に対し約75〜85重量%になるように、分
散剤等を含む添加剤液がミル入口部に供給され
る。石炭濃度の高いミル8内では石炭粒子はボー
ル間あるいはボールとミル内壁間での衝撃、剪断
および摩砕効果により微粉砕され、ミル出口方向
に流動する。ここで新たに生成する粒子の新表面
はミル出口側の添加剤液供給管15からの添加剤
によつて効果的に濡らされる。さらに粉砕されて
新表面が生成されたスラリーはミル8から排出さ
れ、スラリータンク9に貯められ、フイーダ11
から供給される添加剤と撹拌機10により効率よ
く混合される。タンク9からポンプ12により輸
送されるスラリーは分配器13で分配され、一部
がミルに循環されて再粉砕され、残りは製品とし
て取出される。
The coal coarsely pulverized to about 5 mm or less is supplied in a fixed amount from the bunker 6 to the mill 8 via the coal feeder 7. An additive liquid containing a dispersant and the like is supplied to the mill inlet so that the coal concentration is about 75 to 85% by weight based on the raw coal. In the mill 8 where the coal concentration is high, the coal particles are pulverized by impact, shearing and grinding effects between the balls or between the balls and the inner wall of the mill, and flow toward the mill exit. The new surfaces of the newly generated particles are now effectively wetted by the additive from the additive liquid supply pipe 15 at the mill outlet. The slurry that has been further pulverized to form a new surface is discharged from the mill 8, stored in a slurry tank 9, and fed to a feeder 11.
It is efficiently mixed with the additives supplied from the stirrer 10. The slurry transported from the tank 9 by the pump 12 is distributed by the distributor 13, a portion is circulated to the mill and re-ground, and the remainder is taken out as a product.

第3図は、第2図に示した本発明方法によつて
石炭−水スラリーを製造した結果を示したもの
で、図中、Aは本発明の場合、Bは従来法の場合
を示す。
FIG. 3 shows the results of producing a coal-water slurry by the method of the present invention shown in FIG. 2, where A shows the case of the present invention and B shows the case of the conventional method.

本発明の場合は650mm径のミル8で200メツシユ
通過70%まで粉砕した後、分配器13で製品量の
2倍量をミルに戻したのに対し、従来法では上記
粉砕後、ミルに戻さずにそのまま製品スラリーと
したものである。本発明による製造法では、製品
スラリーの一部をミルに循環することにより、粒
子が再粉砕され従来法と同じ200メツシユ通過70
%に粉砕しても200メツシユ以下により多くの微
粉を含むことが明らかである。第3図のA,Bの
スラリーの粘度および石炭濃度を比較すれば、従
来法のスラリーBでは石炭濃度68重量%で粘度が
2200cpであつたが、本発明方法によるスラリー
Aでは石炭濃度が70%で1800cpであつた。また
添加剤使用量は石炭に対し1.3重量%(従来法)
から0.6重量%(本発明方法)に低減された。こ
れは粉砕が進行して粒子の新表面が生成されてい
くのに対応して添加剤を添加する多段添加方式に
よつたために添加剤と粒子が効果的に接触混合さ
れたためである。
In the case of the present invention, after the mill 8 with a diameter of 650 mm is used to grind the product to 70% passing through 200 meshes, twice the amount of the product is returned to the mill using the distributor 13, whereas in the conventional method, after the above-mentioned grinding, the product is returned to the mill. It is made into a product slurry as it is. In the manufacturing method according to the present invention, a part of the product slurry is circulated through the mill, so that the particles are re-pulverized and passed through 200 meshes and 70
It is clear that even if the powder is crushed to 200% or less, it contains more fine powder than 200 mesh. Comparing the viscosity and coal concentration of slurries A and B in Figure 3, the conventional slurry B has a viscosity of 68% by weight.
The slurry A produced by the method of the present invention had a coal concentration of 70% and 1800 cp. Additionally, the amount of additive used is 1.3% by weight of coal (conventional method)
to 0.6% by weight (method of the present invention). This is because the additives and particles were effectively mixed in contact with each other due to the multi-stage addition method in which the additives were added as the grinding progressed and new surfaces of the particles were generated.

一般の乾式または湿式ボールミル装置において
は、ミルの外部に分級機を設置し、分級された微
粉を製品として回収し粗粉をミルに戻す閉回路粉
砕方式がとられる(例えば、Unit Operation of
Chemical Engineering,W.L.Mccabe and J.C.
Smith,Chapter 26,Mcgraw−Hill,2nd
edition,New York,1967)。第4図にこの閉回
路粉砕システムの系統図を示す。16はボールミ
ル、17は分級機である。閉回路粉砕方式を採用
する理由は、粉砕されて微粉となつた粒子を系外
に取出し過粉砕を避け、動力消費を小さくしよう
とするものである。第5図に、一般の分級機の分
級効率、すなわち分級されてミルに戻される重量
分率と粒子径の関係を示す。さらに第6図は、こ
の閉回路粉砕システムにおける製品の粒度分布と
分級機のない開回路システムの粒度分布を比較し
たものである。第6図から明らかであるように、
閉回粉砕では、粒度分布の幅が狭く、微粉の生成
量が少ない。第5図には、ある粒子径より大きい
粒子はすべてミルに戻され、それより小さい粒子
は製品として回収される、理想的に望ましい分級
機の分級効率と、全く分級しない分級機の分級効
率を示す。すなわち後者が本発明でいう分配器で
あり、全粒子径範囲の粒子を一様に2つの流れに
所定の比率で分配する。従つてこのような分配器
を設置したシステムでは、微小粒子も大粒子と同
様にミルに戻されて過粉砕されるので粒度分布の
幅が広くなり(第6図参照)、粉砕効率が悪くな
る。
In general dry-type or wet-type ball mill equipment, a closed circuit pulverization method is used in which a classifier is installed outside the mill, the classified fine powder is recovered as a product, and the coarse powder is returned to the mill (for example, Unit Operation of
Chemical Engineering, WLMccabe and JC
Smith, Chapter 26, Mcgraw-Hill, 2nd
edition, New York, 1967). FIG. 4 shows a system diagram of this closed circuit crushing system. 16 is a ball mill, and 17 is a classifier. The reason for adopting the closed circuit pulverization method is to remove the pulverized particles into fine powder from the system, avoid over-pulverization, and reduce power consumption. FIG. 5 shows the classification efficiency of a general classifier, that is, the relationship between the weight fraction classified and returned to the mill and the particle size. Furthermore, FIG. 6 compares the particle size distribution of the product in this closed circuit grinding system with the particle size distribution in an open circuit system without a classifier. As is clear from Figure 6,
In closed-circuit pulverization, the width of the particle size distribution is narrow and the amount of fine powder produced is small. Figure 5 shows the classification efficiency of an ideally desirable classifier, in which all particles larger than a certain particle size are returned to the mill, and particles smaller than that size are recovered as products, and the classification efficiency of a classifier that does not classify at all. show. That is, the latter is a distributor in the present invention, and uniformly distributes particles in the entire particle size range to two streams at a predetermined ratio. Therefore, in a system equipped with such a distributor, fine particles are returned to the mill and over-pulverized in the same way as large particles, resulting in a wide particle size distribution (see Figure 6) and poor grinding efficiency. .

本発明は、上述のように従来の粉砕機システム
では例のない全く分級しない分配器を設置した閉
回路システムで粉砕してより幅の広い粒度分布を
作り、石炭−水スラリーの高濃度化、低粘度化を
達成するものである。
As mentioned above, the present invention uses a closed circuit system equipped with a distributor that does not classify at all, which is unprecedented in conventional pulverizer systems, to create a wider particle size distribution, thereby increasing the concentration of coal-water slurry. This achieves low viscosity.

次に第7図は、本発明の方法の他の実施例を示
す石炭−水スラリーの製造方法の装置系統図であ
るが、ミル8の構造が異なる以外は第2図と同様
の構成を有する。第7図において、スクリーン等
の仲仕切板21を設置して2室化されたミル20
の第1室には約75〜40mmの大径ボールが充填さ
れ、第2室には約40〜12mmの小径ボールが充填さ
れる。約10mm以下に粗粉砕された石炭はバンカ1
8、給炭機19を経てミル20に定量供給され
る。石炭濃度が約75〜85重量%になるように分散
剤等を含む添加剤液(水100と添加剤102)
がミル20の第1室に供給される。第1室では、
従来法より高濃度の雰囲気でかつ大径ボールによ
つて粉砕されるのでより微粉を含む幅の広い粒度
分布が生成される。仕切板21を通過したスラリ
ーは第2室において小径ボールにより効率良く粉
砕され、また新たに添加される添加剤104に効
率よく粒子表面が濡らされ低粘度化される。ミル
20から排出されたスラリーはタンク22でフイ
ーダ24により供給された添加剤106と混合さ
れ、さらに粘度が低下する。スラリーはポンプ2
5で分配器26に輸送されて分配され、一部は製
品として回収され、残りはミルへ循環されて再粉
砕、微粒化され、より幅の広い粒度分布が生成し
高濃度化、低粘度化が達成される。また添加剤
は、粒子の新表面の生成に応じて多段添加される
ので効率よく作用し、トータルの使用量が従来法
に比べて1/2以下となる。
Next, FIG. 7 is a system diagram of an apparatus for a coal-water slurry production method showing another embodiment of the method of the present invention, which has the same configuration as FIG. 2 except that the structure of the mill 8 is different. . In FIG. 7, a mill 20 is divided into two chambers by installing a partition plate 21 such as a screen.
The first chamber is filled with large diameter balls of about 75 to 40 mm, and the second chamber is filled with small diameter balls of about 40 to 12 mm. Coal that has been coarsely crushed to about 10 mm or less is classified as Banca 1.
8. A fixed amount of coal is supplied to the mill 20 via the coal feeder 19. Additive liquid containing dispersant, etc. so that the coal concentration is about 75 to 85% by weight (100 parts water and 102 parts additive)
is supplied to the first chamber of the mill 20. In the first room,
Since the powder is pulverized in a more concentrated atmosphere and with larger diameter balls than in the conventional method, a wider particle size distribution including finer powder is produced. The slurry that has passed through the partition plate 21 is efficiently crushed by small-diameter balls in the second chamber, and the particle surfaces are efficiently wetted with the newly added additive 104 to reduce the viscosity. The slurry discharged from mill 20 is mixed in tank 22 with additive 106 supplied by feeder 24 to further reduce the viscosity. Slurry is pump 2
5, it is transported to the distributor 26 and distributed, a portion is recovered as a product, and the rest is circulated to the mill where it is re-pulverized and atomized to produce a wider particle size distribution, resulting in higher concentration and lower viscosity. is achieved. Additionally, since the additive is added in multiple stages as new surfaces of the particles are generated, it works efficiently and the total amount used is less than half that of conventional methods.

以上、本発明によれば、湿式連続ボールミルを
用い、例えば石炭濃度65%以上の高濃度石炭−水
スラリーを製造する際に、全く粒子を分級しない
分級機、すなわち分配器を設置した閉回路方式を
採用し、石炭−水スラリーを一旦スラリータンク
に貯溜して撹拌した後、その一部をミルに戻して
過粉砕することにより、より幅の広い粒度分布を
作り、かつ粒度分布の変動の少ないスラリーの高
濃度化および低粘度化を達成することができる。
また添加剤または添加剤液を粒子が粉砕されて新
表面が生成されるのに対応してミル内部及び外部
で多段少量添加し、効果的に粒子と混合すること
により、添加剤の無駄がなくなり、その使用量を
低減することができる。
As described above, according to the present invention, when manufacturing a high-concentration coal-water slurry with a coal concentration of 65% or more using a wet continuous ball mill, a closed-circuit system is installed in which a classifier that does not classify particles at all, that is, a distributor is installed. After the coal-water slurry is stored in a slurry tank and stirred, a part of it is returned to the mill and over-pulverized, creating a wider particle size distribution and less fluctuation in particle size distribution. High concentration and low viscosity of the slurry can be achieved.
In addition, additives or additive liquid are added in small amounts in multiple stages inside and outside the mill as the particles are crushed and new surfaces are generated, and by effectively mixing them with the particles, there is no wastage of additives. , its usage can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高濃度石炭−水スラリー製造装
置の説明図、第2図は本発明の実施例を示す説明
図、第3図は従来法と本発明によるスラリー製造
試験結果の比較を示す説明図、第4図は閉回路粉
砕システムを示す説明図、第5図は分級効率を示
す説明図、第6図は粉砕方式による粒度分布の差
異を示す説明図、第7図は本発明の他の実施例を
示す説明図である。 6……石炭バンカ、7……給炭機、8……ボー
ルミル、9……スラリータンク、10……撹拌
機、11……フイーダ、12……ポンプ、13…
…分配器、100……水、102,104,10
6……添加剤。
Fig. 1 is an explanatory diagram of a conventional high-concentration coal-water slurry manufacturing device, Fig. 2 is an explanatory diagram showing an embodiment of the present invention, and Fig. 3 is a comparison of slurry production test results according to the conventional method and the present invention. Figure 4 is an explanatory diagram showing a closed circuit pulverization system, Figure 5 is an explanatory diagram showing classification efficiency, Figure 6 is an explanatory diagram showing differences in particle size distribution depending on the pulverization method, and Figure 7 is an explanatory diagram showing the difference in particle size distribution depending on the pulverization method. It is an explanatory view showing other examples. 6... Coal bunker, 7... Coal feeder, 8... Ball mill, 9... Slurry tank, 10... Stirrer, 11... Feeder, 12... Pump, 13...
...Distributor, 100...Water, 102,104,10
6...Additive.

Claims (1)

【特許請求の範囲】 1 石炭を貯溜する石炭バンカと、該石炭バンカ
から供給される石炭を水とともに粉砕する湿式ボ
ールミルと、該湿式ボールミルで粉砕された石炭
−水スラリを一旦貯溜する、撹拌手段を有するス
ラリータンクとを備えた石炭−水スラリの製造装
置において、前記スラリータンクの後流に分配器
を設けて石炭−水スラリの一部を前記湿式ボール
ミル入口に分配するようにしたことを特徴とする
石炭−水スラリの製造装置。 2 前記湿式ボールミルが2室からなり、かつミ
ル入口側の第1室のボール径が、出口側の第2室
のボール径より大きいことを特徴とする特許請求
の範囲第1項記載の石炭−水スラリの製造装置。 3 前記湿式ボールミルの入口側と出口側に添加
剤供給手段をそれぞれ設けたことを特徴とする特
許請求の範囲第1項または第2項記載の石炭−水
スラリの製造装置。
[Scope of Claims] 1. A coal bunker that stores coal, a wet ball mill that pulverizes the coal supplied from the coal bunker together with water, and a stirring means that temporarily stores the coal-water slurry that has been pulverized by the wet ball mill. A coal-water slurry production apparatus comprising a slurry tank having a slurry tank, characterized in that a distributor is provided downstream of the slurry tank to distribute a portion of the coal-water slurry to the wet ball mill inlet. Coal-water slurry manufacturing equipment. 2. The coal according to claim 1, wherein the wet ball mill has two chambers, and the ball diameter of the first chamber on the mill inlet side is larger than the ball diameter of the second chamber on the outlet side. Water slurry production equipment. 3. The coal-water slurry manufacturing apparatus according to claim 1 or 2, characterized in that additive supply means are provided on the inlet side and the outlet side of the wet ball mill, respectively.
JP3087483A 1983-02-28 1983-02-28 Preparation of coal-water slurry Granted JPS59157184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087483A JPS59157184A (en) 1983-02-28 1983-02-28 Preparation of coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087483A JPS59157184A (en) 1983-02-28 1983-02-28 Preparation of coal-water slurry

Publications (2)

Publication Number Publication Date
JPS59157184A JPS59157184A (en) 1984-09-06
JPH036960B2 true JPH036960B2 (en) 1991-01-31

Family

ID=12315869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087483A Granted JPS59157184A (en) 1983-02-28 1983-02-28 Preparation of coal-water slurry

Country Status (1)

Country Link
JP (1) JPS59157184A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603127B2 (en) * 1989-03-17 1997-04-23 日揮 株式会社 Method for producing high concentration coal / water slurry
US5599356A (en) * 1990-03-14 1997-02-04 Jgc Corporation Process for producing an aqueous high concentration coal slurry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896691A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896691A (en) * 1981-12-03 1983-06-08 Electric Power Dev Co Ltd Preparation of concentrated coal slurry

Also Published As

Publication number Publication date
JPS59157184A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
US4613084A (en) Process for producing a coal-water slurry
JPS5927789B2 (en) Coal/water suspension for coal gasification and its production method
JPH036960B2 (en)
JPS6013888A (en) Production of coal-water slurry having high concentration
JPS6181488A (en) Production of coal-water slurry
JPH0254397B2 (en)
JPS62116692A (en) Method and device for production of finely particulate, high-concentration coal-water slurry
JPH0315958B2 (en)
JPS6013889A (en) Production of coal-water slurry having high concentration
JPH0259197B2 (en)
JPS62243687A (en) Production of solid fuel-water slurry
JPS63196687A (en) Production of solid fuel-water slurry
JPS63145395A (en) Apparatus for producing coal-water slurry
JPS63196688A (en) Production of solid fuel-water slurry
JPH068418B2 (en) Coal-water slurry manufacturing method
JPH0415277B2 (en)
JPH0637628B2 (en) Method for preparing coal slurry
JPH0323115B2 (en)
JPH07173476A (en) Production of high-concentration aqueous coal slurry
JPS61166889A (en) Production unit for coal-water slurry
JPS61114756A (en) Control of particle distribution of high concentrated coal aqueous slurry
JPH01139158A (en) Operation of fine coal machine
JPS60156795A (en) Manufacture of highly concentrated coal-water slurry
JPS6053596A (en) Production of coal-water slurry
JPH0315956B2 (en)