JPH09143795A - Method for electrolytically coloring aluminum material - Google Patents

Method for electrolytically coloring aluminum material

Info

Publication number
JPH09143795A
JPH09143795A JP31961895A JP31961895A JPH09143795A JP H09143795 A JPH09143795 A JP H09143795A JP 31961895 A JP31961895 A JP 31961895A JP 31961895 A JP31961895 A JP 31961895A JP H09143795 A JPH09143795 A JP H09143795A
Authority
JP
Japan
Prior art keywords
aluminum material
acid
electrolysis
coloring
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31961895A
Other languages
Japanese (ja)
Inventor
Akihiro Wakatsuki
章弘 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nikkei Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Shin Nikkei Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nikkei Co Ltd, Nippon Light Metal Co Ltd filed Critical Shin Nikkei Co Ltd
Priority to JP31961895A priority Critical patent/JPH09143795A/en
Publication of JPH09143795A publication Critical patent/JPH09143795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a colored film excellent in uniformity of color tone and corrosion resistance on the surface of an aluminum material. SOLUTION: The aluminum material on which a porous anodically oxidized film is previously formed is immersed into an electrolytic coloring liq. containing one or >=2 kinds metal salts selected among phosphoric acid, chromic acid, boric acid, sulfamic acid, oxalic acid and citric acid and containing no sulfate to form a barrier layer having 50-150nm thickness and containing no sulfate ion by a direct current anodic electrolysis of 50-150V, then the aluminum material is subjected to a direct current cathodic electrolysis or an alternate current electrolysis in the same soln. The second anodically oxidizing treatment for extending the bottom part of fine pore by executing the secondary anodically oxidizing treatment in an acid or alkali soln., moreover, the third anodically oxidizing treatment for enlarging the fine pore size may be applied before to the electrolytic coloring is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、着色均一性及び耐食性
に優れた着色皮膜を形成するアルミニウム材料の電解着
色方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrolytically coloring an aluminum material which forms a colored film having excellent coloring uniformity and corrosion resistance.

【0002】[0002]

【従来の技術】アルミニウム材料を電解着色する二次電
解法では、アルミニウム材を硫酸等の溶液中で陽極酸化
し、Ni,Sn等の金属塩を含む溶液中で電解すること
により、陽極酸化皮膜の微細孔に金属が析出した着色皮
膜を形成している。また、陽極酸化後のアルミニウム材
料を酸性溶液中で電解することにより微細孔の形状を変
化させた後、金属塩を含む溶液中で電解着色する三次電
解着色法も知られている。電解着色法された物品は、種
々の色彩が付与され、耐光性にも優れていることから、
ビルのサッシ,外壁等の建材を始めとして広範な分野で
使用されている。着色製品は、着色が均一であるか否か
によって商品価値が大きく変動する。そこで、着色均一
性を向上させるため、従来から種々の方法が提案されて
いる(特公昭59−48960号公報,特開平6−27
2082号公報等参照)。また、酸性雨等の大気環境の
悪化に伴って耐食性も問題になっているが、従来の電解
着色法ではこれらへの対応が困難になっている。
2. Description of the Related Art In a secondary electrolysis method for electrolytically coloring an aluminum material, the aluminum material is anodized in a solution such as sulfuric acid and electrolyzed in a solution containing a metal salt such as Ni or Sn to form an anodized film. The colored film in which the metal is deposited is formed in the micropores. A third electrolytic coloring method is also known, in which the aluminum material after anodization is electrolyzed in an acidic solution to change the shape of the fine pores and then electrolytically colored in a solution containing a metal salt. Since the products that have been subjected to the electrolytic coloring method are given various colors and have excellent light resistance,
It is used in a wide range of fields including building materials such as building sashes and outer walls. The commercial value of a colored product varies greatly depending on whether or not the coloring is uniform. Therefore, in order to improve the coloring uniformity, various methods have been proposed in the past (Japanese Patent Publication No. 59-48960, JP-A-6-27).
No. 2082, etc.). Corrosion resistance has also become a problem with the deterioration of the atmospheric environment such as acid rain, but it is difficult to cope with these problems by the conventional electrolytic coloring method.

【0003】[0003]

【発明が解決しようとする課題】しかし、着色均一性に
対する要求は、厳しくなる一途であり、従来法では依然
として着色後の表面に色ムラが発生しがちである。特に
ビルの外壁等の用途では、一つのパネル及びビル全体が
均一な色調に仕上げる必要があり、このような要求に見
合った着色皮膜を形成することは困難である。着色の不
均一性は、主として電解着色工程にある。電解着色工程
では各種複雑形状のアルミニウム材料が電解槽中で二つ
の対極間に配置されて電解されるが、電解槽内では電位
分布が不均一であり、結果として電流密度がアルミニウ
ム材料の中央部と端,凹面と凸面等で異なってくる。電
流密度が異なると、陽極酸化皮膜の微細孔に析出する金
属の量に差が生じる。析出金属量は、明度と相関関係を
もっており、析出量が多くなると明度が低下する。その
ため、電解槽内での設置位置,並びに被処理材の中央部
と端,凹面と凸面等で明度が異なり、著しい場合には不
良品となる。
However, the demand for uniform coloring is becoming stricter and the conventional method still tends to cause color unevenness on the surface after coloring. Particularly in applications such as the outer wall of a building, it is necessary to finish one panel and the entire building to a uniform color tone, and it is difficult to form a colored film that meets such requirements. The non-uniformity of coloring is mainly in the electrolytic coloring process. In the electrolytic coloring process, aluminum materials of various complicated shapes are placed between two counter electrodes in the electrolytic cell to be electrolyzed, but the potential distribution is non-uniform in the electrolytic cell, and as a result, the current density is at the center of the aluminum material. And edge, concave surface and convex surface are different. Different current densities cause differences in the amount of metal deposited in the micropores of the anodized film. The amount of deposited metal has a correlation with the lightness, and the lightness decreases as the amount of deposition increases. Therefore, the lightness differs depending on the installation position in the electrolytic cell, the central portion and the end of the material to be treated, the concave surface and the convex surface, etc., and if it is remarkable, it becomes a defective product.

【0004】また、酸性雨等のpHの低い液体が陽極酸
化皮膜に付着すると、皮膜が化学的に溶解される。溶解
が素地のアルミニウムまで到達すると、腐食が進行し、
外観が著しく損なわれる。本発明は、このような問題を
解消すべく案出されたものであり、バリヤー層を厚くし
て溶液抵抗の影響を相対的に無視できる程度に小さくす
ることにより、電位分布が不均一な電解槽であっても、
電解されるアルミニウム材料のどの部分でもほぼ均一な
密度の電流が流れるようにし、色調の均一性及び耐食性
に優れた着色アルミニウム材料を得ることを目的とす
る。また、更には材料の製造履歴等に起因した着色不均
一性を抑制する方法を得たり、同一着色浴を用いて多彩
な着色状態を得ることを可能とする方法を提案するもの
である。
When a liquid having a low pH such as acid rain adheres to the anodized film, the film is chemically dissolved. When the melting reaches the base aluminum, corrosion progresses,
The appearance is significantly impaired. The present invention has been devised to solve such a problem, and by increasing the thickness of the barrier layer to reduce the influence of solution resistance to a relatively negligible level, an electrolytic solution having a non-uniform potential distribution can be obtained. Even in a tank
The purpose of the present invention is to obtain a colored aluminum material excellent in color tone uniformity and corrosion resistance by allowing a current having a substantially uniform density to flow in any part of the aluminum material to be electrolyzed. Further, the present invention proposes a method for suppressing coloring non-uniformity due to the manufacturing history of materials and the like, and a method for enabling various colored states to be obtained using the same coloring bath.

【0005】[0005]

【課題を解決するための手段】本発明の電解着色方法
は、その目的を達成するため、燐酸,クロム酸,硼酸,
スルファミン酸,蓚酸,クエン酸から選ばれた1種又は
2種以上の金属塩を含み、硫酸塩を含まない着色電解液
に予め多孔質陽極酸化皮膜を形成したアルミニウム材料
を浸漬し、50〜150Vの直流アノード電解で50〜
150nm厚みの硫酸イオンを含まないバリヤー層を形
成し、次いで同一溶液中で前記アルミニウム材料を直流
カソード電解又は交流電解することを特徴とする。多孔
質陽極酸化皮膜は、濃度100〜300g/lの硫酸,
リン酸等の無機酸性浴,濃度20〜100g/lの蓚
酸,酒石酸等の有機酸性浴,濃度5〜50g/lの水酸
化ナトリウム,炭酸ナトリウム等のアルカリ浴を使用し
て行われる。電解条件としては、直流電流密度1〜2A
/dm2 ,電解電圧15〜20V,浴温15〜25℃が
採用される。この陽極酸化処理により、厚み1〜50μ
m,好ましくは5〜40μmの多孔質陽極酸化皮膜が形
成される。陽極酸化皮膜は、図3上段に示すように厚み
方向に延びる多数の微細孔を備えている。陽極酸化処理
に硫酸浴を使用した場合には、次工程に硫酸イオンが持
ち込まれることがないように数段にわたって十分に水洗
し、微細孔中の同伴される硫酸成分を除去することが好
ましい。
In order to achieve the object, the electrolytic coloring method of the present invention comprises: phosphoric acid, chromic acid, boric acid,
An aluminum material having a porous anodic oxide film formed in advance is immersed in a coloring electrolyte solution containing one or more kinds of metal salts selected from sulfamic acid, oxalic acid, and citric acid, and containing no sulfate, and 50 to 150 V is applied. DC direct electrolysis of 50 ~
It is characterized in that a barrier layer containing no sulfate ion having a thickness of 150 nm is formed, and then the aluminum material is subjected to DC cathodic electrolysis or AC electrolysis in the same solution. The porous anodic oxide film is sulfuric acid with a concentration of 100 to 300 g / l,
An inorganic acid bath of phosphoric acid or the like, an oxalic acid concentration of 20 to 100 g / l, an organic acid bath of tartaric acid or the like, or an alkaline bath of sodium hydroxide or sodium carbonate concentration of 5 to 50 g / l is used. As electrolysis conditions, direct current density 1 to 2 A
/ Dm 2 , electrolysis voltage 15 to 20 V, and bath temperature 15 to 25 ° C. are adopted. With this anodizing treatment, the thickness is 1 to 50 μm.
A porous anodic oxide film having a thickness of m, preferably 5 to 40 μm is formed. The anodized film has a large number of fine holes extending in the thickness direction as shown in the upper part of FIG. When a sulfuric acid bath is used for the anodizing treatment, it is preferable that the sulfuric acid components entrained in the fine pores be removed by sufficiently washing with water for several steps so that sulfate ions are not brought into the next step.

【0006】陽極酸化処理後のアルミニウム材料は、金
属塩を含む着色液中で電解される。この陽極酸化→電解
着色の2工程を経る方法は、通常2次電解着色といわれ
ており、Ni,Sn,Cu,Zn,Co,Fe,Se,
Pb,Mo,V,Ti,Mn,Au,Ag,Pd等の金
属塩を含み、硫酸塩を含まない着色液が使用される。た
とえば、リン酸コバルト,リン酸モリブデン,リン酸マ
ンガン,クロム酸銀,硼酸鉛等の無機塩を含む着色液、
スルファミン酸ニッケル,クエン酸銅,蓚酸マンガン,
蓚酸鉄等の有機塩を含む着色液、或いは両者の金属塩類
を含む着色液は、濃度20〜200g/lに調整され
る。着色液は、濃度5〜50g/lで硼酸,酒石酸,ク
エン酸,マロン酸,蓚酸,グルコン酸及びこれらの塩類
(たとえば、アンモニウム塩)をバリヤー層形成促進剤
として添加することができる。バリヤー層形成促進剤の
濃度が5g/l未満では、バリヤー層を厚くする効果が
小さく、着色状態として不均一模様が発生する。バリヤ
ー層形成促進剤の上限濃度は、使用する各薬剤の溶解度
に依存して決定される。着色液は、浴老化抑制のため酸
化マグネシウム,水酸化マグネシウム等でpH3〜7に
調整される。pH3未満では陽極酸化皮膜が溶解して着
色されず、pH7を超えると浴中に沈澱物が発生し易く
なる。
After the anodizing treatment, the aluminum material is electrolyzed in a coloring solution containing a metal salt. The method of passing through the two steps of this anodic oxidation → electrolytic coloring is usually called secondary electrolytic coloring, and Ni, Sn, Cu, Zn, Co, Fe, Se,
A coloring solution containing a metal salt such as Pb, Mo, V, Ti, Mn, Au, Ag, and Pd and containing no sulfate is used. For example, a coloring liquid containing an inorganic salt such as cobalt phosphate, molybdenum phosphate, manganese phosphate, silver chromate, and lead borate,
Nickel sulfamate, copper citrate, manganese oxalate,
The concentration of the coloring liquid containing an organic salt such as iron oxalate or the coloring liquid containing both metal salts is adjusted to a concentration of 20 to 200 g / l. Boric acid, tartaric acid, citric acid, malonic acid, oxalic acid, gluconic acid and salts thereof (for example, ammonium salt) can be added to the coloring liquid at a concentration of 5 to 50 g / l as a barrier layer formation promoter. When the concentration of the barrier layer formation accelerator is less than 5 g / l, the effect of thickening the barrier layer is small and a non-uniform pattern is generated as a colored state. The upper limit concentration of the barrier layer formation promoter is determined depending on the solubility of each drug used. The coloring liquid is adjusted to pH 3 to 7 with magnesium oxide, magnesium hydroxide or the like in order to suppress bath aging. When the pH is less than 3, the anodic oxide film is dissolved and is not colored, and when the pH is more than 7, a precipitate is easily generated in the bath.

【0007】着色液は、バリヤー層を厚く形成するた
め、前工程からの持込みがある場合、硫酸イオンを10
00ppm以下に抑制することが好ましい。また、電解
着色時にNa,K等のイオンがバリヤー層中に取り込ま
れることに起因するスポーリングの発生を抑制する上か
ら、Naイオン及びKイオンの合計濃度を10ppm以
下に抑制管理することが好ましい。電解着色では、第1
工程でバリヤー層を50〜150nmの厚みに成長させ
る直流アノード電解を行う。これによって、電解電圧が
上昇し、着色時の溶液抵抗が無視できる程度まで相対的
に小さくなり、溶液抵抗に起因する着色バラツキが隠蔽
されると共に複雑形状の被処理体での付き回り性(均一
着色)が改善される。また、バリヤー層を厚くすること
により、被処理材の製造履歴による着色バラツキが防止
され、耐食性も向上する。バリヤー層の厚みが50nm
未満になると、直流アノード電解による調整効果が十分
でなく、電解着色による析出金属量が部位に応じて不均
一化し、均一な着色が得られ難くなると共に耐食性も低
くなる。しかし、バリヤー層が150nmを超える厚み
では、電解着色中に火花放電が発生し易くなり、皮膜の
一部に電流が集中して焼けるピッティング現象や、皮膜
/アルミニウム界面に水素ガスが発生して皮膜が剥離す
るスポーリング現象が発生するようになるので好ましく
ない。
Since the coloring liquid forms a thick barrier layer, if a carry-on from the previous step is carried out, the sulfate ion is added to 10%.
It is preferable to suppress it to 00 ppm or less. In addition, in order to suppress the generation of spalling due to the incorporation of ions such as Na and K into the barrier layer during electrolytic coloring, it is preferable to control the total concentration of Na ions and K ions to 10 ppm or less. . First in electrolytic coloring
In the process, DC anode electrolysis is performed to grow the barrier layer to a thickness of 50 to 150 nm. As a result, the electrolysis voltage rises and the solution resistance during coloring becomes relatively small to a negligible level, the color variation due to the solution resistance is concealed, and the throwing power (uniformity) on the object having a complicated shape is uniform. (Coloring) is improved. Further, by thickening the barrier layer, color variation due to manufacturing history of the material to be treated is prevented, and corrosion resistance is also improved. Barrier layer thickness is 50 nm
If the amount is less than the above, the adjusting effect by the direct current anode electrolysis is not sufficient, and the amount of the deposited metal due to electrolytic coloring becomes nonuniform depending on the site, and it becomes difficult to obtain uniform coloring and the corrosion resistance becomes low. However, when the thickness of the barrier layer exceeds 150 nm, spark discharge is likely to occur during electrolytic coloring, current is concentrated in a part of the film and burning occurs, and hydrogen gas is generated at the film / aluminum interface. This is not preferable because a spalling phenomenon occurs in which the film peels off.

【0008】直流アノード電解は、ステンレス鋼,カー
ボン等を対極に使用し、定電圧法では電圧50〜150
V(好ましくは50〜120V),電解時間10秒〜5
分,浴温20〜30℃の電解条件が採用され、定電流法
では電流密度0.05〜1A/dm2 (好ましくは0.
1〜0.5A/dm2 ),電解時間10秒〜5分,浴温
20〜30℃の電解条件が採用される。バリヤー層が5
0〜150nmの厚みに成長したか否かは、前掲した浴
組成で電解するとき電解電圧が50〜150Vに達する
ことにより判定される。バリヤー層の厚みを50〜15
0nmに調整した後、図3上段に示すように多孔質陽極
酸化皮膜の微細孔に金属を析出させる電解着色処理(カ
ソード電解)が施される。この析出金属の高さhによっ
て、色調の濃淡が調整され、高さhが高いほど濃い色調
の表面になる。この構造で出現する色調は、析出物自体
の色,光の反射・吸収に応じて褐色〜黒色に変わる。
In the direct current anode electrolysis, stainless steel, carbon, etc. are used as a counter electrode, and the voltage is 50 to 150 in the constant voltage method.
V (preferably 50 to 120 V), electrolysis time 10 seconds to 5
Min, bath temperature of 20 to 30 ° C. is adopted, and the current density is 0.05 to 1 A / dm 2 (preferably 0.
1 to 0.5 A / dm 2 ), electrolysis time is 10 seconds to 5 minutes, and bath temperature is 20 to 30 ° C. 5 barrier layers
Whether or not it has grown to a thickness of 0 to 150 nm is determined by the fact that the electrolysis voltage reaches 50 to 150 V when electrolysis is performed with the bath composition described above. The thickness of the barrier layer is 50 to 15
After adjusting to 0 nm, electrolytic coloring treatment (cathodic electrolysis) for depositing a metal in the fine pores of the porous anodized film is performed as shown in the upper part of FIG. The height h of the deposited metal adjusts the shade of the color tone, and the higher the height h, the darker the surface of the color tone. The color tone that appears in this structure changes from brown to black depending on the color of the precipitate itself and the reflection / absorption of light.

【0009】この電解着色をアノード電解と同一電解槽
内で行うとき、ハンドリングが容易になると共に槽内の
電位分布が2工程で同一となるので、電位分布が不均一
な電解槽内での吊下げ位置に影響されず、均一な着色が
可能になる。直流電解するときには、実効電流密度0.
1〜0.5A/dm2 ,電解電圧50〜150V,浴温
20〜30℃,電解時間20秒〜3分の電解条件が採用
される。交流電解では、適宜、正弦波,三角波,台形
波,矩形波等の波形をもち、周波数1〜100Hzの交
流が使用され、実効電流密度0.1〜0.5A/dm
2 ,ピーク電圧50〜150V,浴温20〜30℃,電
解時間30秒〜5分の電解条件が採用される。交流波形
は、プラスとマイナスで皮膜形成に対する作用が異な
り、マイナス部分の多い波形が好ましい。電解着色され
るアルミニウム材料としては、陽極酸化処理後に、酸又
はアルカリ溶液中で再陽極酸化処理する3次電解着色に
より、図3中段に示すように微細孔の底部を拡大したも
のを使用することができる。たとえば、厚み20μmの
陽極酸化皮膜にある孔径10nmの微細孔では、再陽極
酸化処理によって径30nm,高さ70nm程度の筒状
底部が形成される。この拡径された微細孔に金属を析出
させるため、被処理材のマトリックスの金属組織的不均
一さや電解槽の電位分布の不均一さ等に起因する金属析
出物の高さのバラツキが軽減され、一つの半透過面が形
成される。半透過面での反射光とアルミニウム/バリヤ
ー層界面での反射光が干渉し、青系〜緑系の色調が得ら
れる。再陽極酸化処理は、予めの陽極酸化処理が硫酸浴
を使用して行われた場合に、陽極酸化皮膜中の微細孔に
吸蔵されている硫酸イオンを置換する作用も呈する。
When this electrolytic coloring is carried out in the same electrolytic bath as the anode electrolysis, handling is easy and the potential distribution in the bath is the same in two steps, so that it is suspended in an electrolytic bath in which the potential distribution is non-uniform. Uniform coloring is possible regardless of the lowered position. When direct current electrolysis is performed, the effective current density is 0.
The electrolysis conditions are 1 to 0.5 A / dm 2 , electrolysis voltage of 50 to 150 V, bath temperature of 20 to 30 ° C., and electrolysis time of 20 seconds to 3 minutes. In AC electrolysis, AC having a waveform such as a sine wave, a triangular wave, a trapezoidal wave, and a rectangular wave is appropriately used, and an AC having a frequency of 1 to 100 Hz is used, and an effective current density is 0.1 to 0.5 A / dm.
2 , electrolysis conditions of peak voltage 50 to 150 V, bath temperature 20 to 30 ° C., electrolysis time 30 seconds to 5 minutes are adopted. The AC waveform has different effects on the film formation depending on whether it is positive or negative, and a waveform with many negative portions is preferable. As the aluminum material to be electrolytically colored, use the one in which the bottoms of the micropores are enlarged as shown in the middle part of FIG. 3 by the third electrolytic coloring in which the anodizing treatment is followed by reanodizing treatment in an acid or alkaline solution. You can For example, in the case of fine pores having a pore diameter of 10 nm in an anodized film having a thickness of 20 μm, a cylindrical bottom portion having a diameter of 30 nm and a height of about 70 nm is formed by reanodizing treatment. Since the metal is deposited in the expanded fine pores, variations in the height of the metal deposit due to the metallographic nonuniformity of the matrix of the material to be treated, the nonuniformity of the potential distribution of the electrolytic cell, etc. are reduced. , One semi-transmissive surface is formed. The reflected light at the semi-transmissive surface and the reflected light at the aluminum / barrier layer interface interfere with each other to obtain a blue to green color tone. The re-anodizing treatment also has a function of substituting the sulfate ions stored in the fine pores in the anodized film when the anodizing treatment is previously performed using a sulfuric acid bath.

【0010】再陽極酸化処理では、リン酸,リン酸−蓚
酸混液等に浸漬する場合には濃度100g/l,浴温4
0℃,浸漬時間5分の条件、アルカリ浴に浸漬する場合
には濃度10g/l,温度20℃,浸漬時間1分の条件
が採用される。また、濃度100g/l,浴温20℃の
リン酸を使用した陽極電解では、電流密度0.5A/d
2 ,電解電圧50〜150V,電解時間1分の条件が
採用される。更に、再々陽極酸化処理を施す4次電解着
色によって、微細孔を図3下段に示すように拡大底部ポ
アーの下に長くしたアルミニウム材料を使用することも
できる。4次電解着色は、皮膜構造を強くすると共に、
任意の色調を得ることができる。このときの電解浴に
は、多孔質皮膜を与えるリン酸,硫酸,蓚酸,スルファ
ミン酸等の浴が使用され、硫酸浴の場合には直流電流密
度0.1〜1A/dm2,電解電圧10〜20V,浴温
15〜25℃の電解条件が採用される。この際の陽極酸
化皮膜は、再々陽極酸化処理によって得ようとする色調
に応じて0.1〜1μmの厚みに調整される。なお、再
々陽極酸化処理で硫酸浴を使用するときには、その後に
十分な水洗処理を行うことが好ましい。このようにして
着色処理されたアルミニウム材料は、封孔処理,クリア
ー塗装処理等によって製品とされる。封孔処理では、着
色処理後のアルミニウム材料を高温水,ニッケル塩系化
合物等を含有する封孔処理材浴に浸漬し、耐食性を向上
させる。また、クリアー塗装処理では、アクリル−メラ
ミン樹脂系の電着塗装,アクリル樹脂やフッ素樹脂系塗
料の吹付け塗装等によって、クリアー塗膜を形成する。
In the re-anodizing treatment, when immersed in phosphoric acid, a phosphoric acid-oxalic acid mixed solution, etc., the concentration is 100 g / l, and the bath temperature is 4
A condition of 0 ° C. and a soaking time of 5 minutes and a condition of a concentration of 10 g / l, a temperature of 20 ° C. and a soaking time of 1 minute are adopted when soaking in an alkaline bath. Further, in anodic electrolysis using phosphoric acid having a concentration of 100 g / l and a bath temperature of 20 ° C., a current density of 0.5 A / d
m 2 , electrolysis voltage of 50 to 150 V, electrolysis time of 1 minute are adopted. Further, it is also possible to use an aluminum material in which fine pores are elongated below the enlarged bottom pores as shown in the lower part of FIG. 3 by the fourth electrolytic coloring which is again anodized. The fourth electrolytic coloring strengthens the film structure and
Any color tone can be obtained. At this time, a bath of phosphoric acid, sulfuric acid, oxalic acid, sulfamic acid or the like which gives a porous film is used as an electrolytic bath. In the case of a sulfuric acid bath, a direct current density is 0.1 to 1 A / dm 2 , and an electrolysis voltage is 10 Electrolysis conditions of -20V and bath temperature 15-25 ° C are adopted. At this time, the anodic oxide film is adjusted to a thickness of 0.1 to 1 μm according to the color tone to be obtained again by the anodic oxidation treatment. When the sulfuric acid bath is used for the re-anodizing treatment again, it is preferable to perform sufficient water washing treatment thereafter. The aluminum material colored in this way is made into a product by a sealing treatment, a clear coating treatment or the like. In the sealing treatment, the aluminum material after the coloring treatment is immersed in a sealing treatment material bath containing high temperature water, a nickel salt-based compound or the like to improve the corrosion resistance. In the clear coating treatment, a clear coating film is formed by electrodeposition coating of acrylic-melamine resin, spray coating of acrylic resin or fluororesin coating, and the like.

【0011】[0011]

【作用】電解着色されるアルミニウム材料は、用途に応
じてたとえばビル用サッシのように複雑な形状をもった
ものが多い。このアルミニウム材料を電解着色槽1に入
れて電解着色するとき、図1に示すように、対極3に近
い部分Aのアルミニウム材料2には対極3から遠い部分
Bに比較して電流が流れ易く、電流密度はI1 >I2
関係になる。これを図2の電気的等価回路に沿って説明
すると、電解着色に影響を及ぼすファクターとしては溶
液抵抗R0 ,R1 及びバリヤー層のインピーダンスの合
計抵抗分がある。対極3に近い部分Aに関するもので
は、溶液抵抗R0 とバリヤー層のインピーダンスZ=
(R2 +X21/2 である。対極3から遠い部分Bに関
するものでは、溶液抵抗R0 +R1 とインピーダンスZ
である。両部分A,Bに関与する抵抗分を比較すると、
0 +Z<R0 +R1 +Zとなり、対極3に近い部分A
のアルミニウム材料2に関与する抵抗分が小さく、した
がってこの部分Aの方が電流が流れ易くなる。その結
果、電気量に比例する析出物の量に差が生じ、対極3に
近い部分Aでは濃色,対極3から遠い部分Bでは淡色に
なり、着色皮膜に色調の差が生じる。
Many aluminum materials to be electrolytically colored have a complicated shape, such as a building sash, depending on the application. When this aluminum material is placed in the electrolytic coloring tank 1 for electrolytic coloring, as shown in FIG. 1, a current easily flows through the aluminum material 2 in the portion A near the counter electrode 3 as compared with the portion B far from the counter electrode 3, The current density has a relation of I 1 > I 2 . This will be described along the electrical equivalent circuit of FIG. 2. Factors that influence electrolytic coloring include the total resistance of the solution resistances R 0 and R 1 and the impedance of the barrier layer. Regarding the portion A close to the counter electrode 3, the solution resistance R 0 and the barrier layer impedance Z =
(R 2 + X 2 ) 1/2 . Regarding the portion B far from the counter electrode 3, the solution resistance R 0 + R 1 and the impedance Z
It is. Comparing the resistances involved in both parts A and B,
R 0 + Z <R 0 + R 1 + Z, and the part A near the counter electrode 3
The amount of resistance related to the aluminum material 2 is small, so that the current flows more easily in this portion A. As a result, there is a difference in the amount of precipitates that is proportional to the amount of electricity, and the portion A near the counter electrode 3 is dark and the portion B far from the counter electrode 3 is light, resulting in a difference in color tone of the colored film.

【0012】本発明では、バリヤー層を厚くすることに
よって、このような対極3からアルミニウム材料2まで
の距離差に起因する溶液抵抗の影響を無視できる程度の
相対的に小さくすることを可能にしている。すなわち、
バリヤー層を厚くすることにより、バリヤー層の抵抗R
を大きく、すなわちインピーダンスZを極力大きい値に
調整する。これにより、Z》R0 +R1 >R1 で、アル
ミニウム材料2の近い部分A,遠い部分Bに関与する抵
抗分がR0 +Z≒R0 +R1 +Zとなり、両部分A,B
での電流密度がI1 ≒I2 になる。その結果、電解着色
後の表面が均一な色調を呈する。通常の浴組成範囲での
溶液抵抗を無視できる程度に相対的に小さくするために
は、バリヤー層を50nm以上の厚みで成長させること
が必要である。しかし、従来の電解浴組成ではスポーリ
ング等の皮膜破壊が生じ、着色が不可能となることか
ら、バリヤー層の厚みは15nm程度であった。バリヤ
ー層の厚みに関する制約は、硫酸イオンを含む電解浴を
使用することが原因である。すなわち、バリヤー層は、
無定形のアルミナの中に電解液のアニオンが部分的に偏
在した構造もち、硫酸電解液を使用すると多孔質皮膜の
外層部に硫酸イオンが多く、アルミニウム側が純粋なア
ルミナになっている。そして、硫酸電解液の場合には、
アニオン混入層の厚みが他の電解質より厚くなり且つア
ルミナに対する溶解性が強いため、高電圧での電解がで
きず、バリヤー層の厚みを15nm以上に厚く成長させ
ることができなかった。
In the present invention, by thickening the barrier layer, it is possible to make the influence of the solution resistance due to the difference in distance from the counter electrode 3 to the aluminum material 2 relatively small to a negligible extent. There is. That is,
By increasing the thickness of the barrier layer, the resistance R of the barrier layer is increased.
Is made large, that is, the impedance Z is adjusted to a value as large as possible. As a result, when Z >> R 0 + R 1 > R 1 , the resistance component relating to the near portion A and the far portion B of the aluminum material 2 becomes R 0 + Z≈R 0 + R 1 + Z, and both portions A and B
The current density at is I 1 ≈I 2 . As a result, the surface after electrolytic coloring has a uniform color tone. In order to make the solution resistance in the usual bath composition range relatively small so that it can be ignored, it is necessary to grow the barrier layer to a thickness of 50 nm or more. However, in the conventional electrolytic bath composition, film destruction such as spalling occurs and coloring becomes impossible. Therefore, the thickness of the barrier layer was about 15 nm. The limitation on the thickness of the barrier layer is due to the use of an electrolytic bath containing sulfate ions. That is, the barrier layer is
It has a structure in which the anions of the electrolytic solution are partially unevenly distributed in the amorphous alumina, and when the sulfuric acid electrolytic solution is used, the outer layer portion of the porous film has many sulfate ions, and the aluminum side is pure alumina. And in the case of sulfuric acid electrolyte,
Since the thickness of the anion-mixed layer was thicker than that of the other electrolytes and had a high solubility in alumina, electrolysis at a high voltage was not possible and the barrier layer could not be grown thicker than 15 nm.

【0013】これに対し、本発明では、硫酸イオンを含
まない組成をもつ電解浴を使用することにより、高電圧
でも電解できることを見い出した。これは、硫酸を含ま
ないことから、生成した皮膜が溶解しがたいことに起因
する。たとえば、スルファミン酸系の電解浴は、硫酸に
比較してスルファミン酸の分子が大きいことからバリヤ
ー層に入り難いことに加えて、酸性度が非常に弱く、皮
膜を溶解する力が小さい。また、バリヤー層を厚く成長
させているため、酸性雨等に対してバリヤー層が早期に
溶解することがなくなり、アルミニウム素地の腐食が抑
制される。ただし、バリヤー層が150nmを超える厚
みになると、スポーリングの発生により着色後の色調に
ムラが発生し易くなる。また、再陽極酸化皮膜処理によ
って微細孔の底部を拡大することにより、材料や電解条
件の変動による着色不均一性発生をよりよく抑制し、更
に拡大された底部の下に更に微細孔を形成することによ
って、同一浴を使用しながら析出金属量の違いにより多
彩な着色状態を得ることができるようになる。
On the other hand, in the present invention, it was found that electrolysis can be performed even at a high voltage by using an electrolytic bath having a composition containing no sulfate ion. This is because the generated film is difficult to dissolve because it does not contain sulfuric acid. For example, a sulfamic acid-based electrolytic bath has a large molecule of sulfamic acid as compared with sulfuric acid, and thus is difficult to enter the barrier layer, and also has a very weak acidity and a small ability to dissolve a film. Further, since the barrier layer is grown thick, the barrier layer does not dissolve early in acid rain or the like, and corrosion of the aluminum substrate is suppressed. However, when the barrier layer has a thickness of more than 150 nm, the color tone after coloring tends to be uneven due to spalling. Further, by expanding the bottom of the micropores by re-anodizing film treatment, it is possible to better suppress the occurrence of coloring non-uniformity due to changes in materials and electrolysis conditions, and to form further micropores under the expanded bottom. As a result, it becomes possible to obtain various colored states due to the difference in the amount of deposited metal while using the same bath.

【0014】[0014]

【実施形態】Embodiment

実施例1:被着色アルミニウム供試材料として、図4に
示すように凹凸のあるアルミニウム合金A6063T6
の押出し形材を使用した。幅300mm,長さ500m
m,深さ300mmの電解槽に160g/l濃度の硫酸
液を入れ、20℃に保持した。この硫酸浴中でアルミニ
ウム材料を陽極とし、電流密度1.5A/dm2 で30
分間電解し、直径10nmの微細孔をもつ厚み13μm
の陽極酸化皮膜を形成した。水洗後、スルファミン酸ニ
ッケル100g/l,硼酸50g/l,酒石酸2g/l
を含む浴温20℃の着色浴中で、第1段階としてアルミ
ニウム材料を陽極とし、直流定電流0.3A/dm2
電圧が70Vになるまで電解した。これにより、厚み7
0nmのバリヤー層が形成された。引き続き、同じ浴中
で第2段階として矩形波交流(10Hz,実効電流密度
0.3A/dm2 ,ピーク電圧70V)で2分間電解し
た。着色後のアルミニウム材料について、図4のA点及
びB点で色彩を調査したところ、A点ではL* =45.
1,a* =4.3,b* =9.5、B点ではL* =4
5.7,a* =4.6,b* =9.8であった。色差
は、ΔE* ab =[(LA *−LB *2 ]+[(aA *
B *2 ]+[(bA *−bB *21/2 =0.7であっ
た。すなわち、目視判定できる限界値である1〜3の値
より小さく、アルミニウム材料の色調が均一に仕上がっ
ていることが確認された。
Example 1: As an aluminum test material to be colored, an aluminum alloy A6063T 6 having irregularities as shown in FIG. 4 was used.
The extruded profile was used. Width 300 mm, length 500 m
A sulfuric acid solution having a concentration of 160 g / l was put into an electrolytic cell having a depth of 300 mm and a depth of 300 mm and kept at 20 ° C. The aluminum material is used as the anode in this sulfuric acid bath, and the current density is 30 A at a current density of 1.5 A / dm 2 .
Electrolyzed for 10 minutes and has micropores with a diameter of 10 nm and a thickness of 13 μm
An anodic oxide film was formed. After washing with water, nickel sulfamate 100 g / l, boric acid 50 g / l, tartaric acid 2 g / l
In a coloring bath having a bath temperature of 20 ° C., the aluminum material was used as an anode in the first step, and electrolysis was performed at a DC constant current of 0.3 A / dm 2 until the voltage reached 70 V. This gives a thickness of 7
A 0 nm barrier layer was formed. Subsequently, in the same bath, electrolysis was carried out for 2 minutes with a rectangular wave alternating current (10 Hz, effective current density 0.3 A / dm 2 , peak voltage 70 V) as the second step. When the color of the colored aluminum material was examined at points A and B in FIG. 4, L * = 45.
1, a * = 4.3, b * = 9.5, L * = 4 at point B
It was 5.7, a * = 4.6, b * = 9.8. Color difference, ΔE * ab = [(L A * -L B *) 2] + [(a A * -
a B *) 2] + [ (b A * -b B *) 2] was 1/2 = 0.7. That is, it was confirmed that the color tone of the aluminum material was smaller than the limit value of 1 to 3, which is the visually determinable limit value, and that the color tone of the aluminum material was finished uniformly.

【0015】実施例2:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、実施例1と同じ20℃の着色浴中で、第1段階
としてアルミニウム材料を陽極とし直流定電流0.3A
/dm2 で電圧が60Vになるまで電解し、60nm厚
みのバリヤー層を形成した。引き続き同じ浴中で、第2
段階として電流密度0.15A/dm2 ,3分間の直流
カソード電解を実施した。着色後のアルミニウム材料に
ついて、図4のA点及びB点で色彩を調査したところ、
A点ではL* =61.3,a* =2.9,b* =4.
9、B点ではL* =62.0,a* =3.2,b*
4.9であり、両者共に淡褐色の色調を呈していた。色
差は、ΔE* ab =0.8であり、目視判定できる限界値
1〜3より小さく、アルミニウム材料の色調が均一に仕
上がっていることが確認された。
Example 2 The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then, in the same coloring bath at 20 ° C. as in Example 1, the first step was to use an aluminum material as an anode and a DC constant current of 0.3 A.
Electrolysis was performed at a voltage of / dm 2 to a voltage of 60 V to form a barrier layer having a thickness of 60 nm. Continue in the same bath, second
As a step, DC cathode electrolysis was performed at a current density of 0.15 A / dm 2 for 3 minutes. When the color of the colored aluminum material was examined at points A and B in FIG. 4,
At point A, L * = 61.3, a * = 2.9, b * = 4.
At point 9 and B, L * = 62.0, a * = 3.2, b * =
It was 4.9, and both had a light brown color tone. The color difference was ΔE * ab = 0.8, which was smaller than the visually permissible limit values 1 to 3, and it was confirmed that the color tone of the aluminum material was finished uniformly.

【0016】実施例3:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、リン酸コバルト50g/l,硼酸30g/l,
酒石酸2g/l,水酸化マグネシウム1g/lを含む2
0℃の着色浴中で、第1段階としてアルミニウム材料を
陽極とし直流定電流0.2A/dm2 で電圧が90Vに
なるまで電解し、90nm厚みのバリヤー層を形成し
た。引き続き同じ浴中で、第2段階として正弦波交流
(5Hz,実効電流密度0.2A/dm2 ,ピーク電圧
90V)で4分間の電解を実施した。着色後のアルミニ
ウム材料について、図4のA点及びB点で色彩を調査し
たところ、A点ではL* =30.4,a* =5.2,b
* =10.3、B点ではL*=30.6,a* =5.
1,b* =10.1であり、両者共に濃褐色の色調を呈
していた。色差は、ΔE* ab =0.3であり、目視判定
できる限界値1〜3より小さく、アルミニウム材料の色
調が均一に仕上がっていることが確認された。
Example 3: The same electrolytic cell and aluminum material as in Example 1 were used, and similarly anodized.
Next, cobalt phosphate 50 g / l, boric acid 30 g / l,
2 including tartaric acid 2g / l and magnesium hydroxide 1g / l
In a coloring bath at 0 ° C., as a first step, an aluminum material was used as an anode and electrolysis was performed at a DC constant current of 0.2 A / dm 2 until the voltage reached 90 V, to form a barrier layer having a thickness of 90 nm. Subsequently, in the same bath, electrolysis was performed as a second step with a sinusoidal alternating current (5 Hz, effective current density 0.2 A / dm 2 , peak voltage 90 V) for 4 minutes. When the color of the colored aluminum material was examined at points A and B in FIG. 4, L * = 30.4, a * = 5.2, b at point A
* = 10.3, L * = 30.6 at point B, a * = 5.
1, b * = 10.1, and both had a dark brown color tone. The color difference was ΔE * ab = 0.3, which was smaller than the visually discriminable limit values 1 to 3, and it was confirmed that the color tone of the aluminum material was finished uniformly.

【0017】実施例4:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、スルファミン酸ニッケル50g/l,リン酸コ
バルト20g/l,硼酸50g/l,酒石酸2g/lを
含む20℃の着色浴中で、第1段階としてアルミニウム
材料を陽極とし直流定電流0.3A/dm2 で電圧が9
0Vになるまで電解し、90nm厚みのバリヤー層を形
成した。引き続き同じ浴中で、第2段階として矩形波交
流(10Hz,定電圧,ピーク電圧90V)で2分間電
解した。着色後のアルミニウム材料について、図4のA
点及びB点で色彩を調査したところ、A点ではL* =7
4.4,a* =3.6,b* =5.4、B点ではL*
74.0,a* =3.5,b* =5.2であり、両者共
に淡褐色の色調を呈していた。色差は、ΔE* ab =0.
5であり、目視判定できる限界値1〜3より小さく、ア
ルミニウム材料の色調が均一に仕上がっていることが確
認された。
Example 4 The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then, in a coloring bath containing nickel sulfamate 50 g / l, cobalt phosphate 20 g / l, boric acid 50 g / l and tartaric acid 2 g / l at 20 ° C., the first step was to use an aluminum material as an anode and a DC constant current of 0.3 A. / Dm 2 and voltage is 9
Electrolysis was carried out to 0 V to form a barrier layer having a thickness of 90 nm. Subsequently, in the same bath, as a second step, electrolysis was performed for 2 minutes with a rectangular wave alternating current (10 Hz, constant voltage, peak voltage 90 V). Regarding the aluminum material after coloring, FIG.
When the color was examined at points A and B, L * = 7 at point A
4.4, a * = 3.6, b * = 5.4, L * = B point
74.0, a * = 3.5, b * = 5.2, both of which had a light brown color tone. The color difference is ΔE * ab = 0.
It was 5 which is smaller than the limit value 1 to 3 that can be visually judged, and it was confirmed that the color tone of the aluminum material was finished uniformly.

【0018】実施例5:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、リン酸100g/lを含む20℃の溶液中で、
アルミニウム材料を陽極とし直流20Vで2分間アノー
ド電解し、皮膜中の微細孔底部の長さ50nmの部分を
径30nmに拡大した。再陽極酸化処理された皮膜を、
実施例1と同じ20℃の着色浴中で、第1段階としてア
ルミニウム材料を陽極とし、直流定電流0.3A/dm
2 で電圧が80Vになるまで電解し、80nm厚みのバ
リヤー層を形成した。引き続き同じ浴中で、第2段階と
して矩形波交流(10Hz,実効電流密度0.3A/d
2 ,ピーク電圧80V)で2分間電解した。着色後の
アルミニウム材料について、図4のA点及びB点で色彩
を調査したところ、A点ではL* =61.7,a* =−
1.4,b* =−4.6、B点ではL* =62.0,a
* =−1.4,b* =−5.1であり、両者共に灰青色
の色調を呈していた。色差は、ΔE* ab =0.6であ
り、目視判定の限界値1〜3より小さく、アルミニウム
材料の色調が均一に仕上がっていることが確認された。
Example 5: The same electrolytic cell and aluminum material as in Example 1 were used, and similarly anodized.
Then, in a solution at 20 ° C. containing 100 g / l phosphoric acid,
The aluminum material was used as an anode and subjected to anodic electrolysis at a direct current of 20 V for 2 minutes to expand the portion of the bottom of the micropores having a length of 50 nm to a diameter of 30 nm. The re-anodized film,
In the same coloring bath at 20 ° C. as in Example 1, the first step was to use an aluminum material as an anode and a constant DC current of 0.3 A / dm 2.
Electrolysis was performed at 2 until the voltage reached 80 V to form a barrier layer having a thickness of 80 nm. Subsequently, in the same bath, as a second step, a rectangular wave alternating current (10 Hz, effective current density 0.3 A / d
Electrolysis was carried out for 2 minutes at m 2 and peak voltage of 80V. The color of the colored aluminum material was examined at points A and B in FIG. 4, and L * = 61.7, a * = − at point A.
1.4, b * =-4.6, L * = 62.0 at point B, a
* =-1.4 and b * =-5.1, and both had a gray-blue color tone. The color difference was ΔE * ab = 0.6, which was smaller than the visual judgment limit values 1 to 3, and it was confirmed that the color tone of the aluminum material was finished uniformly.

【0019】実施例6:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、酒石酸50g/lを含む35℃の溶液中で、直
流20Vで4分間アノード電解し、皮膜中の微細孔底部
の長さ100nmの部分を径30nmに拡大した。再陽
極酸化処理された皮膜を、実施例1と同じ20℃の着色
浴中で、第1段階としてアルミニウム材料を陽極とし、
直流定電流0.3A/dm2 で電圧が110Vになるま
で電解し、110nm厚みのバリヤー層を形成した。引
き続き同じ浴中で、第2段階として矩形波交流(10H
z,ピーク電圧110V)で3分間電解した。着色後の
アルミニウム材料について、図4のA点及びB点で色彩
を調査したところ、A点ではL* =53.2,a*
0.6,b* =−18.5、B点ではL* =53.5,
* =0.7,b* =−18.0であり、両者共に青色
の色調を呈していた。色差は、ΔE* ab =0.6で、目
視判定の限界値1〜3より小さく、アルミニウム材料の
色調が均一に仕上がっていることが確認された。
Example 6 The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then, in a solution of tartaric acid (50 g / l) at 35 ° C., anodic electrolysis was carried out at a direct current of 20 V for 4 minutes to expand a portion of the bottom of the micropores having a length of 100 nm to a diameter of 30 nm. The re-anodized film was anodized with an aluminum material as the first step in the same coloring bath at 20 ° C. as in Example 1,
Electrolysis was performed at a DC constant current of 0.3 A / dm 2 until the voltage reached 110 V to form a barrier layer having a thickness of 110 nm. Then, in the same bath, square wave alternating current (10H
Electrolysis was performed for 3 minutes at z and peak voltage of 110 V). The color of the colored aluminum material was examined at points A and B in FIG. 4, and at the point A, L * = 53.2, a * =
0.6, b * =-18.5, L * = 53.5 at point B,
a * = 0.7 and b * =-18.0, both of which had a blue color tone. The color difference was ΔE * ab = 0.6, which was smaller than the visual determination limit values 1 to 3, and it was confirmed that the color tone of the aluminum material was finished uniformly.

【0020】実施例7:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、水酸化ナトリウム5g/lを含む15℃の溶液
中で、直流15Vで1分間アノード電解し、皮膜中の微
細孔底部の長さ30nmの部分を径30nmに拡大し
た。再陽極酸化処理された皮膜を、実施例1と同じ20
℃の着色浴中で、第1段階としてアルミニウム材料を陽
極とし、直流定電流0.3A/dm 2 で電圧が120V
になるまで電解し、120nm厚みのバリヤー層を形成
した。引き続き同じ浴中で、第2段階として矩形波交流
(10Hz,ピーク電圧120V)で3分間電解した。
着色後のアルミニウム材料について、図4のA点及びB
点で色彩を調査したところ、A点ではL* =65.8,
* =−5.9,b* =9.3、B点ではL*=66.
3,a* =−6.0,b* =9.5であり、両者共に黄
緑色の色調を呈していた。色差は、ΔE* ab =0.5
で、目視判定の限界値1〜3より小さく、アルミニウム
材料の色調が均一に仕上がっていることが確認された。
Example 7: The same electrolytic cell and aluminum as in Example 1
A minium material was used and similarly anodized.
Then, a solution containing 5 g / l of sodium hydroxide at 15 ° C.
Anode electrolysis at DC 15V for 1 minute in
Expand the bottom of the pores with a length of 30 nm to a diameter of 30 nm.
Was. The same film as in Example 1 was used after the re-anodizing treatment.
The aluminum material is exposed to the first step in a coloring bath at ℃.
DC pole constant current 0.3A / dm Two And the voltage is 120V
To form a barrier layer with a thickness of 120 nm
did. Square wave alternating current as the second step in the same bath
Electrolysis was performed at (10 Hz, peak voltage 120 V) for 3 minutes.
Regarding the aluminum material after coloring, points A and B in FIG.
When the color was examined at point A, L at point A* = 65.8,
a* = -5.9, b* = 9.3, L at point B*= 66.
3, a* = -6.0, b* = 9.5 and both are yellow
It had a green hue. Color difference is ΔE* ab = 0.5
Is less than the visual judgment limit values 1 to 3, and aluminum
It was confirmed that the color tone of the material was finished uniformly.

【0021】実施例8:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、リン酸100g/lを含む15℃の溶液中で、
直流20Vで2分間アノード電解し、皮膜中の微細孔底
部の長さ50nmの部分を径30nmに拡大した。引き
続き、硫酸150g/lの浴温20℃の浴中で直流定電
流0.5A/dm2 で50秒間アノード電解し、拡大さ
れた底部ポアーの下に更に直径10nmで深さ120n
mの再々陽極酸化皮膜を形成し、十分に水洗処理した。
次いで、実施例1と同じ20℃の着色浴中で、第1段階
としてアルミニウム材料を陽極とし、直流定電流0.3
A/dm2 で電圧が120Vになるまで電解し、120
nm厚みのバリヤー層を形成した。引き続き同じ浴中
で、第2段階として矩形波交流(10Hz,ピーク電圧
120V)で3分間電解した。着色後のアルミニウム材
料について、図4のA点及びB点で色彩を調査したとこ
ろ、A点ではL* =63.6,a* =−0.5,b*
17.7、B点ではL* =63.1,a* =−0.4,
* =17.2であり、両者共に黄色の色調を呈してい
た。色差は、ΔE* ab =0.7で、目視判定の限界値1
〜3より小さく、アルミニウム材料の色調が均一に仕上
がっていることが確認された。
Example 8: The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then in a solution containing 100 g / l phosphoric acid at 15 ° C.,
Anodic electrolysis was carried out for 2 minutes at a direct current of 20 V, and a portion having a length of 50 nm at the bottom of the micropores in the coating was expanded to a diameter of 30 nm. Successively, anodic electrolysis was carried out for 50 seconds in a constant current of 0.5 A / dm 2 in a bath of sulfuric acid 150 g / l at a bath temperature of 20 ° C., and further 10 nm in diameter and 120 n in depth under the expanded bottom pore.
Then, a re-anodized film of m was formed again and washed thoroughly with water.
Then, in the same coloring bath as in Example 1 at 20 ° C., the aluminum material was used as an anode in the first step, and a DC constant current of 0.3 was used.
Electrolyze until the voltage reaches 120 V at A / dm 2 , then 120
A barrier layer having a thickness of nm was formed. Subsequently, in the same bath, electrolysis was performed for 3 minutes with a rectangular wave alternating current (10 Hz, peak voltage 120 V) as the second step. When the color of the colored aluminum material was examined at points A and B in FIG. 4, L * = 63.6, a * =-0.5, b * = at point A
17.7, L * = 63.1, a * =-0.4 at point B,
b * = 17.2, and both had a yellow color tone. The color difference is ΔE * ab = 0.7, which is the limit value 1 of visual judgment.
It was confirmed that the color tone of the aluminum material was smaller than 3 and the color tone of the aluminum material was finished uniformly.

【0022】比較例1:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、硫酸ニッケル100g/l,硼酸50g/l,
酒石酸2g/lを含む20℃の着色浴中で、第1段階と
してアルミニウム材料を陽極とし直流定電流0.3A/
dm2 で電圧が70Vになるまで電解しようとしたとこ
ろ、ピッティングにより皮膜破壊が発生し、45Vまで
しか電解電圧を上げられなかった。そのため、同じ浴中
で、第2段階の着色電解を中止せざるをえず、着色皮膜
が得られなかった。
Comparative Example 1: The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Next, nickel sulfate 100 g / l, boric acid 50 g / l,
In a coloring bath containing 20 g of tartaric acid at 20 ° C., the first step is to use an aluminum material as an anode and a constant DC current of 0.3 A /
When electrolysis was attempted until the voltage reached 70 V at dm 2 , the film was broken by pitting and the electrolysis voltage could only be increased to 45 V. Therefore, the colored electrolysis in the second stage had to be stopped in the same bath, and a colored film could not be obtained.

【0023】比較例2:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、比較例1と同じ20℃の硫酸ニッケル着色浴中
で、第1段階としてアルミニウム材料を陽極とし直流定
電流0.3A/dm2 で電圧が40Vになるまで電解
し、40nm厚みのバリヤー層を形成した。引き続き同
じ浴中で、第2段階として矩形波交流(10Hz,実効
電流密度0.3A/dm2 ,ピーク電圧40V)で2分
間電解した。着色後のアルミニウム材料について、図4
のA点及びB点で色彩を調査したところ、A点ではL*
=35.1,a* =4.8,b* =10.3の濃褐色、
B点ではL* =40.1,a* =3.3,b* =9.8
の褐色であった。色差は、ΔE* ab =5.2であり、明
らかな色ムラが発生していた。
Comparative Example 2: The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then, in the same nickel sulfate coloring bath at 20 ° C. as in Comparative Example 1, as a first step, an aluminum material was used as an anode and electrolysis was performed at a DC constant current of 0.3 A / dm 2 until the voltage reached 40 V, and a barrier layer having a thickness of 40 nm was used. Was formed. Subsequently, in the same bath, as a second step, electrolysis was performed for 2 minutes with a rectangular wave alternating current (10 Hz, effective current density 0.3 A / dm 2 , peak voltage 40 V). FIG. 4 shows the colored aluminum material.
When the color was examined at points A and B, L point L *
= 35.1, a * = 4.8, b * = 10.3 dark brown,
At point B, L * = 40.1, a * = 3.3, b * = 9.8.
It was brown. The color difference was ΔE * ab = 5.2, and obvious color unevenness occurred.

【0024】比較例3:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
次いで、リン酸100g/lを含む20℃の浴中で20
V,2分間アノード電解した。再陽極酸化処理された皮
膜を、硫酸コバルト30g/l,硫酸マグネシウム15
g/l,硼酸15g/lを含む20℃の着色浴中で、第
1段階としてアルミニウム材料を陽極とし直流定電流
0.3A/dm2 で電圧が80Vになるまで電解しよう
としたところ、ピッティングにより皮膜破壊が発生し、
45Vまでしか電解電圧を上げられなかった。そのた
め、同じ浴中で、第2段階の着色電解を中止せざるをえ
ず、着色皮膜が得られなかった。
Comparative Example 3: The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
Then, in a bath at 20 ° C. containing 100 g / l phosphoric acid, 20
Anodic electrolysis was performed for 2 minutes for V. Cobalt sulfate 30g / l, magnesium sulfate 15
In a coloring bath containing 20 g / l of boric acid and 15 g / l of boric acid, the first step was to use an aluminum material as an anode and electrolysis at a DC constant current of 0.3 A / dm 2 until the voltage reached 80 V. Coating damage due to coating,
The electrolysis voltage could only be increased up to 45V. Therefore, the colored electrolysis in the second stage had to be stopped in the same bath, and a colored film could not be obtained.

【0025】比較例4:実施例1と同じ電解槽及びアル
ミニウム材料を使用し、同様に陽極酸化処理を施した。
陽極酸化皮膜を、リン酸100g/lを含む15℃の溶
液中で直流20Vで2分間アノード電解し、微細孔の底
部50nmの長さの部分を直径30nmに拡大した。次
いで、硫酸150g/lを含む20℃の浴中で直流0.
5A/dm2 ,50秒のアノード電解を施し、直径10
nm,長さ120nmの微細孔を形成した。そして、硫
酸ニッケル50g/l,硼酸50g/lを含む20℃の
着色浴を使用し、第1段階としてアルミニウム材料を陽
極とし直流定電流0.3A/dm2 で電圧が30Vにな
るまで電解し、30nm厚みのバリヤー層を形成した。
引き続き同じ浴中で、第2段階として矩形波交流(10
Hz,ピーク電圧30V)で3分間電解した。着色後の
アルミニウム材料について、図4のA点及びB点で色彩
を調査したところ、A点ではL* =41.3,a* =−
7.4,b* =0.3の濃緑色、B点ではL* =40.
8,a* =0.3,b* =−6.9の濃青色であった。
色差は、ΔE* ab =10.6であり、明らかに異なった
色彩が混在し、不均一な着色であった。
Comparative Example 4: The same electrolytic cell and aluminum material as in Example 1 were used, and anodizing treatment was similarly performed.
The anodic oxide film was subjected to anodic electrolysis for 2 minutes at a direct current of 20 V in a solution containing phosphoric acid of 100 g / l at 15 ° C., and the bottom portion of the micropores having a length of 50 nm was enlarged to a diameter of 30 nm. Then a direct current of 0.
Anode electrolysis was performed at 5 A / dm 2 for 50 seconds and the diameter was 10
nm and a length of 120 nm were formed. Then, using a coloring bath containing nickel sulfate 50 g / l and boric acid 50 g / l at 20 ° C., the first step is to use an aluminum material as an anode and electrolyze at a constant DC current of 0.3 A / dm 2 until the voltage reaches 30 V. , A 30 nm thick barrier layer was formed.
Then, in the same bath, a rectangular wave alternating current (10
Electrolysis was performed for 3 minutes at 30 Hz and a peak voltage of 30 V). When the color of the colored aluminum material was examined at points A and B in FIG. 4, L * = 41.3, a * = − at point A
7.4, b * = 0.3 dark green, and L * = 40.
The dark blue color was 8, a * = 0.3 and b * =-6.9.
The color difference was ΔE * ab = 10.6, clearly different colors were mixed, and the coloring was uneven.

【0026】以上の各例で処理されたアルミニウム材料
について、JISH8681及びJISH8601に準
じたキャス耐食性試験により耐食性を調査した。調査結
果をレイティングナンバとして表1に示す。なお、レイ
ティングナンバは、腐食面積率に対応した数値で表さ
れ、高い数値が耐食性に優れていることを示す。表1か
ら明らかなように、本発明に従って着色された試験片
は、比較例の供試材に比べて耐食性に優れていることが
判る。
The corrosion resistance of the aluminum material treated in each of the above examples was investigated by the Cass corrosion resistance test according to JIS H8681 and JIS H8601. The survey results are shown in Table 1 as rating numbers. The rating number is represented by a numerical value corresponding to the corrosion area ratio, and a high numerical value indicates that the corrosion resistance is excellent. As is clear from Table 1, the test pieces colored according to the present invention are superior in corrosion resistance to the test materials of Comparative Examples.

【0027】 [0027]

【0028】また、実施例4,8及び比較例2,4で着
色したアルミニウム材料を95℃の純水中に30分間浸
漬し、陽極酸化皮膜の微細孔を封孔処理した。封孔処理
後の各試料について、絶縁電圧測定装置を使用し、温度
25℃,相対湿度60%の室内で絶縁破壊電圧を測定し
た。なお、絶縁破壊電圧は、皮膜に交流電圧を徐々に印
加し、電流が急激に流れたときの電圧で求めた。調査結
果を表2に示す。実施例4と比較例2、及び実施例8と
比較例4は、着色処理以外は全て同じ条件で処理された
ものである。しかし、表2にみられるように、実施例
4,8は、比較例2,4に比べて高い絶縁破壊電圧を示
している。このことから、本発明に従って着色処理され
たアルミニウム材料は、耐電圧が要求される電気部等と
して使用できることも判る。
Further, the aluminum materials colored in Examples 4 and 8 and Comparative Examples 2 and 4 were immersed in pure water at 95 ° C. for 30 minutes to seal the fine pores of the anodic oxide film. With respect to each sample after the sealing treatment, the insulation breakdown voltage was measured in a room at a temperature of 25 ° C. and a relative humidity of 60% using an insulation voltage measuring device. The dielectric breakdown voltage was obtained by applying an alternating voltage to the film gradually and causing a current to flow rapidly. Table 2 shows the survey results. Example 4 and Comparative Example 2 and Example 8 and Comparative Example 4 were all treated under the same conditions except for the coloring treatment. However, as seen in Table 2, Examples 4 and 8 show higher dielectric breakdown voltage than Comparative Examples 2 and 4. From this, it is also understood that the aluminum material colored according to the present invention can be used as an electric part or the like requiring a withstand voltage.

【0029】 [0029]

【0030】[0030]

【発明の効果】以上に説明したように、本発明において
は、硫酸塩を含まない着色液を使用し、バリヤー層を5
0〜150nmと厚く成長させた皮膜を着色電解するこ
とにより、色ムラのない安定した色調を発現させると共
に、耐食性を向上させている。このようにして得られた
色調が均一化した着色皮膜をもつアルミニウム材料は、
建材を初めとする各種分野で使用される。また、耐電圧
特性も優れていることから、電気部品等の材料としても
使用される。更に電解着色処理により金属が析出充填さ
れる微細孔の構造を変えることによって、着色均一性の
レベルを向上させたり、着色状態の多様化を併せて達成
することができる。
As described above, in the present invention, a coloring liquid containing no sulfate is used, and a barrier layer of 5 is used.
By coloring and electrolyzing a film grown to a thickness of 0 to 150 nm, a stable color tone without color unevenness is developed and corrosion resistance is improved. The aluminum material having a colored film having a uniform color tone thus obtained is
Used in various fields such as building materials. Further, since it has excellent withstand voltage characteristics, it is also used as a material for electric parts and the like. Further, by changing the structure of the fine pores in which the metal is deposited and filled by the electrolytic coloring treatment, it is possible to improve the level of coloring uniformity and achieve diversification of coloring states.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電解着色中にアルミニウム材料と対極間の距
離に応じて電流密度が異なることを説明する図
FIG. 1 is a diagram illustrating that the current density varies depending on the distance between the aluminum material and the counter electrode during electrolytic coloring.

【図2】 電流密度の相違を電気的等価回路で説明する
FIG. 2 is a diagram for explaining a difference in current density with an electrical equivalent circuit.

【図3】 陽極酸化皮膜にある微細孔の形状変化及び着
色用の金属析出状態を各電解着色法ごとに説明する図表
FIG. 3 is a chart for explaining the shape change of fine pores in an anodized film and the state of metal deposition for coloring for each electrolytic coloring method.

【図4】 実施例で使用したアルミニウム供試材料を示
す斜視図
FIG. 4 is a perspective view showing an aluminum test material used in Examples.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燐酸,クロム酸,硼酸,スルファミン
酸,蓚酸,クエン酸から選ばれた1種又は2種以上の金
属塩を含み、硫酸塩を含まない着色電解液に予め多孔質
陽極酸化皮膜を形成したアルミニウム材料を浸漬し、5
0〜150Vの直流アノード電解で50〜150nm厚
みの硫酸イオンを含まないバリヤー層を形成し、次いで
同一溶液中で前記アルミニウム材料を直流カソード電解
又は交流電解することを特徴とするアルミニウム材料の
電解着色方法。
1. A colored anolyte film containing a sulphate-free colored electrolyte containing one or more kinds of metal salts selected from phosphoric acid, chromic acid, boric acid, sulfamic acid, oxalic acid and citric acid and containing no sulfate. The aluminum material on which the
Electrolytic coloring of an aluminum material, characterized in that a barrier layer containing no sulfate ion having a thickness of 50 to 150 nm is formed by direct current anode electrolysis of 0 to 150 V, and then the aluminum material is subjected to direct cathodic electrolysis or alternating current electrolysis in the same solution. Method.
【請求項2】 多孔質陽極酸化皮膜が形成されたアルミ
ニウム材料を酸又はアルカリ溶液中で再陽極酸化処理し
て微細孔の底部を拡大した後、請求項1記載の電解着色
を行うアルミニウム材料の電解着色方法。
2. An aluminum material on which a porous anodic oxide film is formed is re-anodized in an acid or alkali solution to enlarge the bottom of the fine pores, and then the aluminum material to be electrolytically colored according to claim 1. Electrolytic coloring method.
【請求項3】 多孔質陽極酸化皮膜が形成されたアルミ
ニウム材料を酸又はアルカリ溶液中で再陽極酸化処理し
て微細孔の底部を拡大した後、更に微細孔を長くする再
々陽極酸化処理を施した後、請求項1記載の電解着色を
行うアルミニウム材料の電解着色方法。
3. An aluminum material on which a porous anodic oxide film is formed is reanodized in an acid or alkali solution to enlarge the bottom of the micropores, and then re-anodizing treatment to further lengthen the micropores. A method for electrolytically coloring an aluminum material, wherein the electrolytic coloring is performed according to claim 1.
JP31961895A 1995-11-14 1995-11-14 Method for electrolytically coloring aluminum material Pending JPH09143795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31961895A JPH09143795A (en) 1995-11-14 1995-11-14 Method for electrolytically coloring aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31961895A JPH09143795A (en) 1995-11-14 1995-11-14 Method for electrolytically coloring aluminum material

Publications (1)

Publication Number Publication Date
JPH09143795A true JPH09143795A (en) 1997-06-03

Family

ID=18112301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31961895A Pending JPH09143795A (en) 1995-11-14 1995-11-14 Method for electrolytically coloring aluminum material

Country Status (1)

Country Link
JP (1) JPH09143795A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089231A (en) * 2008-10-10 2010-04-22 shu-yuan Xie Connection member for tool
CN102312262A (en) * 2011-08-22 2012-01-11 吴江市精工铝字制造厂 Hard anodization method of mixed acid of copper aluminium alloy
CN106400083A (en) * 2016-09-26 2017-02-15 兴科电子科技有限公司 Surface treatment method for highlight edge of aluminum alloy mobile phone shell
US20170121837A1 (en) * 2015-10-30 2017-05-04 Apple Inc. Anodic films for high performance aluminum alloys
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089231A (en) * 2008-10-10 2010-04-22 shu-yuan Xie Connection member for tool
CN102312262A (en) * 2011-08-22 2012-01-11 吴江市精工铝字制造厂 Hard anodization method of mixed acid of copper aluminium alloy
US11131036B2 (en) 2013-09-27 2021-09-28 Apple Inc. Cosmetic anodic oxide coatings
US20170121837A1 (en) * 2015-10-30 2017-05-04 Apple Inc. Anodic films for high performance aluminum alloys
JP2018531325A (en) * 2015-10-30 2018-10-25 アップル インコーポレイテッドApple Inc. Anode coating with improved characteristics
US10760175B2 (en) 2015-10-30 2020-09-01 Apple Inc. White anodic films with multiple layers
US10781529B2 (en) 2015-10-30 2020-09-22 Apple Inc. Anodized films with pigment coloring
CN106400083A (en) * 2016-09-26 2017-02-15 兴科电子科技有限公司 Surface treatment method for highlight edge of aluminum alloy mobile phone shell
CN106400083B (en) * 2016-09-26 2018-09-04 兴科电子科技有限公司 A kind of surface treatment method of the high plain edge of aluminum alloy mobile phone shell

Similar Documents

Publication Publication Date Title
US6379523B1 (en) Method of treating surface of aluminum blank
US6228241B1 (en) Electrically conductive anodized aluminum coatings
AU633132B2 (en) Improved electrolytic method for coloring anodized aluminum
WO2001018281A1 (en) Rapid colouring process for aluminum products
JPH09143795A (en) Method for electrolytically coloring aluminum material
US4043880A (en) Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles
JP2931177B2 (en) Highly transparent colored film and electrolytic coloring method
KR100718427B1 (en) Method for electrolytic coloring of aluminum material
CA1153980A (en) Method of producing colour-anodized aluminium articles
US3935084A (en) Anodizing process
JP2931176B2 (en) Colored film formed on aluminum material surface and electrolytic coloring method
JP3101606B2 (en) Electrolytic coloring method of aluminum material
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
JP3445154B2 (en) Manufacturing method of colored aluminum material
JP3023342B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JP2820584B2 (en) Electrolytic coloring method of aluminum material
JP2706681B2 (en) Electrolytic coloring method of aluminum material
JPH11335892A (en) Preparation of aluminum material having composite coating film composed of translucent or opaque anodically oxidized film and coating film
JP2688639B2 (en) Electrolytic coloring method of aluminum material
JP2024034989A (en) A material made of aluminum or an alloy thereof, in which the thickness of the barrier layer is 10 to 80% of the thickness of the hole wall, and a method for producing the same.
JP2002256493A (en) Electrolytic coloring method for aluminum alloy and colored aluminum alloy materials
JP3379482B2 (en) Electrolytic coloring of aluminum material
JPS638197B2 (en)
JPH09249992A (en) Electrolyte coloration method for anodically oxidized aluminum material
JPS5846556B2 (en) Method of forming a colored film on aluminum material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Effective date: 20050308

Free format text: JAPANESE INTERMEDIATE CODE: A02