JP2004018901A - Surface treatment method for magnesium material product - Google Patents

Surface treatment method for magnesium material product Download PDF

Info

Publication number
JP2004018901A
JP2004018901A JP2002172772A JP2002172772A JP2004018901A JP 2004018901 A JP2004018901 A JP 2004018901A JP 2002172772 A JP2002172772 A JP 2002172772A JP 2002172772 A JP2002172772 A JP 2002172772A JP 2004018901 A JP2004018901 A JP 2004018901A
Authority
JP
Japan
Prior art keywords
film
material product
magnesium material
treatment
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002172772A
Other languages
Japanese (ja)
Other versions
JP4253716B2 (en
Inventor
Itaru Takano
高野  格
Hiroshi Tanabe
田辺  寛
Hiroyuki Sukai
須貝 裕之
Makoto Hiraishi
平石  誠
Hitoshi Origasa
折笠 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Prefecture
Original Assignee
Niigata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Prefecture filed Critical Niigata Prefecture
Priority to JP2002172772A priority Critical patent/JP4253716B2/en
Publication of JP2004018901A publication Critical patent/JP2004018901A/en
Application granted granted Critical
Publication of JP4253716B2 publication Critical patent/JP4253716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform anodic oxidation treatment known as a means for increasing the corrosion resistance and wear resistance of a magnesium material product and the adhesion of a coating film, and to form a transparent film in which the polished face of metallic luster can be obtained. <P>SOLUTION: Oxidation treatment is performed by energizing where on-off is repeated every several seconds under low voltage for a treatment time of about 10 s in an on time of about 1 to 2 s and an off time of ≥1 s using an anodic oxidation liquid obtained by adding a film formation smoothing agent to an alkali electrolytic liquid with a current stabilizer added. Thereafter, sealing treatment of the oxide film is performed with a transparent coating material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、マグネシウム材料製品の表面に陽極酸化処理を施すことを主とする表面処理方法に関するものである。
【0002】
【従来技術】
従前よりマグネシウム材料製品の耐食性、耐摩耗性、塗膜の密着性を高める手段として製品表面の陽極酸化処理が知られている。具体的には、JIS5種法、JIS6種法、HAE法、リン酸法などが公知である。然し前記公知手段では、電解液として重クロム酸等の重金属類を使用するために、廃液処理に問題が生ずる。そこで従前よりアルカリ水溶液を電解液とする陽極酸化処理が提案されている。
【0003】
具体的には、特開平9−176894号公報に、アルカリ金属又はアルカリ土類金属の水酸化物と、炭酸塩水溶液と皮膜形成安定剤を添加してなる電解液を使用し、1〜10A/dm2、20分の通電で酸化皮膜を形成することが開示されている。
【0004】
また特開平11−209893号、同23698号公報には、前記手段では金属光沢を呈する透明皮膜の形成は困難であるとし、リン酸塩及びアルミン酸塩と安定剤としてヒドロキシル基を有する有機化合物を含有する電解液を使用し、電解電圧80Vで30秒の直流電解を実施して、透明皮膜を得られたことが開示されている。しかしながら、前記手段で形成すると皮膜が厚く、必ずしも透明皮膜といえるほどではない。
【0005】
更にアンモニアを含む電解液でDC220〜250Vの高電圧処理(特表平11−502567号)、反転電源による電解研磨を採用して反転付加の繰り返しによる皮膜成長処理(特開2001−49493号)等の手段が知られている。
【0006】
【発明が解決しようとする課題】
第一に前記の従来手段では、金属光沢を呈するとしても、金属素地の色調が僅かに変化してしまい、堅牢な透明皮膜の形成は困難である。
【0007】
第二にその詳細な原因は不明であるが、酸化皮膜の厚みや堅牢性は、通電時間に比例せずに、通電初期に効率的な被膜形成が実験的に確認できた。従って従前のような所定時間通電を継続する酸化処理手段は必ずしも効率的なものとは言えない。
【0008】
そこで本発明は、確実に透明皮膜を得ることができ、また効率的に酸化皮膜を得ることができる新規な陽極酸化処理を採用したマグネシウム材料製品の表面処理方法を提案したものである。
【0009】
【課題を解決する手段】
本発明に係るマグネシウム材料製品の表面処理方法は、必要に応じて電流安定化剤を加えたアルカリ電解液に、皮膜形成平滑剤を付加した陽極酸化液を使用し、低電圧で、数秒毎のオンオフを繰り返す通電を行ってマグネシウム材料製品の表面に陽極酸化処理を施し、然る後酸化被膜の封孔処理を行ってなることを特徴とするものである。
【0010】
従って通電初期は、処理対象物(陽極)表面の電解液の酸素イオンが直ぐに作用して酸化皮膜を形成し、その後の通電による被膜形成に際しては、酸素イオンの液中移動により膜形成の効率が悪い。そこでオフ時間を設けるとことで処理対象物(陽極)表面の電解液の酸素イオン濃度が初期時に戻るので、オンオフのインターバル通電を行うことで、効率的な通電初期の膜形成を繰り返して、所望の膜厚とすることができる。
【0011】
また本発明は、特に前記処理方法において、オンタイム1〜2秒程度でオフタイム1秒以上とし、全体で10秒前後の処理時間で酸化処理を行って、透明酸化被膜を形成した後、透明塗料で封孔処理を行ってなることを特徴とするものである。
【0012】
従って前記陽極酸化処理では、膜厚が薄く透明であり、金属光沢が明確にそのまま視認できる。更に透明塗料で封孔処理を施すと、研磨状態の金属光沢面を備え且つ耐食性、耐摩耗性を有するマグネシウム材料製品を得ることができる。
【0013】
また本発明は、陽極酸化処理後に染色液に浸漬した後、所定の封孔処理を施してなることを特徴とするもので、所望の色調を備えたマグネシウム材料製品を、効率的に製出できる。
【0014】
【実施の形態】
次に本発明の実施形態について説明する。第一実施形態は、透明皮膜を備えたマグネシウム材料製品の表面処理方法の最適実施と認められる例である。
【0015】
試料片として、AZ31合金の薄肉圧延板を使用し、陽極酸化用電解液として、表1の通りの構成液を使用した。
【0016】
【表1】

Figure 2004018901
【0017】
そして定法通り試料片の表面を清浄にして、所定の電極接続を行い、電圧40Vで、最大電流を10A(16.6A/平方dm)で、オンタイム1秒、オフタイム3秒のインターバル通電を2〜3サイクル行う。
【0018】
前記の通電によって試料片の表面には、陽極酸化処理による透明な被膜が形成される。この透明酸化被膜越しの試料片表面は、研磨された金属光沢がそのまま現れている。
【0019】
次に定法とおり洗浄し、クリア塗料を混入した電着槽に浸漬し、透明酸化被膜の表面に更にクリア塗料による電着塗装を施す。これによって透明酸化皮膜の多孔質の表面が封孔されると共に、塗膜による保護膜が形成されることになる。
【0020】
而して試料片の表面には、研磨された金属光沢が全く損なわれることなく現出する透明保護膜が形成されることになる。
【0021】
更に前記透明酸化被膜形成のためのインターバル通電の通電条件(デューティ比の変更、継続オンタイム)を種々変化させて実験させた結果、通電処理時間(オンオフ通算時間)を10秒として実施した結果が表2である。
【0022】
【表2】
Figure 2004018901
【0023】
従って1秒の通電でも透明酸化皮膜が形成されることが確認でき、5秒以上継続するオンタイムを採用すると、酸化被膜によって僅かな色変調(白色半透明)を呈し、金属光沢が明確に現出する透明被膜とはならないことが確認された。なお約20分の通電処理(デューティ比25%)を行うと、透明度が無くなり白色を呈することが確認できた。
【0024】
次に本発明の第二実施形態について説明する。第二実施形態は、所望の色調を備えたマグネシウム材料製品の製出に関するものである。
【0025】
第二実施形態は、陽極酸化処理、染色処理、封孔処理を順次行う表面を処理する方法で、陽極酸化処理は、所定の電解液(第一実施形態と同様に、アルカリ溶液、電流安定化剤、膜平滑化剤で構成される。)を使用し、適宜にオンオフを繰り返すインターバル電源をもって実施する。この陽極酸化処理における通電処理時間は、オンオフのデューティ比並びにオンタイム、並びに形成しようとする膜厚に対応して適宜定められるものである。
【0026】
陽極酸化処理を施したマグネシウム材料製品は、洗浄の後に染色処理を行うもので、所望の色彩の染料の水溶液に、マグネシウム材料製品をどぶ漬けして行う。これによって染料水溶液は、酸化被膜のポーラス層の孔部分に進入し、マグネシウム材料製品の酸化被膜表面を所望の色に着色する。
【0027】
染色処理を終了すると、所定の洗浄後に封孔処理を行う。封孔処理は、前記第一実施形態と同様に、クリア塗料を混入した電着槽に浸漬し、透明酸化被膜の表面に更にクリア塗料による電着塗装を施してなるものである。
【0028】
従って、所望の染料をもって所望の色彩に着色した保護被膜を備えたマグネシウム材料製品を得ることができたもので、特に陽極酸化処理においてインターバル電源を採用することによって、被膜形成効率を高めると共に、堅牢な被膜を得ることができたものである。
【0029】
本発明は、前記の第一実施形態及び第二実施形態に示した例に限定されるものではなく、陽極酸化処理における電解液の組成並びにその濃度、さらには電圧を変更しても可能である。
【0030】
具体的には、電圧を20V、60V、100Vに変更して、同時に電解液の組成濃度を変更して実験を繰り返したところ、下記の表3,4の通り確認できた。
【0031】
【表3】
Figure 2004018901
【0032】
【表4】
Figure 2004018901
【0033】
実験は、オンタイム1秒、オフタイム3秒のインターバルで、2〜3サイクルの例を示したもので、所定の透明被膜の形成が確認されたのが「丸印」、完全透明被膜は形成されないが酸化被膜が形成された場合は「三角印」で、被膜形成が認められない場合には「×印」とした。
【0034】
そして実験の結果、表3に示すとおり、液温が第一実施形態の50℃から、実験した25℃で、且つ電圧が20〜40Vの場合に透明被膜の形成が確認できた。
【0035】
また表4に示すとおり、電解液組成物の濃度変更をした結果から、アルカリ溶液の濃度を高めても透明被膜形成に問題は無く、濃度を低くすると、最適電圧が低電圧に移行することが確認できた。また電流安定化剤及び膜平滑化剤の濃度は、膜形成への影響は少ないことが確認された。
【0036】
更に電解液の使用材料を変更した例を表5に示した。
【0037】
【表5】
Figure 2004018901
【0038】
表5に示すとおり、本発明の実施形態に示した電解液構成の代替物質を採用しても、インターバル電源を採用しての陽極処理による酸化被膜形成が実現するものである。また、他の合金であるAZ61についても同様の試験を実施したところ、同様の酸化被膜を得ることができる。
【0039】
【発明の効果】
以上のとおり本発明は、必要に応じて電流安定化剤を加えたアルカリ電解液に、皮膜形成平滑剤を付加した陽極酸化液を使用し、低電圧で、数秒毎のオンオフを繰り返す通電を行ってマグネシウム材料製品の表面に陽極酸化処理を施し、然る後酸化被膜の封孔処理を行ってなるマグネシウム材料製品の表面処理方法で、通電初期の効率的な膜形成を繰り返して所望の厚みの酸化皮膜を得るようにしたもので、堅牢な皮膜を効率よく形成することで、マグネシウム材料製品の高品質化に貢献できたものである。
【0040】
また特に前記処理方法において、オンタイム1〜2秒程度でオフタイム1秒以上とし、全体で10秒前後の処理時間で酸化処理を行って、透明酸化被膜を形成した後、透明塗料で封孔処理を行ってなる表面処理方法で、研磨状態の金属光沢面を備え且つ耐食性、耐摩耗性を有するマグネシウム材料製品を提供できたものである。[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a surface treatment method that mainly performs anodizing treatment on a surface of a magnesium material product.
[0002]
[Prior art]
2. Description of the Related Art Anodizing treatment of a product surface has been known as a means for improving the corrosion resistance, abrasion resistance, and adhesion of a coating film of a magnesium material product. Specifically, the JIS 5 method, the JIS 6 method, the HAE method, the phosphoric acid method and the like are known. However, in the above-mentioned known means, since a heavy metal such as dichromic acid is used as the electrolytic solution, a problem arises in waste liquid treatment. Therefore, anodizing treatment using an alkaline aqueous solution as an electrolytic solution has been conventionally proposed.
[0003]
Specifically, Japanese Patent Application Laid-Open No. 9-176894 discloses an electrolyte containing an alkali metal or alkaline earth metal hydroxide, a carbonate aqueous solution and a film-forming stabilizer, It discloses that an oxide film is formed by applying a current of dm2 for 20 minutes.
[0004]
JP-A-11-209893 and JP-A-23698 disclose that it is difficult to form a transparent film exhibiting metallic luster by the above-mentioned means, and to use phosphates and aluminates and an organic compound having a hydroxyl group as a stabilizer. It is disclosed that a transparent film was obtained by performing DC electrolysis at an electrolytic voltage of 80 V for 30 seconds using the contained electrolytic solution. However, when the film is formed by the above-mentioned means, the film is thick, and it is not always possible to say that it is a transparent film.
[0005]
Further, a high voltage treatment of 220 to 250 V DC with an electrolytic solution containing ammonia (Japanese Patent Application Laid-Open No. 11-502567), a film growth treatment by repeating inversion addition using electropolishing by an inversion power supply (Japanese Patent Application Laid-Open No. 2001-49493), etc. Means are known.
[0006]
[Problems to be solved by the invention]
First, in the above-mentioned conventional means, even if it shows a metallic luster, the color tone of the metallic substrate slightly changes, and it is difficult to form a robust transparent film.
[0007]
Secondly, although the detailed cause is unknown, the thickness and the robustness of the oxide film were not proportional to the current-carrying time, and it was experimentally confirmed that the film was formed efficiently at the beginning of current-carrying. Therefore, the oxidizing means for continuing the energization for a predetermined time as in the past is not always efficient.
[0008]
Therefore, the present invention proposes a surface treatment method for a magnesium material product employing a novel anodic oxidation treatment capable of reliably obtaining a transparent film and efficiently obtaining an oxide film.
[0009]
[Means to solve the problem]
The surface treatment method of the magnesium material product according to the present invention uses an anodic oxidizing solution to which a film-forming smoothing agent is added to an alkali electrolyte solution to which a current stabilizer is added as necessary, and at a low voltage, every few seconds. It is characterized in that anodization is performed on the surface of the magnesium material product by applying current repeatedly to turn on and off, and then the oxide film is sealed.
[0010]
Therefore, in the initial stage of energization, oxygen ions in the electrolyte on the surface of the object to be treated (anode) act immediately to form an oxide film, and in the subsequent film formation by energization, the efficiency of film formation is enhanced by the movement of oxygen ions in the liquid. bad. Therefore, by providing an off-time, the oxygen ion concentration of the electrolyte on the surface of the object to be treated (anode) returns to the initial state. Thickness.
[0011]
Further, the present invention particularly provides the above-mentioned processing method, wherein the on-time is about 1 to 2 seconds, the off-time is 1 second or more, and the oxidizing treatment is performed for a total processing time of about 10 seconds to form a transparent oxide film. It is characterized by being subjected to sealing treatment with paint.
[0012]
Therefore, in the anodic oxidation treatment, the film thickness is thin and transparent, and the metallic luster can be clearly recognized as it is. Further, when a sealing treatment is performed with a transparent paint, a magnesium material product having a polished metallic glossy surface and having corrosion resistance and abrasion resistance can be obtained.
[0013]
Further, the present invention is characterized in that a predetermined sealing treatment is performed after immersion in a dyeing solution after anodizing treatment, and a magnesium material product having a desired color tone can be efficiently produced. .
[0014]
Embodiment
Next, an embodiment of the present invention will be described. The first embodiment is an example that is recognized as the optimal implementation of the surface treatment method for a magnesium material product having a transparent film.
[0015]
A thin rolled plate of AZ31 alloy was used as a sample piece, and constituent liquids as shown in Table 1 were used as an anodizing electrolyte.
[0016]
[Table 1]
Figure 2004018901
[0017]
Then, the surface of the sample piece is cleaned according to a standard method, predetermined electrode connections are made, and a voltage of 40 V, a maximum current of 10 A (16.6 A / sq. Dm), an on-time of 1 second, and an off-time of 3 seconds are applied. Perform 2-3 cycles.
[0018]
Due to the energization, a transparent film is formed on the surface of the sample by anodizing. The polished metallic luster appears as it is on the surface of the sample piece through the transparent oxide film.
[0019]
Next, it is washed as usual, immersed in an electrodeposition tank mixed with a clear paint, and further electrodeposited with a clear paint on the surface of the transparent oxide film. As a result, the porous surface of the transparent oxide film is sealed, and a protective film of a coating film is formed.
[0020]
Thus, a transparent protective film that appears without any loss of polished metallic luster is formed on the surface of the sample piece.
[0021]
Furthermore, as a result of conducting experiments by changing the energizing conditions (change in duty ratio, continuous on-time) of the interval energizing for forming the transparent oxide film, the results obtained by setting the energizing processing time (total on-off time) to 10 seconds were obtained. Table 2.
[0022]
[Table 2]
Figure 2004018901
[0023]
Therefore, it was confirmed that a transparent oxide film was formed even with 1 second of energization, and when an on-time lasting 5 seconds or more was adopted, slight color modulation (white translucent) was exhibited by the oxide film, and the metallic luster was clearly exhibited. It was confirmed that the resulting transparent film was not formed. In addition, it was confirmed that when the energization process (duty ratio 25%) was performed for about 20 minutes, the transparency was lost and the color turned white.
[0024]
Next, a second embodiment of the present invention will be described. The second embodiment relates to production of a magnesium material product having a desired color tone.
[0025]
The second embodiment is a method of treating a surface in which an anodic oxidation treatment, a dyeing treatment, and a sealing treatment are sequentially performed. The anodic oxidation treatment is performed by using a predetermined electrolytic solution (as in the first embodiment, an alkaline solution, a current stabilizing method). And a film smoothing agent) and using an interval power supply that repeats on and off as appropriate. The energization processing time in the anodic oxidation processing is appropriately determined according to the ON / OFF duty ratio and the ON time, and the film thickness to be formed.
[0026]
The anodized magnesium material product is subjected to a dyeing process after washing, and is performed by immersing the magnesium material product in an aqueous solution of a dye having a desired color. As a result, the aqueous dye solution enters the pores of the porous layer of the oxide film, and colors the oxide film surface of the magnesium material product to a desired color.
[0027]
When the dyeing process is completed, a sealing process is performed after a predetermined washing. In the sealing treatment, similarly to the first embodiment, the transparent oxide film is immersed in an electrodeposition tank mixed with a clear paint, and the surface of the transparent oxide film is further subjected to electrodeposition with a clear paint.
[0028]
Therefore, it was possible to obtain a magnesium material product provided with a protective coating colored in a desired color with a desired dye. In particular, by adopting an interval power supply in the anodizing treatment, the film forming efficiency was improved and the robustness was improved. A good film could be obtained.
[0029]
The present invention is not limited to the examples shown in the first embodiment and the second embodiment, and it is possible to change the composition of the electrolytic solution and its concentration in the anodizing treatment, and even change the voltage. .
[0030]
Specifically, when the voltage was changed to 20 V, 60 V, and 100 V, and at the same time the composition concentration of the electrolytic solution was changed and the experiment was repeated, it was confirmed as shown in Tables 3 and 4 below.
[0031]
[Table 3]
Figure 2004018901
[0032]
[Table 4]
Figure 2004018901
[0033]
The experiment shows an example of 2 to 3 cycles with an interval of 1 second on time and 3 seconds off time. The formation of a predetermined transparent film was confirmed by a circle, and a completely transparent film was formed. However, when an oxide film was formed, a triangle mark was formed, and when no film was formed, a cross mark was formed.
[0034]
As a result of the experiment, as shown in Table 3, formation of a transparent film was confirmed when the liquid temperature was 50 ° C in the first embodiment, the experiment was 25 ° C, and the voltage was 20 to 40V.
[0035]
Also, as shown in Table 4, from the result of changing the concentration of the electrolytic solution composition, there is no problem in the formation of the transparent film even when the concentration of the alkaline solution is increased, and when the concentration is lowered, the optimum voltage may shift to a low voltage. It could be confirmed. It was also confirmed that the concentrations of the current stabilizer and the film smoothing agent had little effect on film formation.
[0036]
Table 5 shows examples in which the materials used for the electrolytic solution were changed.
[0037]
[Table 5]
Figure 2004018901
[0038]
As shown in Table 5, even if an alternative material of the electrolytic solution configuration shown in the embodiment of the present invention is employed, an oxide film can be formed by anodizing using an interval power supply. When a similar test was performed on AZ61, which is another alloy, a similar oxide film can be obtained.
[0039]
【The invention's effect】
As described above, the present invention uses an anodic oxidizing solution to which a film-forming smoothing agent is added to an alkaline electrolyte to which a current stabilizer has been added as necessary, and performs low-voltage, repeated energization on and off every few seconds. Anodizing treatment is performed on the surface of the magnesium material product, and then the oxide film is sealed. An oxide film was obtained, and by forming a robust film efficiently, it was possible to contribute to high quality magnesium material products.
[0040]
Further, in particular, in the above-mentioned processing method, the on-time is about 1 to 2 seconds, the off-time is 1 second or more, the oxidation processing is performed for a total processing time of about 10 seconds, and a transparent oxide film is formed. The present invention has provided a magnesium material product having a polished metallic glossy surface and having corrosion resistance and abrasion resistance by a surface treatment method obtained by performing a treatment.

Claims (4)

必要に応じて電流安定化剤を加えたアルカリ電解液に、皮膜形成平滑剤を付加した陽極酸化液を使用し、低電圧で、数秒毎のオンオフを繰り返す通電を行ってマグネシウム材料製品の表面に陽極酸化処理を施し、然る後酸化被膜の封孔処理を行ってなることを特徴とするマグネシウム材料製品の表面処理方法。If necessary, use an anodic oxidizing solution with a film-forming smoothing agent added to an alkaline electrolyte with a current stabilizer added to it, and apply a low voltage at a constant voltage to turn on and off every few seconds. A method for treating a surface of a magnesium material product, comprising performing anodizing treatment and then performing sealing treatment of an oxide film. 通電オンタイムが1〜2秒程度でオフタイム1秒以上とし、全体で10秒前後の処理時間で酸化処理を行って、透明酸化被膜を形成した後、透明塗料で封孔処理を行ってなる請求項1記載のマグネシウム材料製品の表面処理方法。The energization ON time is about 1 to 2 seconds, the OFF time is 1 second or more, the oxidation processing is performed for a processing time of about 10 seconds in total, a transparent oxide film is formed, and the sealing processing is performed with a transparent paint. The surface treatment method for a magnesium material product according to claim 1. 陽極酸化処理後に染色液に浸漬した後、所定の封孔処理を施してなる請求項1記載のマグネシウム材料製品の表面処理方法。2. The surface treatment method for a magnesium material product according to claim 1, wherein a predetermined sealing treatment is performed after immersion in the dyeing solution after the anodizing treatment. アルカリ電解液を、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムのいずれかと、水酸化アルミニウム、燐酸ナトリウム、アルミン酸ナトリウムのいずれかとの組み合わせとした請求項1乃至3記載のいずれかのマグネシウム材料製品の表面処理方法。4. The magnesium material product according to claim 1, wherein the alkaline electrolyte is a combination of any one of sodium hydroxide, potassium hydroxide, and sodium carbonate, and any one of aluminum hydroxide, sodium phosphate, and sodium aluminate. Surface treatment method.
JP2002172772A 2002-06-13 2002-06-13 Surface treatment method for magnesium material products Expired - Lifetime JP4253716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172772A JP4253716B2 (en) 2002-06-13 2002-06-13 Surface treatment method for magnesium material products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172772A JP4253716B2 (en) 2002-06-13 2002-06-13 Surface treatment method for magnesium material products

Publications (2)

Publication Number Publication Date
JP2004018901A true JP2004018901A (en) 2004-01-22
JP4253716B2 JP4253716B2 (en) 2009-04-15

Family

ID=31172242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172772A Expired - Lifetime JP4253716B2 (en) 2002-06-13 2002-06-13 Surface treatment method for magnesium material products

Country Status (1)

Country Link
JP (1) JP4253716B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239057A (en) * 2006-03-10 2007-09-20 Magnes:Kk Partly colored magnesium body, method of manufacturing the same and intermediate body
CN101705511B (en) * 2009-11-30 2011-04-20 哈尔滨工业大学 Method for preparing alumina-ferric oxide ceramic membrane with controllable solar absorptance
CN102226291A (en) * 2011-05-20 2011-10-26 西北工业大学 Oxidation treatment method of surface of carbon/carbon composite
CN105386107A (en) * 2015-11-26 2016-03-09 佛山市高明区杨和金属材料专业镇技术创新中心 Metal belt hardness processing method
CN105386108A (en) * 2015-11-26 2016-03-09 佛山市高明区杨和金属材料专业镇技术创新中心 Method for machining metal surface
CN107557840A (en) * 2017-10-26 2018-01-09 杨晓艳 A kind of magnesium alloy differential arc oxidation technique
CN114686952A (en) * 2022-05-07 2022-07-01 山西银光华盛镁业股份有限公司 Preparation method of transparent oxide film on surface of plastic deformation magnesium alloy workpiece

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239057A (en) * 2006-03-10 2007-09-20 Magnes:Kk Partly colored magnesium body, method of manufacturing the same and intermediate body
CN101705511B (en) * 2009-11-30 2011-04-20 哈尔滨工业大学 Method for preparing alumina-ferric oxide ceramic membrane with controllable solar absorptance
CN102226291A (en) * 2011-05-20 2011-10-26 西北工业大学 Oxidation treatment method of surface of carbon/carbon composite
CN105386107A (en) * 2015-11-26 2016-03-09 佛山市高明区杨和金属材料专业镇技术创新中心 Metal belt hardness processing method
CN105386108A (en) * 2015-11-26 2016-03-09 佛山市高明区杨和金属材料专业镇技术创新中心 Method for machining metal surface
CN107557840A (en) * 2017-10-26 2018-01-09 杨晓艳 A kind of magnesium alloy differential arc oxidation technique
CN114686952A (en) * 2022-05-07 2022-07-01 山西银光华盛镁业股份有限公司 Preparation method of transparent oxide film on surface of plastic deformation magnesium alloy workpiece

Also Published As

Publication number Publication date
JP4253716B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP2004502877A (en) Surface treatment method of aluminum or aluminum alloy by blending containing alkanesulfonic acid
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
CA1223542A (en) Surface treatment of aluminum or aluminum alloys
JP4253716B2 (en) Surface treatment method for magnesium material products
JPH11236698A (en) Corrosion resistant magnesium material product having brightness of metallic bare surface and its production
JPS63312998A (en) Electrolytic coloration of anodic oxidized aluminum
US4179342A (en) Coating system method for coloring aluminum
JPS60197897A (en) Formation of opaque white anodized film of aluminum or aluminum alloy
US4917780A (en) Process for coloring anodized aluminum by AC electrolysis
JPS58147592A (en) Method for pigmenting aluminum or aluminum alloy
EP0015279A1 (en) Coating system.
CA2258370A1 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium
JPH10265996A (en) Anodic oxidation treatment of aluminum or its alloy with good alkaline corrosion resistance
JP3633308B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JP2908105B2 (en) Electrolytic coloring of aluminum or aluminum alloy
KR950000313B1 (en) Method for impartation of blue color to aluminum or aluminum alloy
JPS6130684A (en) Surface treatment for aluminum or aluminum alloy
JP2561397B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JP2007239057A (en) Partly colored magnesium body, method of manufacturing the same and intermediate body
JP2002088498A (en) Method for electrolytic coloring of aluminum or aluminum alloy material
JP3633307B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JPH11106993A (en) Method for electrolytically neutralizing anodic oxide film of aluminum or alloy
JP2008106300A (en) Method for coloring aluminum and aluminum alloy
JPH0770791A (en) Electrolytic coloring method for aluminum or aluminum alloy
JPH11269696A (en) Production of electrode deposition coated aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4253716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term