JPH034451A - Gas supply mechanism of solid electrolyte type fuel cell - Google Patents

Gas supply mechanism of solid electrolyte type fuel cell

Info

Publication number
JPH034451A
JPH034451A JP1138364A JP13836489A JPH034451A JP H034451 A JPH034451 A JP H034451A JP 1138364 A JP1138364 A JP 1138364A JP 13836489 A JP13836489 A JP 13836489A JP H034451 A JPH034451 A JP H034451A
Authority
JP
Japan
Prior art keywords
gas supply
fuel
fuel cell
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1138364A
Other languages
Japanese (ja)
Other versions
JP2967878B2 (en
Inventor
Masakatsu Nagata
雅克 永田
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1138364A priority Critical patent/JP2967878B2/en
Publication of JPH034451A publication Critical patent/JPH034451A/en
Application granted granted Critical
Publication of JP2967878B2 publication Critical patent/JP2967878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To draw out power generation capacity up to a high level by providing a plurality of blowoff ports at positions different in the axial direction of an oxygen electrode or a fuel electrode, and providing the gas supply pipe in close vicinity to the oxygen electrode or the fuel electrode. CONSTITUTION:A solid electrolyte type fuel cell 11 is supplied with hydrogen gas by the fuel gas supply pipe 12 inserted in inner space, and when the air is supplied as oxidizing gas to the outside, it causes oxidizing and reducing reactions through solid electrolyte between an inside fuel cell and an outside oxygen electrode, and accompanying these reactions the power is generated. At this time, since plural gas blowoff ports 13 are severally formed at the positions different in axial direction of the fuel gas supply pipe 12, the fuel gas blown off from each gas blowoff port 13 is supplied directly to the inner periphery of the fuel electrode being provided inside the solid electrolyte type fuel cell 11, and enough concentration of fuel gas is supplied uniformly to each part of the fuel electrode. Hereby, the solid electrolyte type fuel cell 11 can be display a high level of power generating capacity.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、固体電解質燃料電池の燃料電極と!!素電
穫との少なくとも一方に、燃料ガスあるいは酸化性ガス
を供給するガス供給構造に関するものである。
[Detailed Description of the Invention] Industrial Field of Application This invention is applicable to fuel electrodes of solid electrolyte fuel cells! ! The present invention relates to a gas supply structure for supplying fuel gas or oxidizing gas to at least one side of a primary electric generator.

従来の技術 固体電解質型燃料電池は、固体電解質を挾んで一方の側
に燃料電極が、他方の側に酸素電極がそれぞれ形成され
ており、その燃料電極側には水素等の燃料ガスを供給し
、また酸素電極側には空気等の酸素を含む酸化性ガスを
供給することにより、固体電解質を介して酸化・還元反
応を起させ、反応時に生じた電力を取出して利用する装
置である。
Conventional technology In a solid oxide fuel cell, a fuel electrode is formed on one side of a solid electrolyte, and an oxygen electrode is formed on the other side, and a fuel gas such as hydrogen is supplied to the fuel electrode side. In addition, by supplying an oxidizing gas containing oxygen such as air to the oxygen electrode side, an oxidation/reduction reaction is caused via a solid electrolyte, and the electric power generated during the reaction is extracted and used.

例えば第6図は従来の一般的な固体電解質型燃料電池を
示すもので、周囲を断熱材1aで囲んだハウジング1内
を、隔壁1bによって燃焼至2と排出ガス室3とに分割
し、この燃焼室2内に、有底円筒形の単電池4が複数本
収容されている。
For example, FIG. 6 shows a conventional general solid oxide fuel cell, in which a housing 1 surrounded by a heat insulating material 1a is divided into a combustion chamber 2 and an exhaust gas chamber 3 by a partition wall 1b. A plurality of bottomed cylindrical single cells 4 are housed in the combustion chamber 2 .

これら各単電池4は、円筒形の固体電解質の内側に燃料
電極を、外側に酸素電極をそれぞれ形成したもので、開
放した基端(第6図において上端)を前記隔壁1bに形
成された円形の各貫通孔1Cに気密に取付けて互いに平
行に配設されている。
Each of these unit cells 4 has a fuel electrode formed inside a cylindrical solid electrolyte and an oxygen electrode formed outside thereof, and the open base end (upper end in FIG. 6) is connected to a circular shape formed in the partition wall 1b. are airtightly attached to each through hole 1C and arranged parallel to each other.

そして、前記燃焼室2内には空気取入れ口5から酸化性
ガスである空気が取入れられて、有底円筒形の各単電池
4の酸素電極の周囲の空間を巡って流れ、また各単電池
4の燃料電極の内側の空間には、隔壁1bによって隔て
られた排出ガス室3側から各貫通孔1Cを介して内側に
挿入された燃料ガス供給管6によって水素等の燃料ガス
が供給され、各単電池4の内側の先端底部付近まで差込
まれた各燃料ガス供給管6の先端から燃料ガスが吹出し
、各単電池4内を、基端側(第6図において上方)に向
けて流れ、残務ガスが各貫通孔1Cより排出ガス室3内
に流入した後、燃料ガス排出管7からハウジング1の外
へ排出されるようになっており、各単電池4間を直列ま
たは並列あるいは直並列に電気的に接続して、発生した
電力を取出す構造となっている。
Air, which is an oxidizing gas, is taken into the combustion chamber 2 from the air intake port 5, flows around the space around the oxygen electrode of each unit cell 4, which has a cylindrical shape with a bottom, and flows around the oxygen electrode of each unit cell 4. A fuel gas such as hydrogen is supplied to the space inside the fuel electrode 4 from the exhaust gas chamber 3 side separated by the partition wall 1b by a fuel gas supply pipe 6 inserted inside through each through hole 1C, Fuel gas blows out from the tip of each fuel gas supply pipe 6 inserted to the inside of each cell 4 to near the bottom of the tip, and flows inside each cell 4 toward the base end side (upward in FIG. 6). After the residual gas flows into the exhaust gas chamber 3 through each through hole 1C, it is discharged from the fuel gas exhaust pipe 7 to the outside of the housing 1. The structure is such that they are electrically connected in parallel and the generated power is extracted.

発明が解決しようとする課題 しかし、前述した従来の固体電解質型燃料電池の場合の
ように、有底円筒形の各単電池4の燃料電極が形成され
た内側空間に、燃料ガス供給管6をそれぞれ挿入してそ
の先端から燃料ガスを噴出させる構造の場合においては
、燃、料ガス供給管6の吹出し孔である先端部が配設さ
れている各単電池4内の先端側には、高濃度の燃料ガス
が供給されるが、供給された燃料ガスが酸化・還元反応
に消費されなから基端側に流れるため、各単電池4の基
端側となるにしたがって、燃料ガスの濃度が低下し、基
端側においては燃料ガスの濃度が稀薄となって酸化・還
元反応が弱まり、各単電池4の出力が低下するという問
題があった。
Problems to be Solved by the Invention However, as in the case of the conventional solid oxide fuel cell described above, it is difficult to insert the fuel gas supply pipe 6 into the inner space where the fuel electrode of each bottomed cylindrical unit cell 4 is formed. In the case of a structure in which the fuel gas is inserted into each cell and fuel gas is ejected from the tip thereof, there is a high height at the tip side of each unit cell 4 where the tip part which is the blowout hole of the fuel gas supply pipe 6 is disposed. However, since the supplied fuel gas is not consumed in the oxidation/reduction reaction and flows toward the proximal end, the concentration of the fuel gas increases as it approaches the proximal end of each cell 4. There was a problem in that the concentration of the fuel gas became dilute on the proximal end side, weakening the oxidation/reduction reaction, and reducing the output of each cell 4.

そのため従来においては、各単電池4の燃料ガスの吹出
し孔から離れた位置にも充分なガス濃度の燃料ガスが供
給されるように、燃料ガスの供給量を必要以上に増量し
、燃料電池の酸化・還元反応に必要とされる量を大幅に
上回る量の燃料ガスを供給することにより出力低下を防
止していたが、残務ガスの吊が多くなって燃料ガスを無
駄に消費するという問題があった。
Therefore, in the past, the amount of fuel gas supplied was increased more than necessary so that fuel gas with a sufficient gas concentration was supplied to positions far from the fuel gas outlet of each cell 4. A drop in output was prevented by supplying fuel gas in an amount that significantly exceeded that required for the oxidation/reduction reactions, but this resulted in the problem of unnecessarily consuming fuel gas due to a large amount of residual gas being hung up. there were.

この発明は上記事情に鑑みなされたもので、固体電解質
型燃料電池の全長に亘って、充分に高濃度でかつ等しい
濃度の燃料ガス、あるいは充分なΦの酸化性ガスを供給
することのできる固体電解質型燃料電池のガス供給構造
を提供することを目的としている。
This invention was made in view of the above circumstances, and it is possible to supply a sufficiently high and equal concentration of fuel gas or an oxidizing gas of sufficient Φ over the entire length of a solid oxide fuel cell. The purpose is to provide a gas supply structure for electrolyte fuel cells.

課題を解決するための手段 上記課題を解決するための手段としてこの発明の固体電
解質型燃料電池のガス供給構造は、環状の固体電解質の
内側に酸素電極または燃料電極を、外側に反対の電極を
設けた円筒状の固体電解質型燃料電池において、前記酸
素電極もしくは燃料電極の軸線方向に異る複数の位置に
吹出し孔を備えたガス供給管を、酸素電極もしくは燃料
電極に近接して設けたことをvfylとしている。
Means for Solving the Problems As a means for solving the above problems, the gas supply structure of the solid oxide fuel cell of the present invention includes an oxygen electrode or a fuel electrode on the inside of the annular solid electrolyte, and an opposite electrode on the outside. In the cylindrical solid oxide fuel cell provided, gas supply pipes having blow-off holes at a plurality of different positions in the axial direction of the oxygen electrode or the fuel electrode are provided in the vicinity of the oxygen electrode or the fuel electrode. is set as vfyl.

またこの発明では、前記ガス供給管を、複数の吹出し孔
が形成された1本の管体で構成することができる。
Further, in the present invention, the gas supply pipe can be formed of a single pipe body in which a plurality of blow-off holes are formed.

さらにこの発明では、前記ガス供給管を、それぞれの開
放端を吹出し孔とした長さの異なる複数の管体で構成す
ることができる。
Further, in the present invention, the gas supply pipe can be constructed of a plurality of pipe bodies having different lengths, each having an open end as a blow-off hole.

そしてまたこの発明では、前記ガス供給管の各吹出し孔
を、前記酸素電極あるいは燃料電極の各電極面に向けて
ガスを吹き出すように形成することができる。
Further, in the present invention, each blowing hole of the gas supply pipe can be formed so as to blow gas toward each electrode surface of the oxygen electrode or the fuel electrode.

作   用 酸化性ガスもしくは燃料ガスは前記吹出し口から吐出す
るが、その吹出し口は酸素電極もしくは燃料電極の軸線
方向で異なる位置に複数段けられ、かつそのガス供給管
が酸素電極もしくは燃料電極に近接して設けられている
ので、酸素電極もしくは燃料電極の軸線方向で異なる複
数箇所に未反応の高濃度のガスが供給されることになり
、各固体電解質型燃料電池の発電能力を高水準まで引出
すことができる。
The oxidizing gas or fuel gas is discharged from the outlet, and the outlet is provided in multiple stages at different positions in the axial direction of the oxygen electrode or fuel electrode, and the gas supply pipe is connected to the oxygen electrode or fuel electrode. Since they are placed close to each other, unreacted, highly concentrated gas is supplied to multiple locations along the axis of the oxygen electrode or fuel electrode, increasing the power generation capacity of each solid oxide fuel cell to a high level. Can be withdrawn.

実  施  例 以下、この発明の固体電解質型燃料電池のガス供給構造
の実施例を第1図ないし第5図に基づいて説明する。
Embodiments Hereinafter, embodiments of a gas supply structure for a solid oxide fuel cell according to the present invention will be described with reference to FIGS. 1 to 5.

第1図および第2図は、この発明の固体電解質型燃料電
池のガス供給構造の第1実施例を示すもので、固体電解
質型燃料電池11は、環状の固体電解質の内側に燃料電
極を、外側にW1素電極をそれぞれ設けた有底円筒状に
形成されており、前記固体電解質はイツトリア安定化ジ
ルコニア(YSZ)で、燃料電極はニッケルとジルコニ
アとのサーメットで、また酸素電極はベロアスカイト型
ランタン系複合酸化物でそれぞれ形成されている。
1 and 2 show a first embodiment of a gas supply structure for a solid oxide fuel cell according to the present invention. A solid oxide fuel cell 11 includes a fuel electrode inside an annular solid electrolyte, The solid electrolyte is made of yttria stabilized zirconia (YSZ), the fuel electrode is made of a cermet of nickel and zirconia, and the oxygen electrode is made of velorskite. Each type is formed from a lanthanum-based composite oxide.

この固体電解質型燃料電池11の前記燃料電極の内側の
空間には、燃料ガス供給管12が、固体電解質型燃料電
池11のほぼ中心部に軸線方向に挿入されている。この
燃料ガス供給管12は、第2図に示すように、燃料電極
の内側の空間に配設された円筒部分に複数のガス吹出し
孔13が、軸線方向に異なる位置にそれぞれ形成され、
その先端(第1図において左端)は、有底円筒状の固体
雷解質型燃V4電池11内の先端底部の近傍まで差込ま
れている。また、この固体電解質型撚′n電池11の外
側の酸素電極の外周には、酸化性ガスである空気が流通
するように構成されている。
In the space inside the fuel electrode of this solid oxide fuel cell 11, a fuel gas supply pipe 12 is inserted approximately at the center of the solid oxide fuel cell 11 in the axial direction. As shown in FIG. 2, this fuel gas supply pipe 12 has a plurality of gas blowing holes 13 formed at different positions in the axial direction in a cylindrical portion disposed in a space inside the fuel electrode.
The tip (the left end in FIG. 1) is inserted into the bottomed cylindrical solid-state lightning-resolved fuel V4 battery 11 up to the vicinity of the bottom of the tip. Further, the solid electrolyte type twisted 'n battery 11 is constructed so that air, which is an oxidizing gas, flows around the outer periphery of the oxygen electrode on the outside.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池11は、内側の空間に挿入された
燃料ガス供給管12により水素ガスが供給されるととも
に、外側に酸化性ガスとして空気が供給されると、内側
の燃料電極と外側の酸素電極との間で固体電解質を介し
て酸化・還元反応が起こし、この反応に伴って電力を生
じる。
The solid oxide fuel cell 11 is supplied with hydrogen gas through a fuel gas supply pipe 12 inserted into the inner space, and when air is supplied as an oxidizing gas to the outside, the inner fuel electrode and the outer oxygen Oxidation and reduction reactions occur between the electrode and the solid electrolyte, and electric power is generated along with this reaction.

この時、固体電解質型燃料電池11の内側には、燃料ガ
スの水素が燃料ガス供給管12によって供給されるが、
この燃料ガス供給管12に複数のガス吹出し孔13が、
軸線方向に異る位置にそれぞれ形成されているため、各
ガス吹出し孔13がら吹出した燃料ガスは、固体電解質
型燃料電池11の内側に設けられた燃料電極の内周面に
直接供給され、燃料電極の各部位に充分な濃度の燃料ガ
スが均等に供給される。その結果、固体電解質型燃料電
池11に高水準の発電性能を発揮させることができる。
At this time, hydrogen as fuel gas is supplied to the inside of the solid oxide fuel cell 11 through the fuel gas supply pipe 12;
A plurality of gas blowing holes 13 are provided in this fuel gas supply pipe 12.
Since they are formed at different positions in the axial direction, the fuel gas blown out from each gas blowout hole 13 is directly supplied to the inner circumferential surface of the fuel electrode provided inside the solid oxide fuel cell 11, and the fuel gas is Fuel gas of sufficient concentration is evenly supplied to each part of the electrode. As a result, the solid oxide fuel cell 11 can exhibit a high level of power generation performance.

また第3図は、この発明の固体電解質型燃料電池のガス
供給構造の第2実施例を示すもので、固体電解質型撚′
J4電池21は、前記第1実施例の場合と同様に、環状
の固体電解質の内側に燃料電極を、外側にW1素電極を
それぞれ設けた有底円筒状に形成されており、この固体
電解質型燃料電池21の燃料電極の内側の空間には、燃
料ガス供給管22がほぼ中心部に挿入され、その開放さ
れた先端(第3図において左端)は、有底円筒状の固体
電解質型燃料電池21内の先yMg部の近傍まで差し込
まれ、この燃料ガス供給管22により水素が供給される
ようになっている。
FIG. 3 shows a second embodiment of the gas supply structure for a solid oxide fuel cell according to the present invention.
As in the case of the first embodiment, the J4 battery 21 is formed into a bottomed cylindrical shape with a fuel electrode provided inside a ring-shaped solid electrolyte and a W1 element electrode provided outside. A fuel gas supply pipe 22 is inserted almost into the center of the space inside the fuel electrode of the fuel cell 21, and its open end (the left end in FIG. 3) is connected to a bottomed cylindrical solid oxide fuel cell. The fuel gas supply pipe 22 is inserted into the vicinity of the front yMg portion in the fuel gas supply pipe 21, and hydrogen is supplied through this fuel gas supply pipe 22.

また前記固体電解質型燃料電池21の外側の空間には、
複数の酸化性ガス供給管23が、それぞれ固体電解′l
i型燃料電池21と平行に配設されており、各酸化性ガ
ス供給菅23には、固体電解質型燃料電池21のM素電
極が形成された外周部分と対応する区間に、複数のガス
吹出し孔24が、それぞれ酸素層4j(固体電解質型燃
料電池21の外周部)に面した側でかつ軸線方向に異な
る位置に形成され、この酸化性ガス供給管23を介して
酸素が供給されるようになって0る。
In addition, in the space outside the solid oxide fuel cell 21,
A plurality of oxidizing gas supply pipes 23 each serve as a solid electrolyte.
Each oxidizing gas supply pipe 23 is arranged in parallel with the i-type fuel cell 21, and each oxidizing gas supply pipe 23 has a plurality of gas blowouts in a section corresponding to the outer peripheral part where the M element electrode of the solid oxide fuel cell 21 is formed. The holes 24 are formed at different positions in the axial direction on the side facing the oxygen layer 4j (the outer circumference of the solid oxide fuel cell 21), and oxygen is supplied through the oxidizing gas supply pipe 23. It becomes 0.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池21は、内側の空e1に挿入され
た燃料ガス供給管22により水素が供給されるとともに
、外側に複数配設された各酸化性ガス供給管23を介し
て酸素が酸化性ガスとして供給されると、内側の燃料電
極と外側の酸素電極との間で固体電解質を介して酸化・
還元反応を起こし、その反応に伴って電力を生じる。
The solid oxide fuel cell 21 is supplied with hydrogen through a fuel gas supply pipe 22 inserted into the inner air space e1, and oxygen is supplied with oxidizing gas through a plurality of oxidizing gas supply pipes 23 arranged on the outside. When supplied as a gas, oxidation occurs between the inner fuel electrode and the outer oxygen electrode via a solid electrolyte.
A reduction reaction occurs, and electricity is generated along with the reaction.

この時、固体電解質型燃料電池21の外側には、酸化性
ガスとして酸素ガスが、各酸化性ガス供給管23によっ
て供給されるが、それぞれの酸化性ガス供給管23に複
数のガス吹出し孔24が、軸線方向に異る位置にそれぞ
れ形成きれているため、各ガス吹出し孔24から吹出し
た酸素ガスは、固体電解質型燃料電池21の外側に設け
られた酸素電極の外周面に直接供給され、酸素電極の各
部位に充分な1度の酸素ガスが均等に供給される。その
結果、固体電解質型燃料電池21に高水準の発電性能を
発揮させることができる。
At this time, oxygen gas is supplied as an oxidizing gas to the outside of the solid oxide fuel cell 21 through each oxidizing gas supply pipe 23 , and each oxidizing gas supply pipe 23 has a plurality of gas blowing holes 24 . are formed at different positions in the axial direction, so that the oxygen gas blown out from each gas blowing hole 24 is directly supplied to the outer peripheral surface of the oxygen electrode provided on the outside of the solid oxide fuel cell 21. Sufficient 1 degree oxygen gas is evenly supplied to each part of the oxygen electrode. As a result, the solid oxide fuel cell 21 can exhibit a high level of power generation performance.

さらに、第4図はこの発明の第3実施例の固体電解質型
燃料電池のガス供給構造に使用されるガス供給管を示す
もので、このガス供給管31は、それぞれ長さの異なる
管体32.33.34から構成されており、これらの管
体32,33.34のガス吹出し孔となる各先端が、固
体電解質型燃料電池(図示せず)の軸線方向にそれぞれ
異る位置となるように配設されている。
Furthermore, FIG. 4 shows a gas supply pipe used in the gas supply structure of a solid oxide fuel cell according to a third embodiment of the present invention. .33, 34, and the tips of these tubes 32, 33, 34, which serve as gas blowing holes, are arranged at different positions in the axial direction of the solid oxide fuel cell (not shown). It is located in

したがって、複数の管体32.33.34からなるガス
供給管31を、燃料ガス供給管または酸化性ガス供給管
に、あるいは燃料ガス供給管および酸化性ガス供給管の
両方に用いれば、前記両実施例の場合と同様に、固体電
解質型燃料電池の酸素電極あるいは燃料電極に、それぞ
れW1素あるいは水素等のガスを直接供給できるので、
前記両実施例の場合と同様に固体電解質型燃料電池に高
水準の発電性能を発揮させることができる。
Therefore, if the gas supply pipe 31 consisting of a plurality of pipe bodies 32, 33, 34 is used as a fuel gas supply pipe or an oxidizing gas supply pipe, or as both a fuel gas supply pipe and an oxidizing gas supply pipe, it is possible to As in the case of the embodiment, W1 element or gas such as hydrogen can be directly supplied to the oxygen electrode or fuel electrode of the solid oxide fuel cell, respectively.
As in both of the above embodiments, the solid oxide fuel cell can exhibit a high level of power generation performance.

また、第5図はこの発明の固体電解質型燃料電池のガス
供給構造の第4実施例として、多孔質の支持管の外周に
、複数の燃料電池単体を軸線方向に直列に接続した状態
で形成した、いわゆる固体電解質型燃料電池スタックの
ガス供給構造に適用した例を示すもので、以下図面に基
づいて説明する。
FIG. 5 shows a fourth embodiment of the gas supply structure for a solid oxide fuel cell according to the present invention, in which a plurality of individual fuel cells are connected in series in the axial direction around the outer periphery of a porous support tube. This example shows an example in which the present invention is applied to a gas supply structure of a so-called solid oxide fuel cell stack, and will be explained below based on the drawings.

固体電解質型燃料電池スタック41は、1本の長尺な支
持管42の外周に、内側から燃n電極層、固体電解質層
、酸素電極層の順に積層した燃料電池単体43を、支持
管42の軸線方向に所定の長さでかつ隣接する燃料電池
単体43.43間に所定の間隙を設けて複数形成すると
ともに、軸線方向に隣接する各燃′j4電池43.43
を、両者間の間隙、すなわち非電池部44にインターコ
ネクタ(図示せず)を設けて互いに直列接続された状態
に形成しである。
The solid electrolyte fuel cell stack 41 includes a single fuel cell 43 in which a fuel n electrode layer, a solid electrolyte layer, and an oxygen electrode layer are stacked in this order from the inside on the outer periphery of one long support tube 42 . A plurality of fuel cells 43.43 are formed with a predetermined length in the axial direction with a predetermined gap between adjacent fuel cell units 43.43, and each fuel cell unit 43.43 adjacent in the axial direction
An interconnector (not shown) is provided in the gap between them, that is, in the non-battery part 44, so that they are connected in series.

そして、この固体電解質型燃料電池スタック41の前記
支持管42の内側の空間には、燃料ガス供給管45が中
心に挿通されている。
A fuel gas supply pipe 45 is inserted centrally into the space inside the support pipe 42 of the solid oxide fuel cell stack 41.

この燃料ガス供給管45は、多孔質の支持管42の外周
に形成された各燃料電池単体43の内周側(燃料電極層
側)とそれぞれ対応した位置に、ノズル状のガス吹出し
部46をそれぞれ複数備えており、各ガス吹出し部46
はそれぞれ対応する各燃料電池単体43の内周面に向け
て形成0れている。なお、図示していないが、固体電解
質型燃料電池スタック41の外周に酸化性ガスである空
気が供給されるようになっている。
This fuel gas supply pipe 45 has a nozzle-shaped gas blowing part 46 at a position corresponding to the inner peripheral side (fuel electrode layer side) of each fuel cell unit 43 formed on the outer periphery of the porous support pipe 42. A plurality of each are provided, and each gas blowing part 46
are formed toward the inner peripheral surface of each corresponding fuel cell unit 43. Although not shown, air, which is an oxidizing gas, is supplied to the outer periphery of the solid oxide fuel cell stack 41.

次に、上記のように構成されるこの実施例の作用を説明
する。
Next, the operation of this embodiment configured as described above will be explained.

固体電解質型燃料電池スタック41は、内側の空間に挿
入された燃料ガス供給管45により燃料ガスの水素が供
給されるとともに、外側に酸化性ガスとして空気が供給
されると、支持管42の外周に複数形成された各燃料電
池単体43において、それぞれの最内層の燃料電極層と
、最外層の酸素電極層との間で固体電解’!層を介して
酸化・還元反応が起こし、直列に接続された各燃料電池
単体43毎に電力を生じる。
The solid oxide fuel cell stack 41 is supplied with hydrogen as a fuel gas through a fuel gas supply pipe 45 inserted into the inner space, and when air is supplied as an oxidizing gas to the outside, the outer periphery of the support pipe 42 In each fuel cell unit 43 formed in plurality, solid electrolysis occurs between the innermost fuel electrode layer and the outermost oxygen electrode layer. Oxidation and reduction reactions occur through the layers, and electric power is generated for each fuel cell unit 43 connected in series.

この時、固体電解質型燃料電池スタック41の内側には
、燃料ガスの水素ガスが燃料ガス供給管45によって供
給されるが、この燃料ガス供給管45には、固体電解質
型燃料電池スタック41に複数形成された各燃料電池単
体43のそれぞれの位置に向で、ノズル状のガス吹出し
部46が複数形成されているため、非電池部間の各燃料
電池単体43部分に向けて燃料ガスが吹き出し、各燃料
電池単体43の最内層の燃料電極層の内側に燃料ガスが
直接供給され、燃料電極の各部位に充分な濃度の燃料ガ
スが均等にかつ無駄無く供給される。
At this time, hydrogen gas as a fuel gas is supplied to the inside of the solid oxide fuel cell stack 41 through a fuel gas supply pipe 45. Since a plurality of nozzle-shaped gas blowing portions 46 are formed at each position of each fuel cell unit 43 formed, fuel gas is blown out toward the portion of each fuel cell unit 43 between the non-cell parts, Fuel gas is directly supplied to the inside of the innermost fuel electrode layer of each fuel cell unit 43, and a sufficient concentration of fuel gas is evenly supplied to each part of the fuel electrode without waste.

その結果、各燃料電池単体43が、それぞれ高水準の発
電性能を発揮し、固体電解質型燃料電池スタック41の
全体として高出力を得ることができる。
As a result, each fuel cell unit 43 exhibits a high level of power generation performance, and the solid oxide fuel cell stack 41 as a whole can obtain high output.

なお、前記各実施例においては、各ガス供給管12.2
3,31.45としてそれぞれ直線状に形成されたもの
につりで説明したが、ガス供給管はコイル状等の他の形
状とすることもできる。
In addition, in each of the above embodiments, each gas supply pipe 12.2
3, 31, and 45, the gas supply pipes have been described as having straight lines, but the gas supply pipes may have other shapes such as a coil shape.

発明の詳細 な説明したようにこの発明の固体電解質型燃料電池のガ
ス供給構造は、環状の固体電解質の内側に#1素電極ま
たは燃料電極を、外側に反対の電極を設けた円筒状の固
体電解質型燃料電池において、前記酸素電極もしくは燃
料電極の軸線方向に異る複数の位置に吹出し孔を備えた
ガス供給管を、i1素電極もしくは燃料電極に近接して
設けた構造としたので、ガス供給管の各吹出し孔から固
体電解質型燃料電池の各部位に燃料ガスまたは酸化性ガ
スを直接供給できるので、各電極に必要充分な吊の燃料
ガスあるいは酸化性ガスを供給でき、固体電解質型燃料
電池の発電能力を向上できるとともに、反応に使用され
ずに排出される無駄な燃料ガスまたは酸化性ガスの吊を
■1減して、燃料ガスまたは酸化性ガスの利用効率を大
幅に向上させることができる等の効果を有する。
Detailed Description of the Invention As described above, the gas supply structure of the solid oxide fuel cell of the present invention consists of a cylindrical solid electrolyte with a #1 element electrode or fuel electrode provided inside the annular solid electrolyte and an opposite electrode provided outside. In the electrolyte fuel cell, gas supply pipes with blow-off holes at different positions in the axial direction of the oxygen electrode or the fuel electrode are provided close to the i1 element electrode or the fuel electrode, so that the gas Since fuel gas or oxidizing gas can be directly supplied to each part of the solid oxide fuel cell from each outlet of the supply pipe, sufficient amount of fuel gas or oxidizing gas can be supplied to each electrode, and solid oxide fuel In addition to improving the power generation capacity of the battery, the amount of wasteful fuel gas or oxidizing gas discharged without being used in the reaction can be reduced by 1, thereby greatly improving the utilization efficiency of fuel gas or oxidizing gas. It has effects such as being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の第1実施例を示すもの
で、第1図は固体電解質型燃料電池のガス供給構造を示
す概略断面図、第2図は燃料ガス供給管の斜視図、第3
図はこの発明の第2実施例の固体電解質型燃料電池のガ
ス供給構造を示す概略断面図、第4図はこの発明の第3
実施例の固体電解質型燃料電池のガス供給構造に使用さ
れるガス供給管の斜視図、第5図はこの発明の第4実施
例の固体電解質型燃料電池スタックのガス供給構造を示
す概略断面図、第6図は従来の燃料電池のガス供給構造
の一例を示す図である。 11・・・固体電解質型燃料電池、 12・・・燃料ガ
ス供給管、 13・・・ガス吹出し孔、 21・・・固
体電解質型燃料電池、 22・・・燃料ガス供給管、2
3・・・酸化性ガス供給管、 24・・・ガス吹出し孔
、31・・・ガス供給管、 32.33.34・・・管
体、41・・・固体電解質型燃料電池スタック、 42
・・・支持管、 43・・・燃料電池単体、 44・・
・非電池部、 45・・・燃料ガス供給管、 46・・
・ガス吹出し部。 第1図 第4図 31:力ス、4跣争与管 第2図 第6図 第3図 ↑ を九
1 and 2 show a first embodiment of the present invention, in which FIG. 1 is a schematic sectional view showing a gas supply structure of a solid oxide fuel cell, and FIG. 2 is a perspective view of a fuel gas supply pipe. , 3rd
The figure is a schematic sectional view showing the gas supply structure of a solid oxide fuel cell according to the second embodiment of the present invention, and FIG.
A perspective view of a gas supply pipe used in a gas supply structure of a solid oxide fuel cell according to an embodiment, and FIG. 5 is a schematic sectional view showing a gas supply structure of a solid oxide fuel cell stack according to a fourth embodiment of the present invention. , FIG. 6 is a diagram showing an example of a conventional gas supply structure of a fuel cell. DESCRIPTION OF SYMBOLS 11... Solid oxide fuel cell, 12... Fuel gas supply pipe, 13... Gas blow-off hole, 21... Solid oxide fuel cell, 22... Fuel gas supply pipe, 2
3... Oxidizing gas supply pipe, 24... Gas blow-off hole, 31... Gas supply pipe, 32.33.34... Pipe body, 41... Solid oxide fuel cell stack, 42
...Support tube, 43...Fuel cell unit, 44...
・Non-battery part, 45...Fuel gas supply pipe, 46...
・Gas blowing part. Fig. 1 Fig. 4 Fig. 31: Forces, 4 disputes and control Fig. 2 Fig. 6 Fig. 3 ↑ 9

Claims (3)

【特許請求の範囲】[Claims] (1)環状の固体電解質の内側に酸素電極または燃料電
極を、外側に反対の電極を設けた円筒状の固体電解質型
燃料電池において、前記酸素電極もしくは燃料電極の軸
線方向に異る複数の位置に吹出し孔を備えたガス供給管
を、酸素電極もしくは燃料電極に近接して設けたことを
特徴とする固体電解質型燃料電池のガス供給構造。
(1) In a cylindrical solid electrolyte fuel cell in which an oxygen electrode or a fuel electrode is provided inside an annular solid electrolyte and an opposite electrode is provided on the outside, a plurality of different positions in the axial direction of the oxygen electrode or fuel electrode are provided. 1. A gas supply structure for a solid oxide fuel cell, characterized in that a gas supply pipe with a blowout hole is provided in close proximity to an oxygen electrode or a fuel electrode.
(2)前記ガス供給管は、複数の吹出し孔が形成された
1本の管体であることを特徴とする請求項1記載の固体
電解質型燃料電池のガス供給構造。
(2) The gas supply structure for a solid oxide fuel cell according to claim 1, wherein the gas supply pipe is a single pipe body in which a plurality of blow-off holes are formed.
(3)前記ガス供給管は、それぞれの開放端を吹出し孔
とした長さの異なる複数の管体で構成されていることを
特徴とする請求項1記載の固体電解質型燃料電池のガス
供給構造。(4)前記ガス供給管の各吹出し孔が、前記
酸素電極あるいは燃料電極の各電極面に向けてガスを吹
き出すように形成されていることを特徴とする請求項1
ないし3のいずれかに記載の固体電解質型燃料電池のガ
ス供給構造。
(3) The gas supply structure for a solid oxide fuel cell according to claim 1, wherein the gas supply pipe is composed of a plurality of pipe bodies of different lengths each having an open end as a blowout hole. . (4) Claim 1, wherein each blowout hole of the gas supply pipe is formed so as to blow out gas toward each electrode surface of the oxygen electrode or the fuel electrode.
4. A gas supply structure for a solid oxide fuel cell according to any one of 3 to 3.
JP1138364A 1989-05-31 1989-05-31 Gas supply structure of solid oxide fuel cell Expired - Fee Related JP2967878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1138364A JP2967878B2 (en) 1989-05-31 1989-05-31 Gas supply structure of solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1138364A JP2967878B2 (en) 1989-05-31 1989-05-31 Gas supply structure of solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH034451A true JPH034451A (en) 1991-01-10
JP2967878B2 JP2967878B2 (en) 1999-10-25

Family

ID=15220207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1138364A Expired - Fee Related JP2967878B2 (en) 1989-05-31 1989-05-31 Gas supply structure of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2967878B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292865A (en) * 1991-03-20 1992-10-16 Ngk Insulators Ltd Solid electrolytic fuel cell
JP2007080646A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Series fuel cell
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system
JP2008535196A (en) * 2005-04-05 2008-08-28 ロールス・ロイス・ピーエルシー Fuel cell device
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292865A (en) * 1991-03-20 1992-10-16 Ngk Insulators Ltd Solid electrolytic fuel cell
JP2008535196A (en) * 2005-04-05 2008-08-28 ロールス・ロイス・ピーエルシー Fuel cell device
JP2007080646A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Series fuel cell
JP2007220548A (en) * 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology Fuel cell system
JP2013105721A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial & Technology Fuel passage resident electrochemical cell and electrochemical cell module and electrochemical reaction system using the same

Also Published As

Publication number Publication date
JP2967878B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US4943494A (en) Solid oxide fuel cell matrix and modules
US6432567B1 (en) Fuel cell battery with afterburning at the periphery of a cell stack
US4490444A (en) High temperature solid electrolyte fuel cell configurations and interconnections
EP0055016B1 (en) High temperature solid electrolyte fuel cell configurations
JPH01173577A (en) Solid oxide fuel cell generator
JPS63261679A (en) Electrode for fuel battery
EP0285727B1 (en) Self supporting electrodes for solid oxide fuel cells
JP2006066387A (en) Fuel cell battery
US4824742A (en) Manifold, bus support and coupling arrangement for solid oxide fuel cells
JPH034451A (en) Gas supply mechanism of solid electrolyte type fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP6932515B2 (en) Fuel cell and combined cycle system and how to operate them
JP2008251277A (en) Single chamber type solid oxide fuel cell system
JP5239174B2 (en) Fuel cell
US7258944B2 (en) Fuel cell with improved separators and circular disk-shaped electrolyte electrode assemblies
JP2003282128A (en) Fuel cell
JP2007018966A (en) Fuel cell
JP4100169B2 (en) Fuel cell
JPH0758618B2 (en) Solid oxide fuel cell
JPH07263001A (en) Cell structure of cylindrical solid electrolytic fuel cell with inserted conductive tube, bundle structure by bundling a plurality of these cells and power generating module structure using the bundle
JP2011113829A (en) Fuel cell module and fuel cell device
JP2004055195A (en) Flat layer-built solid oxide fuel cell
JP2001043888A (en) Fuel cell
JP3686773B2 (en) Solid oxide fuel cell
JP3585381B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees