JPH0344497A - Polychromatic surface treatment of aluminum material - Google Patents

Polychromatic surface treatment of aluminum material

Info

Publication number
JPH0344497A
JPH0344497A JP17897289A JP17897289A JPH0344497A JP H0344497 A JPH0344497 A JP H0344497A JP 17897289 A JP17897289 A JP 17897289A JP 17897289 A JP17897289 A JP 17897289A JP H0344497 A JPH0344497 A JP H0344497A
Authority
JP
Japan
Prior art keywords
treatment
voltage
coating
electrodeposition
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17897289A
Other languages
Japanese (ja)
Other versions
JP2654991B2 (en
Inventor
Yutaka Ota
裕 大田
Takanobu Noguchi
孝信 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP17897289A priority Critical patent/JP2654991B2/en
Publication of JPH0344497A publication Critical patent/JPH0344497A/en
Application granted granted Critical
Publication of JP2654991B2 publication Critical patent/JP2654991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a polychromatic coating film of a uniform thickness by coating an Al material by electrodeposition in two steps in polychromatic surface treatment and making voltage in the latter step lower than that in the former step. CONSTITUTION:An Al material is subjected to primary anodic oxidation and colored through a mask having a desired pattern. The Al material may be subjected to secondary anodic oxidation before the coloring. The mask is then removed and the Al material is coated by electrodeposition. In such polychromatic surface treatment, coating by electrodeposition is carried out in two steps by intercepting voltage once and voltage in the latter step is made lower than that in the former step by about 10-50V. Polychromatic surface treatment giving a coating film of a uniform thickness is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム材の多色表面処理方法に関し、
さらに詳しくは、アルミニウム材の表面に形成された2
色以上の色彩(模様)をnする陽極酸化皮膜及び/又は
着色酸化皮膜上に均一な塗膜を形成する表面処理方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multicolor surface treatment method for aluminum materials,
In more detail, 2 formed on the surface of aluminum material
The present invention relates to a surface treatment method for forming a uniform coating film on an anodic oxide film and/or a colored oxide film that has a color (pattern) greater than color.

〔従来の技術〕[Conventional technology]

従来、2色以上の色彩(模様)を有し、かつ塗膜厚の均
一なアルミニウム材の多色表面処理方法としては、まず
陽極酸化処理(あるいはさらに着色処理)を施したアル
ミニウム材の表面に有色(例えばA色とする)又は透明
な塗装を施し、次いで該塗膜の表面を所望の模様にマス
キングし、その後マスキング部以外の塗膜を研削し、次
いで露出された非マスキング部の陽極酸化皮膜(あるい
は着色酸化皮膜)表面に透明又は有色(例えばB色とす
る)の塗装をし、その後マスキングを除去する方法が知
られている。
Conventionally, as a multicolor surface treatment method for aluminum materials that has two or more colors (patterns) and a uniform coating thickness, first, the surface of the aluminum material that has been anodized (or further colored) is treated. Apply a colored (for example, A color) or transparent coating, then mask the surface of the coating film into a desired pattern, then grind the coating film other than the masked areas, and then anodize the exposed non-masked areas. A method is known in which the surface of a film (or colored oxide film) is coated with a transparent or colored (for example, B color) coating, and then the masking is removed.

上記方法によれば、マスキングされた部分の塗膜の色A
と非マスキング部の塗膜の色Bとにより、あるいは一方
が透明な塗膜の場合には、陽極酸化皮膜のシルバー色(
あるいは着色酸化皮膜の色)と他方の塗膜の色(A又は
B)とにより模様が形成される。
According to the above method, the color A of the coating film in the masked part
and the color B of the paint film in the non-masking area, or if one of the paint films is transparent, the silver color of the anodic oxide film (
Alternatively, a pattern is formed by the color of the colored oxide film) and the color of the other coating film (A or B).

〔発明が!決しようとする課題〕[Invention! Issues to be resolved]

前記従来の方法によれば、マスキング後にコストの高い
塗料を研削してその研削くずを廃棄するため、製造コス
トが高くなるという問題がある。また、研削工程が入る
ために作業性が劣り、さらに復雑な形状の形材の場合に
は研削ができない場合があるので、自ずと模様にも制限
が生じるといった難点がある。
According to the conventional method, since the expensive paint is ground after masking and the grinding waste is discarded, there is a problem in that the manufacturing cost becomes high. In addition, workability is poor due to the grinding process involved, and furthermore, since it may not be possible to grind a shape with a complicated shape, there are naturally limitations on the pattern.

従って、本発明の目的は、上記のような欠点がなく、比
較的複雑な形状の形材にも適用でき、しかも比較的に低
コストで生産性よく、アルミニウム材表面に2色以上の
色彩(模様)をHするようにかつ均一な塗膜厚を形成で
きるように多色表面処理できる方法を提供することにあ
る。
Therefore, it is an object of the present invention to avoid the above-mentioned drawbacks, to be applicable to shapes with relatively complex shapes, to have high productivity at a relatively low cost, and to provide two or more colors ( The object of the present invention is to provide a method that can perform multicolor surface treatment so that the pattern (pattern) is H and a uniform coating thickness can be formed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、前記目的を達成するため、アルミニウ
ム材に第1次の陽極酸化処理を施した後、所望の模様に
マスキングし、その後、着色処理を施すか、又は第2次
の陽極酸化処理を行なった後に着色処理を施し、次いで
マスキングを除去した後、電着塗装処理を行なうアルミ
ニウム材の多色表面処理方法であり、上記電着塗装処理
においてその電圧を途中で一旦遮断させて二段階の塗装
処理とし、かつ、後の塗装処理における電圧を先の塗装
処理における電圧より低く設定したことを特徴とするア
ルミニウム材の多色表面処理方法が提供される。
According to the present invention, in order to achieve the above object, an aluminum material is subjected to a first anodic oxidation treatment, then masked in a desired pattern, and then subjected to a coloring treatment, or a second anodization treatment is performed on the aluminum material. This is a multicolor surface treatment method for aluminum materials in which a coloring treatment is performed after the treatment, and then after the masking is removed, an electrodeposition coating treatment is performed. Provided is a method for multicolor surface treatment of aluminum material, which is characterized in that it is a step-by-step painting process and the voltage in the subsequent painting process is set lower than the voltage in the previous painting process.

さらに本発明によれば、アルミニウム材に第1次の陽極
酸化処理を施した後、第1次の着色処理を施し、次いで
所望の模様にマスキングし、その後、第2次の陽極酸化
処理を施した後、第2次の着色処理を施し、次いでマス
キングを除去した後、電着塗装処理を行なうアルミニウ
ム材の多色表面処理方法であり、上記電着塗装処理にお
いてその電圧を途中で一旦遮断させて二段階の塗装処理
とし、かつ、後の塗装処理における電圧を先の塗装処理
における電圧より低く設定したことを特徴とするアルミ
ニウム材の多色表面処理方法が提供される。
Further, according to the present invention, after the aluminum material is subjected to the first anodizing treatment, the first coloring treatment is performed, and then the desired pattern is masked, and then the second anodizing treatment is performed. This is a multicolor surface treatment method for aluminum materials in which a second coloring treatment is applied after the coating is applied, and then the masking is removed and then an electrodeposition coating treatment is performed. Provided is a multicolor surface treatment method for aluminum material, which is a two-step painting process and is characterized in that the voltage in the subsequent painting process is set lower than the voltage in the previous painting process.

〔発明の作用及び態様〕[Operation and mode of the invention]

本発明者らは、前記従来の方法の欠点を解消すべく鋭意
研究の結果、アルミニウム材に第1次の陽極酸化処理(
あるいはさらに着色処理)を施した後所望の模様にマス
キングし、その後第2次の陽極酸化処理を施した後着色
し、次いでマスキングを除去した後、クリヤー系塗料に
より電着塗装することにより、マスキング部の陽極酸化
皮膜の色(あるいは着色酸化皮膜の色)と非マスキング
部の着色酸化皮膜の色とにより模様付けできる方法を研
究、開発した。
As a result of intensive research in order to eliminate the drawbacks of the conventional methods, the present inventors conducted a first anodizing treatment (
Alternatively, after applying a further coloring treatment, masking in the desired pattern, then coloring after performing a second anodizing treatment, then removing the masking, and then electrodepositing with a clear paint. We have researched and developed a method that can create patterns using the color of the anodic oxide film (or the color of the colored oxide film) in the masked areas and the color of the colored oxide film in the non-masked areas.

この方法によれば、前記従来のように塗料の研削くずが
発生することもなく、また比較的曳雑な形状の形材にも
適用でき、しかも比較的に低コストで生産性よくアルミ
ニウム材表面に模様付けを行なうことができる。
According to this method, grinding waste of paint is not generated as in the conventional method, and it can also be applied to shapes with relatively rough shapes, and moreover, it can be applied to the surface of aluminum material at a relatively low cost and with good productivity. can be patterned.

しかしながら、この方法によれば、通常、マスキング部
と非マスキング部の着色度が異なり、すなわち淡色部と
濃色部が存在することにより、電気泳動塗装処理(電着
塗装)の時に塗膜か付き易い部分と付きにくい部分が生
じ、その結果塗膜厚が不均一になるということが判明し
た。
However, according to this method, the degree of coloring of the masked area and the non-masked area is usually different, that is, there are light colored areas and dark colored areas, which causes the paint film to be damaged during the electrophoretic coating process (electrodeposition coating). It has been found that there are areas where it is easy to adhere and areas where it is difficult to adhere, resulting in uneven coating film thickness.

そこで、本発明ではさらに、上記電着塗装処理において
その電圧を途中で一旦遮断させて二段階の塗装処理とし
、かつ、後の塗装処理における電圧を先の塗装処理にお
ける電圧より低く設定するものであり、このように電着
塗装処理を行なうことにより均一な塗膜厚が得られるこ
とが見い出された。
Therefore, in the present invention, the voltage is temporarily cut off in the middle of the electrodeposition coating process, resulting in a two-stage coating process, and the voltage in the subsequent coating process is set lower than the voltage in the previous coating process. It has been found that a uniform coating thickness can be obtained by performing the electrodeposition coating treatment in this manner.

上記本発明の処理方法による作用は、未だ完全に解明さ
れたとは言い難いが、一応の確証(実験結果)をもって
以下のように推測することができる。
Although it cannot be said that the effects of the treatment method of the present invention have been completely elucidated yet, it can be estimated as follows based on certain evidence (experimental results).

ここで、説明の便宜上、1次陽極酸化処理−マスキング
−(2次陽極酸化処理−)着色処理−マスキング除去→
電着塗装という一連の工程を考えると、電着塗装前の時
点においては、アルミニウム材表面のマスキング部には
着色処理が施されていないため陽極酸化皮膜のみが存在
し、従って陽極酸化皮膜固Hのシルバー色(淡色)を有
する。一方、非マスキング部には着色処理、例えば電解
着色処理が施され、陽極酸化皮膜の微多孔内に金属や金
属塩等が析出し、例えば、ライトブロンズ(シルバー色
よりも濃色)に着色される。このような淡色部と濃色部
を有するアルミニウム(オにマスキング除去後電着塗装
を施すと、前記したように、淡色部には塗膜が付きに<
<、濃色部にはつき易いという傾向が認められる。この
理由は、a属や金属塩等が微多孔内に析出・付着してい
る陽極酸化皮膜(ライトブロンズ色)の方が、金属塩等
が析出・付着していない陽極酸化皮膜(シルバー色)よ
りも通電性が良いためと考えられる。すなわち、微多孔
内に金属や金属塩等が析出・付着している陽極酸化皮膜
(ライトブロンズ色)は、微多孔層と電気の低抗体であ
るバリヤー層から構成され、かつこの微多孔内に析出・
付着している金属が良電導体であることから電流が流れ
易くなり 713着塗装の際に塗膜が付き易くなる。
Here, for convenience of explanation, we will explain: 1st anodic oxidation treatment - masking - (2nd anodization treatment -) coloring treatment - masking removal →
Considering the series of processes called electrodeposition coating, before electrodeposition coating, only an anodic oxide film exists on the masking part of the aluminum surface because no coloring treatment is applied, and therefore the anodic oxide film hardens. It has a silver color (light color). On the other hand, the non-masking area is colored, for example, electrolytically colored, and metals, metal salts, etc. are deposited within the micropores of the anodic oxide film, and the area is colored, for example, light bronze (darker than silver). Ru. When electrodeposition is applied to aluminum (O) that has such light-colored areas and dark-colored areas after masking is removed, as mentioned above, a coating film is attached to the light-colored areas.
<, there is a tendency that it tends to stick to dark colored areas. The reason for this is that an anodic oxide film (light bronze color) in which genus a and metal salts, etc. are precipitated and attached within the micropores is better than an anodized film (silver color) in which metal salts, etc. are not precipitated or attached. This is thought to be because the conductivity is better than that of . In other words, the anodic oxide film (light bronze color) in which metals, metal salts, etc. are precipitated and adhered within the micropores, is composed of a microporous layer and a barrier layer that is a low antibody for electricity. Precipitation・
Since the attached metal is a good conductor, current can easily flow through it, making it easier for a paint film to form when applying the 713 coating.

一方、通常の陽極酸化皮膜(シルバー色)は微多孔層と
電気の低抗体であるバリヤー層から構成されるため、上
記着色酸化皮膜よりも通電性が悪く、従って電着塗装の
際に塗膜が付きにくくなり、その結果、淡色部と濃色部
(あるいはマスキング部と非マスキング部)間に塗膜厚
のバラツキが生じたものと考えられる。
On the other hand, a normal anodic oxide film (silver color) is composed of a microporous layer and a barrier layer that has a low resistance to electricity, so it has poorer electrical conductivity than the colored oxide film mentioned above, and therefore, it is difficult to coat during electrodeposition. This is thought to be due to the fact that it becomes difficult to adhere, and as a result, variations in coating film thickness occur between light-colored areas and dark-colored areas (or masked areas and non-masked areas).

本発明者らは、上記のような問題について鋭意研究の結
果、電着塗装処理によって形成される塗膜も電気の抵抗
体である4とに着目し、電着塗装処理を二段階に分け、
前段階において予め塗膜を形成して淡色部と濃色部に塗
膜厚差、すなわち電気抵抗差をつけておき、その後電圧
を下げてさらに電着塗装を行なうことによって上記問題
を解消できることを見い出した。
As a result of intensive research into the above-mentioned problems, the present inventors focused on the fact that the coating film formed by electrocoating is also an electrical resistor4, and divided the electrocoating process into two stages.
It has been discovered that the above problem can be solved by forming a coating film in advance in the previous step to create a difference in coating thickness, that is, a difference in electrical resistance, between light and dark colored areas, and then lowering the voltage and performing further electrodeposition coating. I found it.

すなわち、前記のように金属や金属塩等が微多孔内に析
出・付着している陽極酸化皮膜(ライトブロンズ色)は
QTs導体であることから電流が流れ易く、先の電着塗
装処理において集中的に塗膜形成がなされ、通常の陽極
酸化皮膜(シルバー色)との間に塗膜厚差が生じる。そ
れと同時に、塗膜界面において淡色部(シルバー色)と
濃色部(ライトブロンズ色)との間に塗料の濃度勾配が
生ずるが、次に電流を遮断することにより塗料濃度の均
一化がなされる。すなわち、塗料の固形分(−に引)電
)が被処理アルミニウム材に吸引されていたのが、電流
の遮断によりこの吸引がなくなり、一方、塗料はポンプ
で還流されているので濃色部に塗料が集中することがな
く、均一になる。その後、先の電着塗装処理の電圧より
低い電圧で通電すると、今度は塗膜厚が薄い、すなわち
電気抵抗が小さい淡色部(シルバー色)に優先的に電流
が流れて塗膜が形成されることになり、塗膜厚の均一化
が図れるものと考えられる。この場合、後の電着塗装処
理の電圧が先の電着塗装処理の電圧より高いと、後述す
る比較例3から明らかなように、淡色部と濃色部との間
の塗膜厚差は大きくなる。これは、後の電着塗装処理に
おける高電圧が前記塗膜厚差による電気抵抗差の影響を
凌駕し、先の電着塗装処理により生じた塗膜厚差の傾向
がそのまま維持されるためと思われる。
In other words, as mentioned above, the anodic oxide film (light bronze color) in which metals, metal salts, etc. are precipitated and attached within the micropores is a QTs conductor, so current flows easily, and it is concentrated during the previous electrodeposition coating process. A coating film is formed over time, and there is a difference in coating thickness between it and a normal anodic oxide film (silver color). At the same time, a paint concentration gradient occurs between the light color area (silver color) and the dark color area (light bronze color) at the paint film interface, but the paint concentration is then made uniform by cutting off the current. . In other words, the solid content (negative charge) of the paint was attracted to the aluminum material to be treated, but when the current was cut off, this attraction disappeared, and on the other hand, the paint was refluxed by the pump, so the dark colored parts The paint will not be concentrated and will be uniform. After that, when electricity is applied at a voltage lower than the voltage of the previous electrodeposition coating process, the current flows preferentially to the light-colored areas (silver color) where the coating thickness is thinner, that is, the electrical resistance is low, and a coating film is formed. Therefore, it is thought that the coating film thickness can be made uniform. In this case, if the voltage of the subsequent electrodeposition coating treatment is higher than the voltage of the previous electrodeposition coating treatment, the difference in coating film thickness between the light-colored area and the dark-colored area will be growing. This is because the high voltage in the subsequent electrodeposition coating process overcomes the effect of the electrical resistance difference due to the difference in coating film thickness, and the tendency of the difference in coating film thickness caused by the previous electrodeposition coating process is maintained. Seem.

一方、本発明の方法のように、後の電着塗装処理の電圧
が先の電着塗装処理の電圧より低いと、前記塗膜厚差に
よる電気抵抗差が有効に働き、前記したような作用を通
して塗膜厚の均一化が図れるものと考えられる。
On the other hand, when the voltage of the subsequent electrodeposition coating treatment is lower than the voltage of the previous electrodeposition coating treatment, as in the method of the present invention, the difference in electrical resistance due to the difference in coating film thickness acts effectively, resulting in the above-mentioned effect. It is thought that uniformity of coating film thickness can be achieved through this process.

上記の観点より、先の電着塗装処理により生じた塗膜厚
差、すなわち電気抵抗差を後の電着塗装処理において有
効に作用させるためには、先の電着塗装処理の通電時間
は30〜60秒とすることが好ましい。通電時間が短か
すぎると有効な塗膜厚差、すなわち電気抵抗差が生じず
、逆に通電時間が長ずざると塗膜厚差がつきすぎ、後の
電着塗装処理においてこれを補償することが困難となる
ので好ましくない。また同様に、上記塗膜厚差すなわち
電気抵抗差を有効に働かせるためには、後の電着塗装処
理の電圧を先の電着塗装処理の電圧より10〜50V降
下させることが望ましい。
From the above point of view, in order to make the difference in coating film thickness, that is, the difference in electrical resistance caused by the previous electrodeposition coating treatment, effectively work in the subsequent electrodeposition coating treatment, the current application time of the previous electrodeposition coating treatment must be 30 It is preferable to set it as 60 seconds. If the energization time is too short, no effective coating film thickness difference, that is, no electrical resistance difference will occur, and conversely, if the energization time is not long, the coating thickness difference will be too large, and this will be compensated for in the subsequent electrodeposition coating process. This is not desirable because it makes it difficult to do so. Similarly, in order to make effective use of the difference in coating film thickness, that is, the difference in electrical resistance, it is desirable to lower the voltage of the subsequent electrodeposition coating process by 10 to 50 V compared to the voltage of the previous electrodeposition coating process.

前記作用説明は本発明の第1の方法についてなされたが
、本発明の第2の方法、すなわち1次陽極酸化処理−1
次着色処理−マスキング−2次陽極酸化処理−2次着色
処理−マスキング除去−電着塗装という一連の工程を含
む方法においても作用は全く同じである。すな・わち、
本発明の第2の方法においてはマスキング部及び非マス
キング部共に着色された陽極酸化皮膜から構成されるが
、1次着色処理工程及び2次着色処理工程において金属
塩等の析出・付着の程度の差によって濃淡差がある場合
、換言すればマスキング部と非マスキング部の着色陽極
酸化皮膜間に通電性の差がある場合には、前記したよう
な原理によってマスキング除去後の電着塗装において塗
膜厚にバラツキを生ずるので、上記電着塗装処理におい
てその電圧を途中で一旦遮断させて二段階の塗装処理と
し、かつ、後の塗装処理における電圧を先の塗装処理に
おける電圧より低く設定することによって、膜厚のバラ
ツキをなくし、均一な塗膜厚を得ることができる。
The above description of the operation was made regarding the first method of the present invention, but the second method of the present invention, that is, primary anodizing treatment-1
The operation is exactly the same in a method including a series of steps: secondary coloring treatment, masking, secondary anodizing treatment, secondary coloring treatment, masking removal, and electrodeposition coating. Suna wachi,
In the second method of the present invention, both the masking area and the non-masking area are composed of a colored anodic oxide film, but the degree of precipitation and adhesion of metal salts etc. in the primary coloring treatment process and the secondary coloring treatment process may vary. If there is a difference in shading due to the difference, in other words, if there is a difference in electrical conductivity between the colored anodic oxide film on the masked area and the non-masked area, the coating film will be weak in the electrodeposition coating after masking is removed, based on the principle described above. To avoid variations in thickness, the voltage in the electrodeposition coating process is interrupted midway through the process to create a two-stage coating process, and the voltage in the subsequent coating process is set lower than the voltage in the previous coating process. , it is possible to eliminate variations in film thickness and obtain a uniform coating film thickness.

色種によっても塗膜の付き易い色、付きにくい色があり
、またブロンズ系に限って言えば淡色系は付きに<<、
濃色系は付き易いが、いずれにしても前記のように電着
塗装処理を行なうことによって塗膜厚の不均一を修正す
ることができる。
Depending on the color, there are colors that are easy to adhere to, and colors that are difficult to adhere to, and when it comes to bronze, light colors are less likely to adhere.
Dark colors tend to stick, but in any case, uneven coating thickness can be corrected by performing the electrodeposition coating process as described above.

なお、マスキング部及び非マスキング部のどちらの着色
酸化皮膜の方に塗膜が付着し易いか予め分らない場合は
、まず通常の方法に従って陽極酸化処理、着色処理、電
着塗装等の一連の処理を行なってみて塗膜厚を計1定し
ておけばよい。また、本発明の方法は前記一連の工程を
含む処理方法には全て適用でき、例えばマスキング処理
を多段階にわたって行ない、3色以上の模様付けを行な
う多色表面処理方法にも適用できることは、前記作用説
明から明らかであろう。
If it is not known in advance whether the colored oxide film is more likely to adhere to the masked area or the non-masked area, first perform a series of treatments such as anodizing, coloring, and electrodeposition using the usual method. All you have to do is try this and determine the total coating thickness. Further, the method of the present invention can be applied to all treatment methods including the series of steps described above, and can also be applied to a multicolor surface treatment method in which masking treatment is performed in multiple stages and patterns of three or more colors are applied. It should be clear from the explanation of the action.

以下、本発明のアルミニウム材の多色表面処理方法につ
いて概説する。
The method for multicolor surface treatment of aluminum material according to the present invention will be outlined below.

まずアルミニウム材に脱脂、水洗、エツチング、水洗、
中和等の適当な前処理を施した後、周知の陽極酸化処理
を施して陽極酸化皮膜を形成する。すなわち、周知の無
機酸及び/又は有機酸の電解液、例えば硫酸、クロム酸
、リン酸等、あるいはこれらの混酸、シュウ酸、マロン
酸等、あるいはこれらの又は無機酸との混酸などを含有
する電解液中で、直流もしくは交流又はこれらに類似の
電流波形を用いてアルミニウム材を陽極酸化処理する。
First, the aluminum material is degreased, washed with water, etched, washed with water,
After performing appropriate pretreatment such as neutralization, a well-known anodic oxidation treatment is performed to form an anodic oxide film. That is, electrolytes containing well-known inorganic acids and/or organic acids, such as sulfuric acid, chromic acid, phosphoric acid, etc., mixed acids thereof, oxalic acid, malonic acid, etc., or mixed acids of these or with inorganic acids, etc. The aluminum material is anodized in an electrolyte using direct current, alternating current, or a similar current waveform.

陽極酸化処理の印加電圧、印加時間等は常法通りで充分
である。
The applied voltage, application time, etc. for the anodic oxidation treatment are sufficient as usual.

次に、陽極酸化処理を施したアルミニウム材に、必要に
応・じて水洗し、純水湯洗、沸騰水、薬品封孔、加圧水
蒸気など公知の手段により封孔あるいは半封孔処理を施
した後、マスキングフィルム、マスキング塗料等を用い
てマスキングするか(本発明の第1の方法)、あるいは
着色処理を施した後、封孔もしくは半封孔しマスキング
する(本発明の第2の方法)。
Next, the anodized aluminum material is washed with water as necessary, and sealed or semi-sealed by known means such as washing with pure water, boiling water, chemical sealing, and pressurized steam. After that, masking is performed using a masking film, masking paint, etc. (first method of the present invention), or after coloring treatment, the hole is sealed or semi-sealed and masked (second method of the present invention). ).

その後、再度、脱脂、エツチング、中和等の前処理を行
なった後、2次着色処理を施すか、あるいは、着色促進
のための2次陽極酸化処理を施し、次いで、水洗後2次
着色処理を施す。
After that, after performing pre-treatments such as degreasing, etching, and neutralization again, a secondary coloring treatment is performed, or a secondary anodizing treatment is performed to promote coloring, and then a secondary coloring treatment is performed after washing with water. administer.

その後、必要に応じて水洗、封孔あるいは半1.)孔を
行なった後、マスキングを除去し、電着塗装を施す。電
着塗装処理は、前記したように二段階で行ない、通常8
0〜250Vで好ましくは30〜60秒通電し、次いで
一旦電流を遮断して30〜60秒程度維持する。その後
、上記電圧より低い電圧で再度通電する。前記したよう
に、電圧降下範囲は好ましくは10〜50Vである。
After that, wash with water, seal or semi-fill as necessary. ) After making the holes, remove the masking and apply electrodeposition coating. The electrodeposition coating process is carried out in two stages as described above, and is usually carried out in 8 stages.
The current is preferably applied at 0 to 250 V for 30 to 60 seconds, and then the current is once interrupted and maintained for about 30 to 60 seconds. After that, electricity is applied again at a voltage lower than the above voltage. As mentioned above, the voltage drop range is preferably 10-50V.

次いで、水洗、焼付乾燥を行なってアルミニウム製品を
得る。
Next, washing with water and baking drying are performed to obtain an aluminum product.

前記着色処理としては、染料もしくは顔料を含有する溶
液中にアルミニウム材を浸漬する方法、無機金属塩、例
えばニッケル、コバルト、クロム、銅、マグネシウム、
鉄、カドミウム、チタン、マンガン、モリブデン、カル
シウム、バナジウム、錫、鉛、亜鉛などのような金属の
硝酸塩、硫酸塩、リン酸塩、塩酸塩、クロム酸塩などの
無機酸塩、シュウ酸塩、酢酸塩、酒石酸塩などの有機酸
塩などを含有する電解液中で交流電解または直流陰極電
解する電解着色法、スルファミン酸、シュウ酸等の有機
酸を含有する電解液中で陽極酸化皮膜を形成すると同時
に着色する電解発色法などが適用できる。
As for the coloring processing, the method of immersing aluminum material in the solution containing dye or pigments, inorganic metal salt, for example, nickel, cobalt, chrome, copper, magnesium, etc.
Inorganic acid salts such as nitrates, sulfates, phosphates, hydrochlorides, chromates, oxalates of metals such as iron, cadmium, titanium, manganese, molybdenum, calcium, vanadium, tin, lead, zinc etc. Electrolytic coloring method that involves alternating current electrolysis or direct current cathodic electrolysis in an electrolytic solution containing organic acid salts such as acetate and tartrate, and forming an anodic oxide film in an electrolytic solution containing organic acids such as sulfamic acid and oxalic acid. An electrolytic coloring method that simultaneously colors the material can be applied.

本発明の方法では、前記したように電着塗装処理を二段
階で行なう以外は、他の処理工程は全て常法通りでよい
In the method of the present invention, except for performing the electrodeposition coating treatment in two stages as described above, all other treatment steps may be carried out as usual.

本発明の方法により処理されるアルミニウム材とは、純
アルミニウムまたは純アルミニウムにケイ素、マグネシ
ウム、銅、ニッケル、亜鉛、クロム、鉛、ビスマス、鉄
、チタン、マンガンなどの金属を1種または2F1以上
含む合金である。
The aluminum material treated by the method of the present invention is pure aluminum or pure aluminum containing one or more metals such as silicon, magnesium, copper, nickel, zinc, chromium, lead, bismuth, iron, titanium, and manganese. It is an alloy.

〔大  施  例〕[Example of large application]

以下、実施例及び比較例を示して本発明について具体的
に説明する。
Hereinafter, the present invention will be specifically explained by showing Examples and Comparative Examples.

実施例1 常法により脱脂、エツチング、中和されたアルミニウム
押出形材A−60633を15%硫酸水溶液に浸漬して
陽極とし、対極として設けられたアルミニウム陰極との
間に直流電流を13Vで30分間通電後、最終電圧を3
,5vに降下させて3分間通電し、その表面に約12μ
mの第1次陽極酸化皮膜を生成させた。これを水洗、純
水湯洗(半封孔)し、シルバー材とした。
Example 1 An extruded aluminum profile A-60633 that had been degreased, etched, and neutralized by a conventional method was immersed in a 15% sulfuric acid aqueous solution to serve as an anode, and a direct current was applied at 13 V for 30 minutes between it and an aluminum cathode provided as a counter electrode. After energizing for minutes, set the final voltage to 3
, 5V and energized for 3 minutes, about 12μ on the surface.
A primary anodic oxide film of m was produced. This was washed with water and hot water with pure water (semi-sealed) to obtain a silver material.

その一部をマスキング材でマスキングし、再度、脱脂、
エツチング、中和処理し、第2次陽極酸化を直流で13
Vx30分間実施し、同じく約12μmの陽極酸化皮膜
を得た。それを水洗し、次いでニッケル浴で対極にカー
ボンを使用し、交流で9v×3分通電して電解着色を行
ない、マイルドブロンズとした。それを水洗、純水湯洗
後、マスキング材を除去し、しかる後、10%の水溶性
電着塗料(熱硬化性アクリル塗料)中に浸漬して、対極
として設けたステンレス板との間に130Vの直流電圧
を印加して30秒間通電し、−旦電流を遮断し、60秒
間保持した後、再び対極との間に今度は100Vの直流
電圧を印加して3分間通電し、水洗後、液切りを行ない
、180℃で40分間焼付を行ない、複合皮膜とした。
Mask part of it with masking material, degrease it again,
Etching, neutralization, and secondary anodic oxidation using direct current for 13 minutes.
Vx was applied for 30 minutes to obtain an anodic oxide film of about 12 μm. It was washed with water, and then electrolytically colored in a nickel bath using carbon as a counter electrode and energized at 9 V for 3 minutes with alternating current to give mild bronze. After washing it with water and hot water, removing the masking material, it was immersed in a 10% water-soluble electrodeposition paint (thermosetting acrylic paint) and placed between it and a stainless steel plate provided as a counter electrode. A DC voltage of 130V was applied and the current was applied for 30 seconds, then the current was cut off and the current was held for 60 seconds.A DC voltage of 100V was again applied between the counter electrode and the current was applied for 3 minutes.After washing with water, The liquid was drained and baked at 180° C. for 40 minutes to obtain a composite film.

得られた製品のシルバ一部とマイルドブロンズ部の塗膜
厚をパーマスコープで測定したところ、塗膜厚差は1μ
mであった。
When the coating thickness of the silver part and mild bronze part of the obtained product was measured using a permascope, the difference in coating thickness was 1μ.
It was m.

比較例1 前記実施例1において、電着塗装を130V×3分とし
、電流遮断及び電圧変化を行なわなかった以外は、実施
例1と全く同様に処II4!シた。
Comparative Example 1 The treatment was carried out in the same manner as in Example 1, except that the electrodeposition was applied at 130V for 3 minutes, and no current interruption or voltage change was performed. Shita.

その結果、シルバ一部とマイルドブロンズ部の塗膜厚差
は3μmであった。
As a result, the difference in coating film thickness between the silver part and the mild bronze part was 3 μm.

実施例2 前記実施例1において、電解着色を交流で9VxJ分間
通電してダークブロンズとする以外は、実施例1と全く
同様に処理した。その結果、シルバ一部とダークブロン
ズ部の塗膜厚差は3.0μmであった。
Example 2 The same process as in Example 1 was carried out, except that the electrolytic coloring was performed by applying an AC current for 9 VxJ minutes to obtain dark bronze. As a result, the difference in film thickness between the silver part and the dark bronze part was 3.0 μm.

実施例3 前記実施例2において、゛id着塗装を最初130Vの
直流電圧を印加して30秒間通電し、−旦電流を遮断し
て60秒間保持した後、再度120Vの直流電圧を印加
して3分間通電する以外は、実施例2と全く同様に処理
した。その結果、シルバ一部とダークブロンズ部の塗膜
厚差は3.5μmであった。
Example 3 In Example 2, the ID coating was applied by first applying a DC voltage of 130V and applying the current for 30 seconds, then cutting off the current and holding it for 60 seconds, and then applying a DC voltage of 120V again. The treatment was carried out in exactly the same manner as in Example 2, except that electricity was applied for 3 minutes. As a result, the difference in coating film thickness between the silver part and the dark bronze part was 3.5 μm.

比較例2 前記実施例2において、電着塗装を130V×3分とし
、電流遮断及び電圧変化を行なわなかった以外は、実施
例2と全く同様に処理した。
Comparative Example 2 The same process as in Example 2 was carried out, except that the electrodeposition was applied at 130 V for 3 minutes, and no current interruption or voltage change was performed.

その結果、シルバ一部とダークブロンズ部の塗膜厚差は
4.5μmであった。
As a result, the difference in film thickness between the silver part and the dark bronze part was 4.5 μm.

比較例3 前記実施例2において、電着塗装を最初130Vの直流
電圧を印加して30秒間通電し、−旦電流を遮断して6
0秒間保持した後、今度は140vに電圧を上げて3分
間通電する以外は、実施例2と全く同様に処理した。そ
の結果、シルバ一部とダークブロンズ部の塗膜厚差は5
.0μmであった。
Comparative Example 3 In Example 2, the electrodeposition coating was first applied with a DC voltage of 130 V and energized for 30 seconds, then the current was cut off and the electrodeposition was applied for 6 seconds.
After holding for 0 seconds, the voltage was increased to 140 V and the process was carried out in the same manner as in Example 2, except that the voltage was turned on for 3 minutes. As a result, the difference in film thickness between the silver part and the dark bronze part was 5.
.. It was 0 μm.

実施例4 常法により脱脂、エツチング、中和されたアルミニウム
押出形材A−6063Sを15%硫酸水溶液に浸漬して
陽極とし、対極として設けられたアルミニウム陰極との
間に直流電流を13Vで300分間通電、その表面に約
12μmの第1次陽極酸化皮膜を生成させた。これを水
洗し、次いでニッケル浴で対極にカーボンを使用し、交
流で9v×1分30秒通電して電解着色を行ない、ライ
トブロンズに着色した後、水洗、純水湯洗(半封孔)し
、ライトブロンズ材とした。その一部をマスキング材で
マスキングし、再度、脱脂、エツチング、中和処理し、
第2次陽極酸化を直流で13VX30分間実施し、同じ
く約12μmの陽極酸化皮膜を得た。それを水洗し、次
いでニッケル浴で対極にカーボンを使用し、交流で9■
×3分通電して電解着色を行ない、マイルドブロンズと
した。それを水洗、純水湯洗後、マスキング材を除去し
、しかる後、10%の水溶性電着塗料(熱映化性アクリ
ル塗料)中に浸漬して、対極として設けたステンレス板
との間に130Vの直流電圧を印加して30秒間通電し
、−旦電流を遮断し、60秒間保持した後、再び対極と
の間に今度は100Vの直流電圧を印加して3分間通電
し、水洗後゛、液切りを行ない、180℃で40分間焼
付を行ない、複合皮膜とした。
Example 4 An extruded aluminum profile A-6063S that had been degreased, etched, and neutralized by a conventional method was immersed in a 15% sulfuric acid aqueous solution to serve as an anode, and a DC current was applied at 13 V for 300 min between it and an aluminum cathode provided as a counter electrode. Electricity was applied for a minute to form a primary anodic oxide film of approximately 12 μm on the surface. This is washed with water, then electrolytically colored by using carbon as the counter electrode in a nickel bath and energized at 9V for 1 minute and 30 seconds to create a light bronze color, then washed with water, then washed with pure water (semi-sealed). It was made into a light bronze material. Part of it was masked with masking material, and then degreased, etched, and neutralized again.
Secondary anodic oxidation was carried out using direct current at 13V for 30 minutes to obtain an anodic oxide film of about 12 μm. Wash it with water, then use carbon as the counter electrode in a nickel bath, and heat it with alternating current for 9 seconds.
Electricity was applied for 3 minutes to perform electrolytic coloring, resulting in mild bronze. After washing it with water and hot water, removing the masking material, it was immersed in a 10% water-soluble electrocoating paint (heat-transformable acrylic paint), and then it was placed between a stainless steel plate and a counter electrode. A DC voltage of 130V was applied to the electrode and the current was applied for 30 seconds, then the current was cut off and the current was held for 60 seconds.A DC voltage of 100V was then applied between the electrode and the opposite electrode and the current was applied for 3 minutes.After washing with water, After draining the liquid, baking was performed at 180° C. for 40 minutes to obtain a composite film.

得られた製品のライトブロンズ部とマイルドブロンズ部
の塗膜厚をパーマスコープで測定したところ、塗膜厚差
は0.5〜1.0μmであった。
When the coating thickness of the light bronze portion and the mild bronze portion of the obtained product was measured using a permascope, the difference in coating thickness was 0.5 to 1.0 μm.

比較例4 前記実施例4において、電着塗装を130V×3分とし
、電流遮断及び電圧変化を行なわなかった以外は、実施
例4と全く同様に処理した。
Comparative Example 4 The same process as in Example 4 was carried out, except that the electrodeposition was applied at 130 V for 3 minutes, and no current interruption or voltage change was performed.

その結果、ライトブロンズ部とマイルドブロンズ部の塗
膜厚差は2〜2.5μmであった。
As a result, the difference in coating film thickness between the light bronze part and the mild bronze part was 2 to 2.5 μm.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、マスキングを利用した
アルミニウム材の多色表面処理方法において、電着塗装
処理の電圧を途中で一旦遮断させて二段階の塗装処理と
し、かつ、後の塗装処理における電圧を先の塗装処理に
おける電圧より低く設定することにより、先の塗装処理
において生じた淡色部と濃色部との間の塗膜厚差すなわ
ち電気抵抗差を後の塗装処理において有効に作用させる
ことによって、塗膜厚のバラツキをなくし、塗膜厚の均
一化を図ることができる。また、このように塗膜厚を均
一にできることにより、塗料コストが低減すると共に、
塗膜性能が向上し、不良率が低減するという利点が得ら
れる。
As described above, according to the present invention, in a method for multicolor surface treatment of aluminum materials using masking, the voltage of the electrodeposition coating treatment is once cut off midway through, resulting in a two-stage painting treatment, and the subsequent painting By setting the voltage in the treatment lower than the voltage in the previous painting process, the difference in film thickness, that is, the electrical resistance difference, between the light-colored areas and dark-colored areas that occurred in the previous painting process can be effectively used in the subsequent painting process. By acting, it is possible to eliminate variations in the coating film thickness and to make the coating film thickness uniform. In addition, by making the coating thickness uniform in this way, paint costs are reduced, and
The advantages are that the coating performance is improved and the defective rate is reduced.

また、従来方法のように高価な塗料の研削工程が不要と
なり、また通常の処理ラインにより処理できるため、従
来の方法に比べて生産性が良くなると共に生産コストも
低減することができる。
In addition, unlike the conventional method, the expensive paint grinding process is not necessary, and the process can be performed using a normal processing line, so productivity is improved and production costs can be reduced compared to the conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム材に第1次の陽極酸化処理を施した
後、所望の模様にマスキングし、その後、着色処理を施
すか、又は第2次の陽極酸化処理を行なった後に着色処
理を施し、次いでマスキングを除去した後、電着塗装処
理を行なうアルミニウム材の多色表面処理方法であり、
上記電着塗装処理においてその電圧を途中で一旦遮断さ
せて二段階の塗装処理とし、かつ、後の塗装処理におけ
る電圧を先の塗装処理における電圧より低く設定したこ
とを特徴とするアルミニウム材の多色表面処理方法。
(1) After performing a first anodic oxidation treatment on the aluminum material, it is masked in a desired pattern, and then a coloring treatment is performed, or a coloring treatment is performed after a second anodic oxidation treatment, This is a multicolor surface treatment method for aluminum materials in which the masking is then removed and then an electrodeposition coating treatment is performed.
In the above-mentioned electrodeposition coating process, the voltage is once cut off midway through, resulting in a two-step coating process, and the voltage in the subsequent coating process is set lower than the voltage in the previous coating process. Color surface treatment method.
(2)アルミニウム材に第1次の陽極酸化処理を施した
後、第1次の着色処理を施し、次いで所望の模様にマス
キングし、その後、第2次の陽極酸化処理を施した後、
第2次の着色処理を施し、次いでマスキングを除去した
後、電着塗装処理を行なうアルミニウム材の多色表面処
理方法であり、上記電着塗装処理においてその電圧を途
中で一旦遮断させて二段階の塗装処理とし、かつ、後の
塗装処理における電圧を先の塗装処理における電圧より
低く設定したことを特徴とするアルミニウム材の多色表
面処理方法。
(2) After performing the first anodization treatment on the aluminum material, the first coloring treatment is performed, then the desired pattern is masked, and then the second anodization treatment is performed,
This is a multicolor surface treatment method for aluminum materials in which a secondary coloring process is applied, then masking is removed, and then an electrodeposition coating process is performed. A multicolor surface treatment method for aluminum material, characterized in that the voltage in the subsequent painting process is set lower than the voltage in the previous painting process.
JP17897289A 1989-07-13 1989-07-13 Multicolor surface treatment method for aluminum material Expired - Lifetime JP2654991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17897289A JP2654991B2 (en) 1989-07-13 1989-07-13 Multicolor surface treatment method for aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17897289A JP2654991B2 (en) 1989-07-13 1989-07-13 Multicolor surface treatment method for aluminum material

Publications (2)

Publication Number Publication Date
JPH0344497A true JPH0344497A (en) 1991-02-26
JP2654991B2 JP2654991B2 (en) 1997-09-17

Family

ID=16057879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17897289A Expired - Lifetime JP2654991B2 (en) 1989-07-13 1989-07-13 Multicolor surface treatment method for aluminum material

Country Status (1)

Country Link
JP (1) JP2654991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081815A (en) * 2006-09-28 2008-04-10 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
CN115896731A (en) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081815A (en) * 2006-09-28 2008-04-10 Tokyo Electron Ltd Component for substrate treating apparatus and method for forming film
CN115896731A (en) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment
CN115896731B (en) * 2022-12-06 2024-01-12 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment

Also Published As

Publication number Publication date
JP2654991B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JPH05125589A (en) Improved electrolytic method for coloring anodized aluminum
JPS6014838B2 (en) Method of forming colored streaks on aluminum surface
JPH0344497A (en) Polychromatic surface treatment of aluminum material
JP2627084B2 (en) Multicolor surface treatment method for aluminum material
EP0065421B1 (en) Method of treating a surface of an aluminum to form a pattern thereon
JPS5839237B2 (en) Electrolytic coloring of anodized aluminum
JP2004018901A (en) Surface treatment method for magnesium material product
EP0239944B1 (en) Method for electrolytic coloring of aluminum or aluminum alloys
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
JP3391252B2 (en) Manufacturing method of electrodeposited aluminum
JPS58147592A (en) Method for pigmenting aluminum or aluminum alloy
JPS61110797A (en) Surface treatment of aluminum or aluminum alloy
JPS6025517B2 (en) Patterned surface treatment method for aluminum
JPH0257155B2 (en)
JPH0421757B2 (en)
JPS5920759B2 (en) Coloring method for aluminum or aluminum alloy
JPS5871392A (en) Surface treatment for ratterning of aluminum
JPH02125896A (en) Method for coloring aluminum-based metal having oxidized film
JPS5948878B2 (en) Electrolytic coloring method for aluminum or its alloys
JP3633307B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JPS61127898A (en) Electrolytic pigmentation method of aluminum or aluminum alloy
JPS6130038B2 (en)
JPS6025518B2 (en) Patterned surface treatment method for aluminum
JPH03197696A (en) Electrolytic treatment of titanium and titanium alloy
KR820000332B1 (en) Method of forming colored patterns on aluminium or its alloys