JPS61127898A - Electrolytic pigmentation method of aluminum or aluminum alloy - Google Patents

Electrolytic pigmentation method of aluminum or aluminum alloy

Info

Publication number
JPS61127898A
JPS61127898A JP24882284A JP24882284A JPS61127898A JP S61127898 A JPS61127898 A JP S61127898A JP 24882284 A JP24882284 A JP 24882284A JP 24882284 A JP24882284 A JP 24882284A JP S61127898 A JPS61127898 A JP S61127898A
Authority
JP
Japan
Prior art keywords
current density
color
coloring
aluminum
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24882284A
Other languages
Japanese (ja)
Other versions
JPS638197B2 (en
Inventor
Katsuyuki Osada
長田 勝行
Yutaka Ota
裕 大田
Shozo Yamamoto
尚三 山本
Takashi Nagamune
長棟 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP24882284A priority Critical patent/JPS61127898A/en
Publication of JPS61127898A publication Critical patent/JPS61127898A/en
Publication of JPS638197B2 publication Critical patent/JPS638197B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To color uniformly an A4l material to a wide range of color tones in a flexible state in the stage of electrolytic pigmentation of said material by executing two stages of current conduction treatments at the successively increased current densities then dropping forcibly the current density. CONSTITUTION:The Al material on which an anodically oxidized film is formed is electrolytically colored in an aq. soln. contg. an inorg. salt. The material is first subjected to the current conduction treatment for 30 seconds - 10 minutes at approximately the constant current density within the range of 0.05-0.25A/dm<2> total current density or 0.03-0.14A/dm<2> negative current density. The material is then subjected to the current conduction treatment so that the peak current density attains 0.25-1.20A/dm<2> total current density or 0.14-0.70A/dm<2> negative current density. The current density is thereafter forcibly dropped at least once so as to be made about 10-95% of the current density at the point of this time. These treatments are executed in the same bath. The stability of the color tones and throwing power are improved by the above-mentioned method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルミニウムまたはアルミニウム合金(以下
、アルミニウムという)の電解着色法に関し、さらに詳
しくは、アルミニウムに陽極酸化処理を施して生成した
未封孔の皮膜を、金属塩を溶解した電解液中で交流また
はそれと同等の効果を有する波形で電解して酸化皮膜中
に電解液中の金属塩の金属または金属酸化物を析出させ
てアルミニウムを着色させる電解着色法において、一つ
の電解液により広範囲の色調に着色可能であり、かつ着
色の均一化を図ると共に、淡色、例えば淡いブロンズ色
(ステンコ)に着色した場合の着色皮膜の電着塗装の際
の色抜は等による色調変化を抑制し、むらのない均−な
着色が可能な改良された方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrolytic coloring method for aluminum or aluminum alloy (hereinafter referred to as aluminum). Electrolysis that colors the aluminum by electrolyzing the film in an electrolytic solution in which a metal salt is dissolved using alternating current or a waveform that has an equivalent effect to precipitate the metal or metal oxide of the metal salt in the electrolytic solution into the oxide film. In the coloring method, it is possible to color a wide range of colors with one electrolytic solution, and it is possible to make the coloring uniform, and it is also effective when electrocoating a colored film when it is colored in a light color, for example, a pale bronze color (Stenco). Color removal relates to an improved method that suppresses changes in color tone due to staining, etc., and enables uniform coloring without unevenness.

従来の技術 従来、アルミニウムを陽極酸化処理して酸化皮膜を生成
させ、それをニッケル塩などのような金属塩を含有する
電解液中で交流電解することにより、金属または金属酸
化物の陽極酸化皮膜孔内への析出により着色する方法は
電解着色法として既に知られ(%公昭38−1715号
公報)、広く使用されている。
Conventional technology Conventionally, aluminum is anodized to form an oxide film, which is then subjected to alternating current electrolysis in an electrolyte containing a metal salt such as a nickel salt, thereby producing an anodized film of a metal or metal oxide. The method of coloring by precipitation into the pores is already known as the electrolytic coloring method (% Publication No. 38-1715) and is widely used.

しかしながら、このような電解着色法忙おいて、成る一
つの組成の電解液を用いて、例えば淡いブロンズ色(ス
テン色)からブラックまで広範囲の色調にわたって着色
を行なおうとした場合、いきおい電解液中の金属塩を増
量するなどして着色性を向上させる必要がある。ところ
が、着色性を向上させると、淡色に着色する場合、必然
的に着色時間を短かくすることになり、このため色合せ
が難かしく、色調の安定性及び付廻り性が悪くなるとい
う問題がある。一方、着色性を抑えると、付廻り性は向
上するが、濃色に着色する場合、着色時間が長くなり、
電解処理サイクル時間が長(なるばかりでなく、皮膜破
壊が生じるという問題が派生する。
However, in this type of electrolytic coloring method, when trying to color a wide range of colors from pale bronze (stainless steel color) to black using an electrolytic solution of one composition, it is difficult to color the electrolytic solution with It is necessary to improve the colorability by increasing the amount of metal salt. However, if the coloring property is improved, the coloring time will inevitably be shortened when coloring in a light color, which makes color matching difficult and causes problems such as poor color stability and coverage. be. On the other hand, if the coloring property is suppressed, the adhesion property will improve, but if the coloring is done in a deep color, the coloring time will be longer.
This not only increases the electrolytic treatment cycle time but also causes problems such as film breakdown.

従って、種々の色調の着色皮膜を得るためには、所望の
色調に対応した組成を有する電解液をそれぞれ準備して
おき、その都度電解液を取り換えることを余儀なくされ
ていた。
Therefore, in order to obtain colored films of various tones, it is necessary to prepare electrolytic solutions each having a composition corresponding to the desired color tone and to replace the electrolytic solution each time.

発明が解決しようとする問題点 上記のように、所望の色調に応じて電解液をその都度取
り換えて電解着色を行なう方法によれば、電解液の取換
え作業が煩わしく、また所望の色彩及び電解液組成に対
応した電解条件の設定及び操作も煩雑となり、さらに種
々の電解液を予め調製してお(ために電解液の管理が難
かしいなど、種々の不都合があった。一方、一つの電解
液により広範囲の色調に着色しようとする場合、例えば
ブロンズ色の電解液を用いて淡いブロンズ色(ステン色
)等の淡色に着色しようとする場合、着色時間が短いた
め、色調の安定性及び付廻り性が悪く、またその後の電
着塗装において色抜けや色調変化が生じ易いという欠点
がある。また、各色調毎の着色時間が一定せず、さらに
着色の濃淡を着色時間により合わせる必要があるため、
その色合せの仕方か極めて難かしく、また複雑な形状の
形材を処理する場合には窪み部と突出部において着色む
らが生じるなどの種々の不都合がある。異種形材の同時
枠付を好ましくはl′Fj!、解浴で行ない処理するこ
とは、上記のように極めて困難な状況にあり、これを改
善することが最近の課題となっている。
Problems to be Solved by the Invention As described above, according to the method of performing electrolytic coloring by replacing the electrolytic solution each time depending on the desired color tone, the work of replacing the electrolytic solution is troublesome, and Setting and operating the electrolytic conditions corresponding to the liquid composition is complicated, and there are various disadvantages such as having to prepare various electrolytic solutions in advance (this makes it difficult to manage the electrolytic solutions. When trying to color a wide range of colors using a liquid, for example, when trying to color a light color such as pale bronze (stainless steel) using a bronze-colored electrolyte, the coloring time is short, so the stability of the color and the adhesion may be affected. It has the disadvantage that it has poor spinability and is prone to color loss and color change during subsequent electrodeposition coating.Also, the coloring time for each color tone is not constant, and it is necessary to adjust the coloring density by the coloring time. For,
It is extremely difficult to match the colors, and there are various disadvantages such as uneven coloring occurring in the depressions and protrusions when processing shapes with complicated shapes. Preferably, simultaneous framing of different shapes is l'Fj! As mentioned above, it is extremely difficult to carry out treatment by bathing, and improving this situation has become a recent challenge.

従って、本発明の目的は、上記のような問題点を解決し
、一つの基準電解液により広範囲の色調に着色可能であ
り、融通性のある状態で着色できるように生産ラインの
汎用性を高めた電解着色法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to increase the versatility of the production line so that coloring can be done in a wide range of colors using one standard electrolyte, and to be able to color in a flexible state. The object of the present invention is to provide an electrolytic coloring method.

本発明の一つの直接的な目的は、一つの基準′電解液に
より広範囲の色調に均一に着色でき、しかも色調の安定
性及び付廻り性に優れた電解着色法を提供することにあ
る。
One direct object of the present invention is to provide an electrolytic coloring method that allows uniform coloring in a wide range of colors using one reference electrolytic solution and that has excellent color stability and spreadability.

本発明の他の直接的な目的は、上記目的と関連して、各
色調毎の着色時間が比較的に一定であり、色合わせをす
る者の個人差にょる着色むらが殆んどなく、比較的に簡
単な操作で種々の所望の色調に着色可能な電解着色法を
提供することにある。
Another direct object of the present invention, in relation to the above object, is that the coloring time for each color tone is relatively constant, and there is almost no coloring unevenness due to individual differences in color matching. The object of the present invention is to provide an electrolytic coloring method that can be colored into various desired colors with relatively simple operations.

問題点を解決するだめの手段 本発明は、電解着色時の電流密度を規制することによっ
て上記目的を達成するものである。
Means for Solving the Problems The present invention achieves the above object by regulating the current density during electrolytic coloring.

°すなわち、本発明に係るアルミニウムの電解着色法は
、 アルミニウムの表面に形成した陽極酸化皮膜を、無機金
属塩を含有する水溶顔中にて交流またはこれと同等の効
果を有する波形にて電Fj’[色するに際して、 前記アルミニウムを、トータル電流密度0.05〜0.
25〔A/dn?〕または買電流密g 0.03〜0.
14(A/a、7:)の範囲内でほぼ定電流密度にて3
0秒〜10分間通電処理し、 次いで同浴中にて、ピーク電流密度かトータル電流密度
で0.25〜1.20 (A/ dm 、)または負電
流密度で0.14〜0.7OCA’/dイ〕となるよう
に連成処理し、 その後少なくとも1回電流密度を強制的に降下させるこ
とを特徴とするものである。
In other words, the electrolytic coloring method for aluminum according to the present invention involves electrolyzing an anodic oxide film formed on the surface of aluminum in an aqueous solution containing an inorganic metal salt using an alternating current or a waveform having an equivalent effect. '[When coloring, the aluminum is heated at a total current density of 0.05 to 0.
25 [A/dn? ] or purchase current density g 0.03~0.
3 at approximately constant current density within the range of 14 (A/a, 7:)
Electricity is applied for 0 seconds to 10 minutes, and then in the same bath, the peak current density or total current density is 0.25 to 1.20 (A/dm), or the negative current density is 0.14 to 0.7OCA'. /di], and then the current density is forcibly lowered at least once.

発明の作用及び態様 本発明者らは、一つの電解液により広範囲の色調に着色
可能な電解着色法を探求すべく鋭意研究の結果、各色調
毎に着色時の時間と電流密度の関係(電流密度パターン
)を定め、各色調に応じた電流密度パターンに従って制
御することKよって前記したような問題を解決できるこ
とを見い出した。
Effects and Modes of the Invention The present inventors have conducted intensive research to explore an electrolytic coloring method that can be colored in a wide range of colors using one electrolytic solution, and have determined the relationship between coloring time and current density (current It has been found that the above-mentioned problems can be solved by determining a current density pattern) and controlling the current density pattern according to the current density pattern corresponding to each color tone.

この電流密度パターンは、淡色の色調安定化に主眼を置
く環流密度パターンと、濃色ブロンズ、ブラック等濃色
着色の着色時間の短縮に主眼を置く電流密度パターンの
2通りかある。
There are two types of current density patterns: a perfusion density pattern that focuses on stabilizing the color tone of light colors, and a current density pattern that focuses on shortening the coloring time of dark colors such as dark bronze and black.

淡色の着色(淡色化)の場合、着色を抑制する反面付根
り性を向上できる電流密度パターンとするものである。
In the case of light coloring (lightening), a current density pattern is used that suppresses coloration while improving rootability.

これに対して、濃色の着色(濃色化)の場合、付廻り性
及び所色進行度の向上を図り、着色時間を短縮できる電
流密度パターンとするものである。
On the other hand, in the case of deep coloring (deepening), the current density pattern is designed to improve coverage and color progression and shorten the coloring time.

本発明は、前者の淡色着色の場合の′電流密度パターン
による電解着色法に関するものである。
The present invention relates to an electrolytic coloring method using a current density pattern for the former case of light coloring.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

淡色に着色する場合、従来一般に着色時間が短いため、
前記したように色合せが難かしく、色調の安定及び付廻
り性が悪い。また、その後の電着塗装では陽極電解が行
なわれるため、アルマイト孔底に吸着された金槁化合物
の孔表層部への流出等による色抜けや色調変化が生じ易
(1゜ 本発明者らの研究によろと、陽極酸化処理後の電解着色
時の電流密度パターンを、正負のトータル電流密度0.
25〜I 、20 CA/dm )または負電流密度0
.14〜0.70 (A/d♂〕の範囲内で少なくとも
1回ピーク電流密度となるように、変動前のトータル電
流密度0.05〜O−25(A/du3の範囲内のほぼ
定電流の最終電流密度より高くし、その後少なくとも1
回電流密度を下げ、好ましくは変動させる時点の電流密
度の10〜95チに下げる電流密度パターンとすること
により、淡色の色調安定化、付廻り性の改善、異種形材
同時枠付における均一着色、電着塗装での色抜は等によ
る色調変化の抑制効果が得られることが見い出された。
Conventionally, when coloring in a light color, the coloring time is generally short,
As mentioned above, color matching is difficult, and color stability and coverage are poor. In addition, since anodic electrolysis is performed in the subsequent electrodeposition coating, color loss and color tone changes are likely to occur due to the outflow of the Kinpei compound adsorbed to the bottom of the alumite pores to the pore surface layer (1°). According to research, the current density pattern during electrolytic coloring after anodizing treatment has a total positive and negative current density of 0.
25~I, 20 CA/dm) or negative current density 0
.. 14 to 0.70 (A/d higher than the final current density of , then at least 1
By lowering the current density, preferably 10 to 95 times lower than the current density at the time of fluctuation, stabilization of light color tone, improvement of coverage, and uniform coloring when framing different types of shapes at the same time. It has been found that the effect of suppressing color tone changes caused by color removal during electrodeposition coating, etc. can be obtained.

本発明に係る電解着色法は、はぼ定電流密度による第1
ステップ通電処理、該第1ステップ通電処理よりも高い
電流密度を印加する第2スデツブ通電処理、電流密度を
降下させる第3ステップ通電処理からなる。
The electrolytic coloring method according to the present invention is based on a first method using a constant current density.
It consists of a step energization process, a second step energization process that applies a higher current density than the first step energization process, and a third step energization process that reduces the current density.

第1ステップ通電処理においては、通電時間内電流が減
衰しないかまたはほとんど減衰しない8度の電圧(電流
密度)を印加し、膜質調整して付廻り性、色調の安定(
第2ステップ通電処理前の初期電流密度の一定化による
)を図るものである。電流密度はトータル電流密度0.
05〜0.25〔A/dm〕または負電流密度0.03
〜0.141: A/d♂〕とし、通電時間は30秒以
上好ましくは60秒以上とすることにより、陽極酸化皮
膜の十分な改質が行なわれる。
In the first step energization process, a voltage (current density) of 8 degrees is applied where the current does not attenuate or hardly attenuates during the energization time, and the film quality is adjusted to improve coverage and color tone stability.
This is achieved by stabilizing the initial current density before the second step energization process. The current density is the total current density 0.
05-0.25 [A/dm] or negative current density 0.03
~0.141: A/d♂] and the current application time is 30 seconds or more, preferably 60 seconds or more, so that the anodic oxide film is sufficiently modified.

第2ステップ通電処理は、着色度及び付廻り性を向上さ
せるために行なうもので、トータル電流密度0.25〜
1.20 (A/dイ〕または負電流密度0.14〜0
.70 CA/dイ〕の範囲内にピーク電流密度がくる
ように電流密度を高くする。このピーク電流密度になる
前にこれよりも小さな微小ピークが生じるように変動さ
せてもよく、すなわち電流密度を漸進的に増加させても
よい。
The second step energization treatment is performed to improve the degree of coloring and coverage, and the total current density is 0.25~
1.20 (A/d) or negative current density 0.14 to 0
.. The current density is increased so that the peak current density falls within the range of 70 CA/d). The current density may be varied so that a smaller peak occurs before reaching this peak current density, that is, the current density may be increased gradually.

この第2ステップ通電処理の通電時間は20秒以上、好
ましくは30秒以上がよい。
The energization time of this second step energization process is preferably 20 seconds or more, preferably 30 seconds or more.

第3ステップ通電処理においては、電流密度が強制的に
降下させられ、これにより付廻り性向上、色調調整、色
抜は防止の効果があり、安定した仕上りの着色皮膜か得
られる。この旬、飢密度の強制的降下は少なくとも1回
行ない、変動時点の電流密度の10〜95係となるよう
に降下させる。電流密度の降下度か10係以下であると
、所望の着色を得るに要する時間が長くなり、実用的で
はなくなる。また、95チ以上では強制的に降下させた
効果、すなわち付廻り性の向上が得られないので好まし
くない。第2ステップ通電処理以降、すなわち強制的電
流密度降下以降の通電時間は、30秒以上、好ましくは
60秒以上がよい。
In the third step energization treatment, the current density is forcibly lowered, which has the effect of improving coverage, adjusting color tone, and preventing color stripping, resulting in a colored film with a stable finish. During this period, the starvation density is forcibly lowered at least once, and the current density is lowered to 10 to 95 times the current density at the time of fluctuation. If the current density decreases by a factor of 10 or less, the time required to obtain the desired coloring becomes longer, making it impractical. Moreover, if it is 95 inches or more, the effect of forcibly lowering it, that is, the improvement in turning performance cannot be obtained, which is not preferable. The energization time after the second step energization process, that is, after the forced current density drop, is preferably 30 seconds or more, preferably 60 seconds or more.

上記電流密度パターンの制御は、電圧変動法により行な
ってもよいが、処理m数毎に電圧調整により設定したい
電流密度にすることとなるため、その操作が繁雑であり
、また精度の面においても著しく悪く、十分な効果が出
せない欠点がある。このため、本発明においては電解着
色は交流またはそれと同等の効果を有する波形を用いて
行なうが、その電流密度パターンの制御は正、負のトー
タル電流密度または負電流密度のいずれかで行なう。な
お、負電流密度は、通電処理の経時による変化や陽極酸
化処理、電解着色処理の条件等により若干異なるが、正
、負のトータル電流密度の約55%である。
The above-mentioned current density pattern may be controlled by a voltage variation method, but since the desired current density must be set by adjusting the voltage for each number of meters processed, the operation is complicated, and it also has problems in terms of accuracy. It is extremely bad and has the drawback of not being able to produce sufficient effects. Therefore, in the present invention, electrolytic coloring is carried out using alternating current or a waveform having an effect equivalent to alternating current, but the current density pattern is controlled by either positive or negative total current density or negative current density. The negative current density is approximately 55% of the total positive and negative current density, although it varies slightly depending on changes over time in the energization process, conditions of the anodizing process, electrolytic coloring process, etc.

次に、電流密度パターンの制御方法の例を以下に説明す
る。負電流密度での制御の場合は第1図に示すとおりと
し、制御すべき標準の負電流密度パターンを記憶させて
おき、次に処理される製品の処理毎にその処理面積に見
合った電流が標準とする負電流密度パターン通りに流れ
る様に、電源装置を自動調整する。トータル電流密度パ
ターンの制御も負電流密度パターンの制御と同様の手法
により行なうが、その制御装置の概略構成を第2図に示
す。
Next, an example of a method of controlling the current density pattern will be described below. In the case of control using negative current density, do as shown in Figure 1.The standard negative current density pattern to be controlled is memorized, and each time the next product is processed, a current corresponding to the area to be processed is applied. Automatically adjusts the power supply so that the current flows according to the standard negative current density pattern. The total current density pattern is controlled in the same manner as the negative current density pattern, and the schematic configuration of the control device is shown in FIG.

上記いずれの電流密度パターンの制御も基本的には同様
であるが、ここでトータル電流密度パターンを例にとっ
て、その制御方法の一例を第2図を参照して詳細に述べ
る。
Although the control of any of the above current density patterns is basically the same, an example of the control method will be described in detail with reference to FIG. 2, taking the total current density pattern as an example.

(1)  設定しようとする標準電流密度パターン(記
憶パターン)を記憶回路6に入力する。例えば、実際に
製品に電流を流し、整流回路10h)ら記憶回路6に入
力する。
(1) Input the standard current density pattern (memory pattern) to be set into the memory circuit 6. For example, a current is actually applied to the product and input from the rectifier circuit 10h) to the memory circuit 6.

(11)次に、制御すべき製品3に電流を流すと同時に
記憶回路6から演算指令回路5に記憶パターンを同時出
力し、制御すべき製品面積に換算した電流tK演算し、
制御すべき製品3に流れる電流量と比較する。
(11) Next, at the same time as passing current through the product 3 to be controlled, a memory pattern is simultaneously output from the memory circuit 6 to the calculation command circuit 5, and a current tK converted to the area of the product to be controlled is calculated;
Compare with the amount of current flowing through product 3 to be controlled.

佃)通電時間を秒後における制御すべき製品に流れた電
流量をAct 、 を秒後における記憶パターンから演
算された電流量をLptとすると、前記(11)におけ
る比較でApt)Lctであれば交流電源4の電圧を上
げるように、Apt(Actであれば交流電源4の電圧
を下げるように演算指令回路5から指令が出され、Lp
t=Actとなるように通電終了まで演算指令が繰り返
される。
(Tsukuda) If the amount of current flowing through the product to be controlled after seconds of energization time is Act, and the amount of current calculated from the memory pattern after seconds is Lpt, then in the comparison in (11) above, if Apt) Lct. A command is issued from the arithmetic command circuit 5 to increase the voltage of the AC power source 4 and to decrease the voltage of the AC power source 4 if Apt (Act).
The calculation command is repeated until the energization ends so that t=Act.

このようにして、制御すべき製品の電流密度と記憶パタ
ーンの電流密度の経時変化が閤じ様に制御される。第1
図に示す負電流密度制御の場合、負電流整流回路7の前
に正負電流分離回路8を設けて負電流のみ整流し、上記
(1)〜It)の操作を行なうことになる。
In this way, changes over time in the current density of the product to be controlled and the current density of the memory pattern are controlled in a similar manner. 1st
In the case of negative current density control shown in the figure, a positive/negative current separation circuit 8 is provided in front of the negative current rectifying circuit 7 to rectify only the negative current, and the operations (1) to It) described above are performed.

上記のようにして制御されたトータル電流密度パターン
の一例の構図を第3図に示す。
FIG. 3 shows the composition of an example of the total current density pattern controlled as described above.

以上の操作により、通電処理における電流密度の経時変
化をパターン化でき、それにより、処理される製品の処
理m数が異なっても、設定された電流密度パターン通り
に電解着色を施すことができる。なお、この操作を手動
操作により、設定された電流密度パターン通りに電流が
流れるように電圧コントロールしてもよい。
By the above operations, it is possible to pattern the change in current density over time during the current application process, and thereby, even if the number of processed products is different, electrolytic coloring can be applied according to the set current density pattern. Note that this operation may be performed manually to control the voltage so that the current flows according to a set current density pattern.

本発明の電解着色法においても、アルミニウムの陽極酸
化皮膜の膜質による変化は従来通りあり、陽極酸化処理
工程でのバリヤ層調整操作、断続電解、電流回復電解、
電解終了後の液中浸漬等の電解制御による色調、付廻り
性、層色度の変化を十分把握し、それを利用することも
できるO 本発明において、着色の電解液中に使用される金属塩と
しては種々のものがあるか、−例をアケルト、ニッケル
、コバルト、クロム、銅、マグネシウム、鉄、カドミウ
ム、チタン、マンガン、モリブデン、カルシウム、バナ
ジウム、錫、鉛、亜鉛などのような金属の硝酸塩、硫酸
塩、リン酸塩、塩酸塩、クロム酸塩などの無機酸塩、ン
ユウ酸塩、酢酸塩、酒石酸塩などの有機酸塩などがあり
、これらのうちから選択使用される。好ましくは、これ
らの金属塩の2種以上、より好ましくは3種以上を組み
合わせて使用すると着色進行度や付廻り性が著しく改善
され、また2種以上の金属塩に強還元性化合物を着色度
向上、付廻り性向上を目的として加えてもよい。このよ
うな強還元性化合物としては、例えば亜ニチオン酸ナト
リウム、亜ニチオン酸亜鉛、亜ニチオン酸アンモニウム
などの亜ニチオン酸塩、チオ硫酸アンモニウム、チオ硫
酸ナトリウム、チオ硫酸カリウム、チオ硫酸鉄などのチ
オ硫酸塩、チオグリコール酸、チオグリコール酸アンモ
ニウム、チオグリコール酸ナトリウムなどのチオグリコ
ール酸塩などがある。
In the electrolytic coloring method of the present invention, there are changes in the film quality of the aluminum anodic oxide film as before, including barrier layer adjustment operations in the anodizing process, intermittent electrolysis, current recovery electrolysis,
It is also possible to fully understand and utilize changes in color tone, coverage, and layer chromaticity due to electrolytic control such as immersion in a liquid after the completion of electrolysis. There are various types of salts - examples include salts of metals such as nickel, cobalt, chromium, copper, magnesium, iron, cadmium, titanium, manganese, molybdenum, calcium, vanadium, tin, lead, zinc, etc. There are inorganic acid salts such as nitrates, sulfates, phosphates, hydrochlorides, and chromates, and organic acid salts such as nitrates, acetates, and tartrates, and these are used selectively. Preferably, two or more of these metal salts, more preferably three or more, are used in combination to significantly improve the degree of coloring progress and coverage. It may be added for the purpose of improving the rolling ability. Such strong reducing compounds include, for example, dithionite salts such as sodium dithionite, zinc dithionite, and ammonium dithionite, thiosulfates such as ammonium thiosulfate, sodium thiosulfate, potassium thiosulfate, and iron thiosulfate. salts, thioglycolates such as thioglycolic acid, ammonium thioglycolate, and sodium thioglycolate.

本発明方法により着色されるアルミニウムま゛たはアル
ミニウム合金とは、純アルミニウムまたは純アルミニウ
ムにケイ素、マグネシウム、銅、ニッケル、亜鉛、クロ
ム、鉛、ビスマス、鉄、チタン、マンガンなどの金属を
1種または2種以上含む合金である。これらは、その表
面を常法により脱脂洗浄したのち、これを陽極とし、−
万、対極として設けた陰極との間に、硫酸、シュウ酸、
スルファミン酸などのような通常の酸性電解液中で通電
して陽極酸化皮膜処理を施したものである。
Aluminum or aluminum alloy to be colored by the method of the present invention refers to pure aluminum or pure aluminum mixed with one metal such as silicon, magnesium, copper, nickel, zinc, chromium, lead, bismuth, iron, titanium, or manganese. Or it is an alloy containing two or more types. After degreasing and cleaning the surfaces using a conventional method, these are used as anodes, and -
10,000, sulfuric acid, oxalic acid,
It is anodized by applying electricity in a normal acidic electrolyte such as sulfamic acid.

以上述べたような方法で電解着色された皮膜は、必要に
より、沸騰水、薬品封孔または加圧水蒸気など公知の手
段により封孔処理が施される。また、この封孔処理を施
したのち、あるいは封孔処理を施すことなく、必要によ
りさらに樹脂塗料によるスプレー塗装、浸漬塗装または
電着塗装などを行なって表面保護を行なってもよい。
The film electrolytically colored by the method described above is sealed, if necessary, by known means such as boiling water, chemical sealing, or pressurized steam. Further, after performing this pore sealing treatment, or without performing the pore sealing treatment, the surface may be further protected by spray coating, dipping coating, or electrodeposition coating with a resin paint, if necessary.

実施例 次に、実施例をあげて本発明方法をさらに詳細に説明す
る。
EXAMPLES Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例1 常法により脱脂、エツチング、スマット除去されたアル
ミニウム押出形材A−60638を17.5 W/V 
%硫酸水溶液中に浸漬して陽極とし、対極として設けら
れたアルミニウム陰極との間に15Vの直流電流を電流
密度1.2A/dmで35分間通電して、その表面に約
12ミクロンの陽極酸化皮膜を形成させた。これを水洗
した。ついで、長さ300簡、幅100笥、高さ150
憩の容器を着色電解用装置として用い、対極を1箇所と
し、この中に長さ150簡、幅70鴫、厚さ1.3簡の
前記被処理材を極間距離250瓢にして、下記の組成を
有する液温26℃の電解液中に浸漬して、第4図に示す
トータル電流密度パターンに従って交流電解を行なった
。すなわち、5秒間で電流密度がほとんど減衰しないO
、l A/ dm’まで上げ、115秒間電解後、5秒
間で0−6A/dm’のピーク電流密度に上げ、その時
の電圧を3分間保持すると電流密度が0.35A/dイ
まで減衰した。それを0.25A/dイ(変動前の71
%)K降下させ、30秒間経過すると、0.2 A/d
ty? K減衰した。それをさらにO,15A/dイ(
変動前の75チ)に降下させ、90秒間電解する電流密
度パターンで交流電痔な行なったところ、アルミニウム
押出形材の対極面及び非対極面共にむらのない均一な淡
ブロンズ色の着色皮膜が得られた。
Example 1 An extruded aluminum profile A-60638 that was degreased, etched, and smut removed by a conventional method was heated to 17.5 W/V.
% sulfuric acid aqueous solution to serve as an anode, and an aluminum cathode provided as a counter electrode, a 15V DC current was applied for 35 minutes at a current density of 1.2A/dm to anodize the surface by approximately 12 microns. A film was formed. This was washed with water. Next, the length is 300 kan, the width is 100 kan, and the height is 150 kan.
A container was used as a device for coloring electrolysis, a counter electrode was placed in one place, and the material to be treated was placed in the container with a length of 150 mm, a width of 70 mm, and a thickness of 1.3 mm, and the distance between the electrodes was 250 mm. AC electrolysis was performed according to the total current density pattern shown in FIG. In other words, the current density hardly attenuates in 5 seconds.
, l A/dm', and after electrolysis for 115 seconds, the current density was increased to a peak current density of 0-6 A/dm' in 5 seconds, and when that voltage was held for 3 minutes, the current density attenuated to 0.35 A/dm'. . 0.25A/d (71A/d before fluctuation)
%) K drop and after 30 seconds, 0.2 A/d
Ty? K decayed. Then add O, 15A/d (
When AC electrolysis was carried out using a current density pattern of 75° (before fluctuation) and electrolysis for 90 seconds, an even and uniform light bronze colored film was obtained on both the counter and non-counter electrode surfaces of the extruded aluminum profile. It was done.

電解液: 硫酸ニッケル(6水和物)   251/を硫酸マグネ
シウム(7水和物)   IOy/を硫酸コバルト(’
   )’    21/lチオ硫酸アンモニウム  
   11/を硫酸アンモニウム      30 f
/lホウ酸           10り/lpH5,
6 上記着色皮膜を水洗した後、純水湯水で70℃、4分間
湯洗した。これを、自己分散型熱硬化性アクリル樹脂電
着塗料10%液に浸漬し、゛ステンレス板を対極として
、+60Vで3分間亀着塗装をし、水洗後180℃で4
0分焼付乾燥し、8μmの塗膜を形成させた。その色調
は、電層塗装前の色調とほとんど変わらなかった。また
、ウェザ−メータにより3000時間の促進耐候性試験
を行なったところ、まったく異常は認められず、またキ
ャス試験において72時間で異常なく、外装材としての
性能を十分に有することを確認した。
Electrolyte: Nickel sulfate (hexahydrate) 251/ to magnesium sulfate (7 hydrate) IOy/ to cobalt sulfate ('
)' 21/l ammonium thiosulfate
11/ ammonium sulfate 30 f
/l boric acid 10 liters/lpH5,
6 After washing the colored film with water, it was washed with pure water at 70°C for 4 minutes. This was immersed in a 10% solution of self-dispersing thermosetting acrylic resin electrodeposition paint, and then applied with a stainless steel plate as a counter electrode for 3 minutes at +60V, and after washing with water, heated at 180℃ for 4 minutes.
It was baked and dried for 0 minutes to form a coating film of 8 μm. The color tone was almost the same as the color tone before electrolayer coating. Further, when an accelerated weather resistance test was conducted for 3000 hours using a weather meter, no abnormalities were observed, and no abnormalities were observed after 72 hours in a Cath test, confirming that the material had sufficient performance as an exterior material.

実施例2 実施例1の方法において、トータル電流密度パターンを
第5図に示すパターン、すなわち5秒間で電流密度がほ
とんど減衰しない0.2A/dmで115秒間電解後、
10秒間で0−55 A/ dm’のピーク[光密度に
上げ、55秒間で電流密度0.4A/daに減衰させた
。それをO,18A/dm’(変動前の45チ)に降下
させ、120秒後にO−l 5 A7’dmに減衰させ
る交流電解を行なった以外は、実施例Iと同様の処理を
したところ、実施例1と同様の結果が得られた。
Example 2 In the method of Example 1, the total current density pattern was changed to the pattern shown in FIG. 5, that is, after electrolysis at 0.2 A/dm for 115 seconds, where the current density hardly attenuated in 5 seconds,
The current density was increased to a peak of 0-55 A/dm' in 10 seconds and then decayed to a current density of 0.4 A/da in 55 seconds. The same treatment as in Example I was carried out, except that AC electrolysis was carried out to lower the temperature to 0.18 A/dm' (45 cm before fluctuation) and attenuate it to O-l 5 A7'dm after 120 seconds. , the same results as in Example 1 were obtained.

実施例3 実施例1の方法において、下記の組成を有する電解液を
用いる以外は同様の方法で行なったところ、実施例1と
同様の結果が得られた。
Example 3 The same method as in Example 1 was carried out except that an electrolytic solution having the following composition was used, and the same results as in Example 1 were obtained.

↑イ解液: 硫酸ニッケル(6水和物)   25y/を硫酸マグネ
シウム(7水和物)   201/を硫酸コバルト(7
水和物)   for/を硫酸アンモニウム     
 30 f/lホウ酸          20 y/
1pH5,0 比較例 実施例2のトータル電流密度パターytsの代りに、一
定電圧12Vで60秒の交流電解を行ない、着色度を実
施例2と同等に合わせたところ、色調が赤味がかかり、
対極面が非対極面よりやや淡く着色された。すなわち、
付廻り性が実施例2の場合よりも劣っていた。これを、
実施例1と同様に電着塗装し、水洗後180℃で40分
焼付乾燥したところ、一層赤みが強い淡ブロンズ色とな
った。
↑Isolate solution: Nickel sulfate (hexahydrate) 25y/ is magnesium sulfate (7hydrate) 201/ is cobalt sulfate (7 hydrate)
hydrate) for/ammonium sulfate
30 f/l boric acid 20 y/
1 pH 5,0 Comparative Example Instead of the total current density pattern yts of Example 2, AC electrolysis was performed for 60 seconds at a constant voltage of 12 V, and the degree of coloring was adjusted to the same as Example 2. The color tone was reddish.
The counter electrode surface was colored slightly lighter than the non-counter electrode surface. That is,
The coverage was inferior to that of Example 2. this,
Electrodeposition coating was carried out in the same manner as in Example 1, and after washing with water, baking and drying at 180° C. for 40 minutes resulted in a pale bronze color with a stronger reddish tinge.

発明の効果 以上のように、本発明の電解着色法によれば、定電流密
度での通電処理後、それより高い電流密度範囲にビーク
電流密度が入るように電流密度を上げ、その後強制的に
電流密度を降下させて交流電解を行なうため、淡色の色
調安定化、付廻り性の改善、異種形材同時枠付における
均一着色、電着塗装での色抜は等による色調変化の抑制
など、特有の効果が得られた。
Effects of the Invention As described above, according to the electrolytic coloring method of the present invention, after energization treatment at a constant current density, the current density is increased so that the peak current density falls within a higher current density range, and then the current density is forcibly applied. Because alternating current electrolysis is performed by lowering the current density, we can stabilize the color tone of light colors, improve coverage, uniform coloring when framing different types of shapes at the same time, suppress color change due to color removal during electrodeposition coating, etc. A unique effect was obtained.

また、本発明の方法によれば、電流密度パターンを変え
ることにより、基本色から淡色まで広範囲の色調に、一
つの電解液によって着色することが可能であり、融通性
のある状態で着色できるので、生産ラインの汎用性は一
層高くなる。例えば、基本色としてブロンズ色の電解液
を用いて電解着色する場合、電流密度パターンを変える
ことによつ、て、このブロンズ色から中間ステン色、淡
ステン色などの淡色まで広範囲の色調に電解着色でき、
また基本色として濃いブロンズ色の電解液を用いれば、
この濃いブロンズ色からブロンズ色あるいは比較的淡い
ブロンズ色までの広範囲の色調に電解着色可能である。
Furthermore, according to the method of the present invention, by changing the current density pattern, it is possible to color a wide range of colors from basic colors to light colors using one electrolytic solution, and it is possible to color in a flexible state. , the versatility of the production line becomes even higher. For example, when electrolytically coloring using a bronze-colored electrolyte as the basic color, by changing the current density pattern, electrolysis can produce a wide range of colors from this bronze color to light colors such as medium stain color and light stain color. Can be colored,
Also, if you use a dark bronze electrolyte as the basic color,
Electrolytic coloring is possible in a wide range of colors from this deep bronze color to bronze color or relatively light bronze color.

しかも、各色調毎の着色時間が比較的に一定であり、ま
た、予め設定したトータル電流密度パターンまたは負電
流密度パターンに従ってt光密度パターンが制御される
ため、その操作が比較的に簡単であり、また精度もよく
、色合せをする者の個人差による着色むらが殆んどなく
、所望の色調に均一に着色できる利点がある。
Moreover, the coloring time for each color tone is relatively constant, and the light density pattern is controlled according to a preset total current density pattern or negative current density pattern, so the operation is relatively simple. It also has the advantage of being highly accurate, with almost no unevenness in coloring due to individual differences among color-matchers, and allowing uniform coloring to a desired tone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解着色法における負電流密度パター
ンの制御装置の概略構成図、第2図はトータル電流密度
パターンの制御装置の概略構成図、第3図は制御された
トータル電流密度パターンの構図、第4図は実施例1に
おけるトータル電流密度の経時変化を示すグラフ、第5
図は実施例2におけるトータル電流密度の経時変化を示
すグラスである。
Fig. 1 is a schematic diagram of a control device for a negative current density pattern in the electrolytic coloring method of the present invention, Fig. 2 is a schematic diagram of a control device for a total current density pattern, and Fig. 3 is a controlled total current density pattern. 4 is a graph showing the change in total current density over time in Example 1.
The figure shows a glass showing the change in total current density over time in Example 2.

Claims (1)

【特許請求の範囲】 1、アルミニウムまたはアルミニウム合金の表面に形成
した陽極酸化皮膜を、無機金属塩を含有する水溶液中に
て交流またはこれと同等の効果を有する波形にて電解着
色するに際して、前記アルミニウムまたはアルミニウム
合金を、トータル電流密度0.05〜0.25〔A/d
m^2〕または負電流密度0.03〜0.14〔A/d
m^2〕の範囲内でほぼ定電流密度にて30秒〜10分
間通電処理し、 次いで同浴中にて、ピーク電流密度がトータル電流密度
で0.25〜1.20〔A/dm^2〕または負電流密
度で0.14〜0.70〔A/dm^2〕となるように
通電処理し、 その後少なくとも1回電流密度を強制的に降下させるこ
とを特徴とするアルミニウムまたはアルミニウム合金の
電解着色法。 2、電流密度の強制的降下を、変動させる時点の電流密
度の10〜95%となるように降下させることを特徴と
する特許請求の範囲第1項に記載の電解着色法。
[Claims] 1. When electrolytically coloring an anodic oxide film formed on the surface of aluminum or an aluminum alloy in an aqueous solution containing an inorganic metal salt using alternating current or a waveform having an equivalent effect, Aluminum or aluminum alloy is heated at a total current density of 0.05 to 0.25 [A/d
m^2] or negative current density 0.03 to 0.14 [A/d
m^2] at a constant current density for 30 seconds to 10 minutes, and then in the same bath, the total current density was 0.25 to 1.20 [A/dm^ 2] or aluminum or aluminum alloy, which is characterized by being energized to a negative current density of 0.14 to 0.70 [A/dm^2], and then forcibly lowering the current density at least once. electrolytic coloring method. 2. The electrolytic coloring method according to claim 1, characterized in that the current density is forcibly lowered to 10 to 95% of the current density at the time of variation.
JP24882284A 1984-11-27 1984-11-27 Electrolytic pigmentation method of aluminum or aluminum alloy Granted JPS61127898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24882284A JPS61127898A (en) 1984-11-27 1984-11-27 Electrolytic pigmentation method of aluminum or aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24882284A JPS61127898A (en) 1984-11-27 1984-11-27 Electrolytic pigmentation method of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPS61127898A true JPS61127898A (en) 1986-06-16
JPS638197B2 JPS638197B2 (en) 1988-02-22

Family

ID=17183928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24882284A Granted JPS61127898A (en) 1984-11-27 1984-11-27 Electrolytic pigmentation method of aluminum or aluminum alloy

Country Status (1)

Country Link
JP (1) JPS61127898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038615A (en) * 2009-08-17 2011-02-24 Sumitomo Heavy Industries Techno-Fort Co Ltd Cooling oil quantity control device of wet type clutch brake in mechanical press
CN108660496A (en) * 2018-05-02 2018-10-16 珠海市美图金属科技有限公司 A kind of proximate matter heat tinting process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038615A (en) * 2009-08-17 2011-02-24 Sumitomo Heavy Industries Techno-Fort Co Ltd Cooling oil quantity control device of wet type clutch brake in mechanical press
CN108660496A (en) * 2018-05-02 2018-10-16 珠海市美图金属科技有限公司 A kind of proximate matter heat tinting process
CN108660496B (en) * 2018-05-02 2019-12-03 珠海市美图金属科技有限公司 A kind of profile heat tinting process

Also Published As

Publication number Publication date
JPS638197B2 (en) 1988-02-22

Similar Documents

Publication Publication Date Title
US4042468A (en) Process for electrolytically coloring aluminum and aluminum alloys
US4414077A (en) Method for production of colored aluminum article
JPH05125589A (en) Improved electrolytic method for coloring anodized aluminum
CA1048963A (en) Process for electrolytically coloring aluminum and aluminum alloys
JPS61127898A (en) Electrolytic pigmentation method of aluminum or aluminum alloy
JPS5948960B2 (en) How to color aluminum or aluminum alloy with primary colors
JPS5852037B2 (en) Manufacturing method of colored aluminum material
JPS638196B2 (en)
JPH0332637B2 (en)
JPH0331799B2 (en)
JP2931176B2 (en) Colored film formed on aluminum material surface and electrolytic coloring method
US4808280A (en) Method for electrolytic coloring of aluminim or aluminum alloys
CA1074725A (en) Process for electrolytically coloring aluminum and aluminum alloys
JPH09143795A (en) Method for electrolytically coloring aluminum material
JPS58147592A (en) Method for pigmenting aluminum or aluminum alloy
EP0936288A2 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
JPH03207895A (en) Electrolytic treatment of aluminum and aluminum alloy
JP3101606B2 (en) Electrolytic coloring method of aluminum material
JPS61110797A (en) Surface treatment of aluminum or aluminum alloy
JP2561397B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JPS5830397B2 (en) Electrolytic coloring method for aluminum or aluminum alloys
JP2820584B2 (en) Electrolytic coloring method of aluminum material
KR850001214B1 (en) Method for producing colored aluminum articles
JPH02254198A (en) Multicolor surface treatment of aluminum material
JPH0359150B2 (en)