JPH0344393A - Production of trimethoxysilane - Google Patents

Production of trimethoxysilane

Info

Publication number
JPH0344393A
JPH0344393A JP1179535A JP17953589A JPH0344393A JP H0344393 A JPH0344393 A JP H0344393A JP 1179535 A JP1179535 A JP 1179535A JP 17953589 A JP17953589 A JP 17953589A JP H0344393 A JPH0344393 A JP H0344393A
Authority
JP
Japan
Prior art keywords
trimethoxysilane
catalyst
reaction
silicon
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1179535A
Other languages
Japanese (ja)
Other versions
JP2653700B2 (en
Inventor
Yoshio Ono
小野 嘉夫
Takashi Kamata
鎌田 崇嗣
Eiichi Suzuki
榮一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP1179535A priority Critical patent/JP2653700B2/en
Publication of JPH0344393A publication Critical patent/JPH0344393A/en
Application granted granted Critical
Publication of JP2653700B2 publication Critical patent/JP2653700B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound in high yield at a low cost by reacting methyl alcohol in the vapor phase in the presence of a catalyst prepared by supporting copper chloride on metallic silicon. CONSTITUTION:For example, metallic silicon is added to an aqueous solution of ammonia containing copper chloride dissolved therein, etc., and the solvent is then evaporated by heating, etc., to provide a supported catalyst, which is subsequently pretreated in a gas stream, such as hydrogen. Methanol vapor is then brought into contact with the aforementioned pretreated supported catalyst (the contact time is 20000-1000hr<-1> gas space velocity at ordinary temperature under ordinary pressure) and reacted at 180-300 deg.C under ordinary or higher pressure by a fixed bed method to afford the objective compound.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、トリメトキシシランの製造方法に関し、さら
に詳しくは、メチルアルコールを、塩化銅が金属硅素に
担持された触体の存在下に、気相で反応させることによ
るトリメトキシシランの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing trimethoxysilane, and more specifically, the present invention relates to a method for producing trimethoxysilane, and more particularly, the present invention relates to a method for producing trimethoxysilane, and more specifically, the production of methyl alcohol in a gas phase in the presence of a catalyst in which copper chloride is supported on metal silicon. The present invention relates to a method for producing trimethoxysilane by reaction.

発明の技術的背景 トリメトキシシランは、反応性に富む硅素−水素結合を
有し、各種オレフィン類またはアセチレン類に容易に付
加するので多様の機能を持つ化合物、たとえばシランカ
ップリング剤などの製造原料として有用な化合物である
。従っC1トリメトキシシランの安佃でかつ効率のよい
製造方法の開発が強く望まれている。
Technical Background of the Invention Trimethoxysilane has a highly reactive silicon-hydrogen bond and is easily added to various olefins or acetylenes, so it is used as a raw material for producing compounds with various functions, such as silane coupling agents. It is a compound useful as Therefore, there is a strong desire to develop a method for producing C1 trimethoxysilane that is cheap and efficient.

ところで従来、金属硅素とアルキルアルコールとを銅触
媒の存在下に反応させてメトキシシランを含むアルコキ
シシランを製造する方法として以下のようなものが開示
されている。
Heretofore, the following methods have been disclosed as methods for producing alkoxysilanes including methoxysilane by reacting metal silicon and alkyl alcohols in the presence of a copper catalyst.

(イ)90%金属硅素と10%銅とからなる混合物を水
素気流中工050℃にて2時間加熱して得た触体の存在
下に、メタノールを気相にて280℃で反応させること
によるテトラメトキシシランの製造方法(ジャーナル 
オブ アメリカン ケミカル ソサイテ! −(J、o
l Am、Chem 5o()、70巻、2170〜2
171頁、1948年)。
(a) Reacting methanol in the gas phase at 280°C in the presence of a catalyst obtained by heating a mixture of 90% metallic silicon and 10% copper at 050°C for 2 hours in a hydrogen stream. Method for producing tetramethoxysilane by (Journal
of American Chemical Society! -(J, o
l Am, Chem 5o (), vol. 70, 2170-2
p. 171, 1948).

(ロ)アルキルアルコール蒸気を、細かく粉砕した硅素
と触媒とで形成した流動床に吹き込むことによる気相で
のトリアルコキシシランおよびジアルコキシシランの製
造方法(特公昭37−17967号公報)。
(b) A method for producing trialkoxysilane and dialkoxysilane in a gas phase by blowing alkyl alcohol vapor into a fluidized bed formed of finely ground silicon and a catalyst (Japanese Patent Publication No. 17967/1983).

(ハ)(イ)の方法で使用した触体をシリコーンオイル
に懸濁し、液相にて280℃で反応させることによるト
リメトキシシランおよびテトラメトキシシランの製造方
法(インオーガニック ケミストリー(Inorg、C
helll、) 、9巻、5号、1071〜1075頁
、1970年)。
(c) A method for producing trimethoxysilane and tetramethoxysilane by suspending the contact body used in method (a) in silicone oil and reacting it in a liquid phase at 280°C (Inorganic Chemistry (Inorg, C.
Hell, ), Vol. 9, No. 5, pp. 1071-1075, 1970).

(ニ)反応系中のメチルアルコールの水分含量を200
0 ppm以下に維持して、溶媒中で反応させるメトキ
シシランの製造方法(特開昭55−28928号公報)
(d) Reduce the water content of methyl alcohol in the reaction system to 200
Method for producing methoxysilane by maintaining the concentration below 0 ppm and reacting in a solvent (Japanese Unexamined Patent Publication No. 55-28928)
.

(ホ)ドデシルベンゼンを主体とする反応溶媒を用いる
メトキシシランの製造法(特開昭55−76891号公
報)。
(e) A method for producing methoxysilane using a reaction solvent mainly composed of dodecylbenzene (Japanese Patent Application Laid-open No. 76891/1983).

(へ)沸点が300〜480℃の範囲にあるジアルキル
ベンゼンを反応溶媒として用いるアルコキシシランの製
造法(特開昭57−108094号公報)。
(F) A method for producing an alkoxysilane using dialkylbenzene having a boiling point in the range of 300 to 480°C as a reaction solvent (Japanese Patent Application Laid-open No. 108094/1983).

(ト)水素化トリフェニルを主体とする反応溶媒を用い
るアルコキシシランの製造方法(特開昭57−9959
3号公報)。
(g) Method for producing alkoxysilane using a reaction solvent mainly containing hydrogenated triphenyl (Japanese Patent Application Laid-Open No. 57-9959
Publication No. 3).

(チ)金属硅素と銅触媒とを予め水素ガス雰囲気下で加
熱処理した触体または該触体と助触媒としてのアルカリ
金属アルコラードあるいはアルカリ金属の存在下に、ア
ルキルアルコールを反応媒体中で反応させるアルコキシ
シランの製造方法(特開昭62−96433号公報)な
どである。
(h) React alkyl alcohol in a reaction medium with a catalyst in which silicon metal and a copper catalyst have been previously heat-treated in a hydrogen gas atmosphere, or with the catalyst in the presence of an alkali metal alcoholade or an alkali metal as a co-catalyst. Examples include a method for producing alkoxysilane (Japanese Unexamined Patent Publication No. 62-96433).

しかしながら、上記に開示された製造方法では、以下の
ような問題点があった。すなわち、金属硅素と銅との混
合物を水素気流中にて加熱して得た触体の存在下に、メ
タノールを気相にて反応させる方法では、テトラメトキ
シシランが主成分として生威し6、目的とするトリメト
キシシランが得られないという問題点があった。
However, the manufacturing method disclosed above has the following problems. That is, in a method in which methanol is reacted in the gas phase in the presence of a catalyst obtained by heating a mixture of metallic silicon and copper in a hydrogen stream, tetramethoxysilane is produced as the main component6. There was a problem that the desired trimethoxysilane could not be obtained.

また、硅素と触媒とにて形成した流動床に、メタノール
蒸気を吹き込むことによるメト・キシシランの製造方法
では、水素気流をメタノールに随伴させない場合にはト
リメトキシシランの選択率は45%程度であり、また水
素気流をメタノールに随伴させた場合にはトリメトキシ
シランの選択率は78%程度であり、いずれにしてもト
リメトキシシランの選択率が低いという問題点があった
In addition, in the production method of methoxysilane by blowing methanol vapor into a fluidized bed formed with silicon and a catalyst, the selectivity of trimethoxysilane is about 45% when a hydrogen stream is not accompanied by methanol. Moreover, when a hydrogen stream is accompanied by methanol, the selectivity of trimethoxysilane is about 78%, and in any case, there is a problem that the selectivity of trimethoxysilane is low.

また、(ハ)〜(チ)の方法は、いずれも液相反応であ
り、トリメトキシシランが主成分として得られるものの
、硅素の転化率が低い、反応速度が遅いあるいはトリメ
トキシシランの選択率が低いことなどの理由により、工
業的製法として満足できるものではないという問題点が
あった。
In addition, methods (c) to (h) are all liquid phase reactions, and although trimethoxysilane is obtained as the main component, the silicon conversion rate is low, the reaction rate is slow, or the selectivity of trimethoxysilane is low. There was a problem that it was not satisfactory as an industrial manufacturing method due to the low .

さらに液相反応では、金属硅素と銅触媒との接触効率が
変化するためか、用いる反応媒体の種類または反応媒体
量により触媒の活性が変化するという、本来の化学反応
とは別の因子が反応に影響するといった問題点があった
Furthermore, in the liquid phase reaction, factors other than the original chemical reaction are involved, such as the activity of the catalyst changing depending on the type or amount of reaction medium used, perhaps because the contact efficiency between metal silicon and the copper catalyst changes. There were problems with the impact on the

発明の目的 本発明は、金属硅素とメチルアルコールとから銅触媒の
存在下にて、トリメトキシシランを製造するに際し、硅
素の転化率が低い、反応速度が遅い、トリメトキシシラ
ンの選択率が低いといった従来技術に伴う問題点を解決
しようとするものであり、トリメトキシシランの安価で
かつ効率のよい製造方法を提供す′ることを目的として
いる。
Purpose of the Invention The present invention provides low silicon conversion, slow reaction rate, and low selectivity of trimethoxysilane when producing trimethoxysilane from metallic silicon and methyl alcohol in the presence of a copper catalyst. The purpose of this invention is to solve the problems associated with the prior art, and to provide an inexpensive and efficient method for producing trimethoxysilane.

発明の概要 本発明者らは、反応媒体の種類もしくは反応媒体の量な
どによって触媒活性が変化する液相反応よりも、気相反
応にてトリメトキシシランが製造できつればそのメリッ
トは大きいと考え、トリメトキシシランの気相での製造
方法を種々検討した。
Summary of the Invention The present inventors believe that it would be more advantageous if trimethoxysilane could be produced by a gas phase reaction than by a liquid phase reaction in which the catalytic activity changes depending on the type of reaction medium or the amount of reaction medium. , various methods for producing trimethoxysilane in the gas phase were investigated.

その結果、塩化鋼を金属硅素に担持した触体を用いるこ
とにより、気相にてトリメトキシシランを高活性および
高選択率にて製造しうろことを見出し、本発明を完成す
るに至った。
As a result, they discovered that trimethoxysilane could be produced with high activity and high selectivity in the gas phase by using a catalyst in which chlorinated steel was supported on metal silicon, and the present invention was completed.

すなわち、本発明に係るトリメトキシシランの製造方法
は、金属硅素とメチルアルコールとを銅触媒の存在下に
反応させてメトキシシランを製造するに際して、塩化銅
を金属硅素に担持した触体の存在下に、気相で反応を行
うことを特徴としている。
That is, in the method for producing trimethoxysilane according to the present invention, when producing methoxysilane by reacting metallic silicon and methyl alcohol in the presence of a copper catalyst, in the presence of a catalyst in which copper chloride is supported on metallic silicon. It is characterized by the fact that the reaction is carried out in the gas phase.

本発明によれば、トリメトキシシランを高選択率で、か
つ高収率で得ることができる。
According to the present invention, trimethoxysilane can be obtained with high selectivity and high yield.

発明の詳細な説明 以下、本発明に係るトリメトキシシランの製造方法につ
いて具体的に説明する。
DETAILED DESCRIPTION OF THE INVENTION The method for producing trimethoxysilane according to the present invention will be specifically described below.

触   体 本発明で用いられる触体は、たとえば、塩化銅(I)が
溶解されたアンモニア水溶液または塩化銅(I)が溶解
されたジメチルスルフィド溶液あるいは塩化! (U)
が溶解されたメタノール溶液に、金属硅素を加え、加熱
もしくは減圧にて上記溶媒を蒸発させることにより容易
に調製することができる。本明細書では、上記のように
して調製した触体を担持性触体という。
The catalyst used in the present invention is, for example, an ammonia aqueous solution in which copper (I) chloride is dissolved, a dimethyl sulfide solution in which copper (I) chloride is dissolved, or a chloride! (U)
It can be easily prepared by adding metal silicon to a methanol solution in which is dissolved and evaporating the solvent by heating or under reduced pressure. In this specification, the catalyst prepared as described above is referred to as a supported catalyst.

本発明では、このようにして調製した担持性触体をさら
にヘリウムまたは水素気流下にて前処理するが、この前
処理は、たとえば、流通系固定床反応器に、上記で得ら
れた担持性触体を充填し、常圧、250〜500℃の条
件下においてヘリウムなどの不活性ガスまたは水素気流
を数1/h(常圧・常温換算値)にて数時間流通するこ
とにより行うことができる。
In the present invention, the supported catalyst thus prepared is further pretreated under a helium or hydrogen gas flow. This can be done by filling the contact body with a flow of inert gas such as helium or hydrogen for several hours at normal pressure and 250 to 500°C at a rate of several 1/h (normal pressure/normal temperature equivalent). can.

このようにして調製された担持性触体では、金属硅素に
塩化銅が担持されているために、単に金属硅素と塩化銅
(I)とを物理的に混合した触体よりも、塩化銅(1)
と金属硅素との接触効率が向上し、下記(1)式で示さ
れる反応が起り易くなり、従って下記(2)式で示され
るような反応の活性点であるC u s S i合金が
多数生成することにより触媒活性が向上するものと考え
られる。
In the supported catalyst prepared in this way, copper chloride (I) is supported on metal silicon, so copper chloride (I) 1)
This improves the contact efficiency between metal silicon and the reaction represented by the following formula (1), which makes it easier for the reaction represented by the following formula (2) to occur. It is thought that the catalytic activity is improved by the formation of the catalytic agent.

また、本発明で調製された担持性触体の前処理は、とく
に硅素に担持された塩化銅(n)を水素で前処理した場
合には、塩化銅(n)は還元されて塩化銅(1)を生成
し、またヘリウムなどの不活性ガスで前処理した場合に
は、下記(1)式で示される反応が促進されていると推
定される。
In addition, in the pretreatment of the supported catalyst prepared in the present invention, especially when copper chloride (n) supported on silicon is pretreated with hydrogen, the copper chloride (n) is reduced and the copper chloride ( 1) and is pretreated with an inert gas such as helium, it is estimated that the reaction represented by the following equation (1) is promoted.

4CuCjl +S i→4Cu+S icu   (
1)3Cu  +S i  →Cu3 S i    
  (2)なお、本発明における金属硅素に対する塩化
銅の担持率は0.1〜20重量%好ましくは0. 5〜
15重量%程度である。
4CuCjl +S i→4Cu+S icu (
1) 3Cu +S i →Cu3S i
(2) In the present invention, the supporting ratio of copper chloride to metal silicon is 0.1 to 20% by weight, preferably 0.1 to 20% by weight. 5~
It is about 15% by weight.

接触条件 本発明に係るメチルアルコール蒸気と上記前処理後の担
持性触体との接触は、従来から知られている方法の中か
ら適宜選択できる。たとえば、メタノール蒸気と担持性
触体とを固定床方式で接触させる方法、移動床方式で接
触させる方法、流動床方式で接触させる方法などを採用
することができる。また場合によっては、メタノール蒸
気と担持性触体とを回分式で接触させることもできる。
Contact Conditions The contact between the methyl alcohol vapor according to the present invention and the pretreated supported catalyst can be appropriately selected from conventionally known methods. For example, a method of bringing methanol vapor and the supported catalyst into contact in a fixed bed method, a moving bed method, a fluidized bed method, etc. can be employed. Further, depending on the case, the methanol vapor and the supported catalyst may be brought into contact in a batch manner.

メタノール蒸気と担持性触体との接触時間は常圧・常温
でのガス空間速度(G、I(、S、V)にて20.00
0〜1.000時間−1程度であることが好ましい。
The contact time between methanol vapor and the supporting catalyst is 20.00 at gas hourly space velocity (G, I (, S, V) at normal pressure and room temperature.
It is preferably about 0 to 1.000 hours-1.

本発明における金属硅素とメチルアルコールとの反応温
度は、180〜300℃好ましくは200〜280℃程
度であることが望ましく、反応圧力は常圧でも加圧下で
もよい。反応温度および反応圧力は、系を気相に保ちう
る範囲から適宜選択できる。
In the present invention, the reaction temperature between metal silicon and methyl alcohol is preferably about 180 to 300°C, preferably about 200 to 280°C, and the reaction pressure may be normal pressure or increased pressure. The reaction temperature and reaction pressure can be appropriately selected from a range that allows the system to be maintained in the gas phase.

発明の効果 本発明の方法により、トリメトキシシランを高活性にて
効率よく製造することができる。また、本発明の方性は
液相性技術と比較して、トリメトキシシランを高選択率
にて得ることができうるため、運転費を低減できるとい
う効果が得られる。
Effects of the Invention According to the method of the present invention, trimethoxysilane can be efficiently produced with high activity. In addition, the isotropy of the present invention allows trimethoxysilane to be obtained with a higher selectivity than the liquid-phase technology, and thus has the effect of reducing operating costs.

以下、本発明を実施例により説明するが、本発明はこれ
ら実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

まお、実施例中の%はとくに断わりがない限り重量基準
である。
Furthermore, the percentages in the examples are based on weight unless otherwise specified.

実施例1 窒素雰囲気下にて、塩化銅(■)(関東化学(用型、特
級品)をアンモニア水(関東化学(用型、特級品)に溶
解し、得られた溶液に金属硅素(添j理化学■製、純度
99.5%、を63〜45μにふるい分け、イオン交換
水で洗浄したもの)を加えた後、直ちに100〜110
℃にて蒸発乾固して塩化銅(I)2.5%が金属硅素に
担持された担持性触体を得た。
Example 1 Under a nitrogen atmosphere, copper chloride (■) (Kanto Kagaku (for use type, special grade) was dissolved in ammonia water (Kanto Kagaku (for use type, special grade)), and metal silicon (added) was added to the resulting solution. Immediately after adding 100 to 110 µm (manufactured by Rikagaku ■, purity 99.5%, sieved to 63-45μ and washed with ion-exchanged water)
The mixture was evaporated to dryness at .degree. C. to obtain a supported catalyst in which 2.5% of copper(I) chloride was supported on metal silicon.

このようにして得られた触体0.5gを内径10−のパ
イレックスガラス製固定床反応器に充填した後、反応器
を450℃に加熱して、ヘリウムガスを1.81/h 
(常温・常圧)にて1時間流通することにより担持性触
体の前処理を行った。
After filling 0.5 g of the catalyst thus obtained into a Pyrex glass fixed bed reactor with an inner diameter of 10 mm, the reactor was heated to 450°C and helium gas was introduced at 1.81/h.
The supported catalyst was pretreated by flowing the mixture at room temperature and pressure for 1 hour.

次いで反応温度を260℃、メタノール分圧を99Kp
aに設定し、反応器にメタノールをマイクロフィーダー
にて106ミリモル/時間の供給速度で供給して、気相
にてトリメトキシシランの製造を行った。なお、反応生
成物は、反応管出口に接続したガスクロマトグラフ(S
E−30,2mカラム、100℃)にて5分毎に分析し
た。
Then, the reaction temperature was set to 260°C and the methanol partial pressure was set to 99Kp.
methanol was supplied to the reactor using a microfeeder at a supply rate of 106 mmol/hour to produce trimethoxysilane in the gas phase. The reaction product was collected using a gas chromatograph (S) connected to the outlet of the reaction tube.
E-30, 2m column, 100°C) and analyzed every 5 minutes.

その結果、誘導期なしでメトキシシランが生威し初め、
反応開始2時間後にはメトキシシランの生成速度は8ミ
リモル/時間に達し、以後徐々に低下した。反応開始5
時間後の金属硅素の転化率は84%であり、トリメトキ
シシランの選択率は94%であった。なお、トリメトキ
シシラン以外のメトキシシラン生成物はテトラメトキシ
シランであった。
As a result, methoxysilane begins to grow without an induction period,
Two hours after the start of the reaction, the production rate of methoxysilane reached 8 mmol/hour, and then gradually decreased. Reaction start 5
The conversion rate of metallic silicon after hours was 84%, and the selectivity of trimethoxysilane was 94%. Note that the methoxysilane product other than trimethoxysilane was tetramethoxysilane.

実施例2〜】−0 担持性触体の塩化銅(1)の担持率、前処理条件および
反応条件を第1表に示すように代えた以外は、実施例1
と同様にして担持性触体の調製、前処理およびトリメト
キシシランの製造を行った。
Example 2~]-0 Example 1 except that the supporting ratio of copper chloride (1) in the supported catalyst, pretreatment conditions, and reaction conditions were changed as shown in Table 1.
The supported catalyst was prepared, pretreated, and trimethoxysilane was produced in the same manner as described above.

反応開始までの誘導期、メトキシシランの生成速度、金
属硅素の反応開始5時間後の転化率およびトリメトキシ
シランの選択率を第1表に示す。
Table 1 shows the induction period until the start of the reaction, the production rate of methoxysilane, the conversion rate of metallic silicon 5 hours after the start of the reaction, and the selectivity of trimethoxysilane.

実施例11 塩化銅(I)をジメチルスルフィド(関東化学■製、特
級品)に溶解し、得られた溶液に金属硅素を加えた後、
直ちに約50℃にて蒸発乾固して、塩化銅(I)10%
が金属硅素に担持された担持性触体を得た。
Example 11 After dissolving copper (I) chloride in dimethyl sulfide (manufactured by Kanto Kagaku ■, special grade product) and adding metallic silicon to the resulting solution,
Immediately evaporate to dryness at about 50°C to obtain 10% copper(I) chloride.
A supported catalyst was obtained in which the metal silicon was supported.

このようにして得られた触体0.5gを内径10閣のパ
イレックスガラス製固定床反応器に充填した後、反応器
を260℃に加熱して、ヘリウムガスを1.81/h 
(常温・常圧)にて1時間流通することにより、担持性
触体の前処理を行った。
After filling 0.5 g of the catalyst thus obtained into a Pyrex glass fixed bed reactor with an inner diameter of 10 mm, the reactor was heated to 260°C and helium gas was pumped in at 1.81/h.
The supported catalyst was pretreated by flowing the mixture at room temperature and pressure for 1 hour.

次いで反応器を260℃に保ち、メタノール分圧99K
paにて、反応器にメタノールを106ミリモル/時間
の供給速度で供給して、気相におけるトリメトキシシラ
ンの製造を行った。
Next, the reactor was kept at 260°C, and the methanol partial pressure was 99K.
The production of trimethoxysilane in the gas phase was carried out by feeding methanol into the reactor at a feed rate of 106 mmol/h at 100 mA.

その結果、10〜15分の誘導期を経た後、メトキシシ
ランが生威し始め、反応開始2時間後にはメトキシシラ
ンの生成速度は5ミリモル/時間に達し、以後徐々に低
下した。反応開始5時間後の金属硅素の転化率は57%
であり、トリメトキシシランの選択率は94%であった
As a result, after an induction period of 10 to 15 minutes, methoxysilane began to be produced, and 2 hours after the start of the reaction, the production rate of methoxysilane reached 5 mmol/hour, and thereafter gradually decreased. The conversion rate of metallic silicon was 57% 5 hours after the start of the reaction.
The selectivity of trimethoxysilane was 94%.

第 1 実施例2 実施例3 実施例4 実施例5 実施例6 実施例7 実施例8 実施例9 実施例10 (%) ■ 2.5 2.5 2.5 0 2.5 2.5 (/’C/hr) ヘリウム/45Q/1 ヘリウム/45G /1 ヘリウム/450 /1 ヘリウム/45G /1 ヘリウム/350 /1 ヘリウム/26G /1 ヘリウム/260/1 ヘリウム/260/1 水  素/260/1 (℃/Kpa) 260/99 260/99 240/99 220/99 260/99 260/99 260/99 260/99 260/99 メトキシシラン (ミリモル/時間) 4以後減少 2.3以後減少 約1 約1 ■ 4(1時間後) 以後減少 5 (4時間後) 実施例12〜t3 塩化銅(I)の担持率を第2表に示すように代えた以外
は、実施例1■と同様にして担持法触体の調製、前処理
およびトリメトキシシランの製造を行った。反応開始ま
での誘導期、メトキシシランの生成速度、金属硅素の反
応開始5時間後の転化率およびトリメトキシシランの選
択率を第2表に示す。
1st Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 (%) ■ 2.5 2.5 2.5 0 2.5 2.5 ( /'C/hr) Helium/45Q/1 Helium/45G/1 Helium/450/1 Helium/45G/1 Helium/350/1 Helium/26G/1 Helium/260/1 Helium/260/1 Hydrogen/260 /1 (℃/Kpa) 260/99 260/99 240/99 220/99 260/99 260/99 260/99 260/99 260/99 Methoxysilane (mmol/hour) Decrease after 4 2.3 Decrease after approx. 1 Approximately 1 ■ 4 (after 1 hour) Decreased thereafter 5 (after 4 hours) Example 12-t3 Same as Example 1■ except that the loading rate of copper (I) chloride was changed as shown in Table 2. The supported method was prepared, pretreated, and trimethoxysilane was produced. Table 2 shows the induction period until the start of the reaction, the production rate of methoxysilane, the conversion rate of silicon metal 5 hours after the start of the reaction, and the selectivity of trimethoxysilane.

実施例14 無水塩化銅(■)(和光紬薬工業■製、純度95%)を
メタノールに溶解し、得られた溶液に金属硅素を加えた
後、直ちにロータリーエバポレーターにて室温でメタノ
ールを蒸発して、塩化銅(II) 2. 5%が金属硅
素に担持された担持性触体を得た。
Example 14 Anhydrous copper chloride (■) (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., purity 95%) was dissolved in methanol, metal silicon was added to the resulting solution, and the methanol was immediately evaporated at room temperature using a rotary evaporator. Copper(II) chloride 2. A supported catalyst in which 5% was supported on metal silicon was obtained.

このようにして得られた触体0.5gを内径10mmの
パイレックスガラス製固定床反応器に充填した後、反応
器を260℃に加熱して、水素ガスを1.81/h (
常温・常圧)にて1時間流通することにより担持性触体
の前処理を行った。
After filling 0.5 g of the catalyst thus obtained into a Pyrex glass fixed bed reactor with an inner diameter of 10 mm, the reactor was heated to 260°C and hydrogen gas was injected at 1.81/h (
The supported catalyst was pretreated by flowing the mixture at room temperature and pressure for 1 hour.

次いで反応器を260℃に保ち、メタノール分圧99 
K p aにて、反応器にメタノールを106ミリモル
/時間の供給速度で供給して、気相におけるトリメトキ
シシランの製造を行った。
The reactor was then maintained at 260°C, and the methanol partial pressure was 99°C.
The production of trimethoxysilane in the gas phase was carried out by feeding methanol into the reactor at a feed rate of 106 mmol/h at K p a .

その結果、30分の誘導期を経た後、メトキシシランが
生威し始め、反応開始3.5時間後にはメトキシシラン
の生成速度は12ミリモル/時間に達し、以後低下した
。反応開始5時間後の金属硅素の転化率は100%であ
り、トリメトキシシランの選択率は89%であった。
As a result, after an induction period of 30 minutes, methoxysilane began to grow, and 3.5 hours after the start of the reaction, the production rate of methoxysilane reached 12 mmol/hour, and then decreased. The conversion rate of metallic silicon 5 hours after the start of the reaction was 100%, and the selectivity of trimethoxysilane was 89%.

実施例15〜21 担持性触体の塩化銅(n)の担持率および前処理条件を
第3表に示すように代えた以外は、実施例14と同様に
して担持性触体の調製、前処理およびトリメトキシシラ
ンの製造を行った。反応開始までの誘導期、メトキシシ
ランの生成速度、金属硅素の反応開始5時間後の転化率
およびトリメトキシシランの選択率を第3表に示す。
Examples 15 to 21 A supported catalyst was prepared and pretreated in the same manner as in Example 14, except that the loading ratio of copper chloride (n) on the supported catalyst and the pretreatment conditions were changed as shown in Table 3. Treatment and production of trimethoxysilane were carried out. Table 3 shows the induction period until the start of the reaction, the production rate of methoxysilane, the conversion rate of silicon metal 5 hours after the start of the reaction, and the selectivity of trimethoxysilane.

比較例1 塩化銅(I)2.5%と金属硅素97.5%とを物理的
に混合し触体を得た。このようにして得られた触体0.
5gを用いて、260℃にてヘリウムガスを1時間流通
した以外は、実施例1と同様にして触体の前処理および
トリメトキシシランの製造を行った。
Comparative Example 1 A contact body was obtained by physically mixing 2.5% copper(I) chloride and 97.5% silicon metal. The touch body thus obtained is 0.
Pretreatment of the catalyst and production of trimethoxysilane were carried out in the same manner as in Example 1, except that 5 g was used and helium gas was passed at 260° C. for 1 hour.

その結果、1時間の誘導期を経た後、メトキシシランが
生成し始め、その生成速度は約0.5ミリモル/時間で
あった。また反応開始3時間後の金属硅素の転化率は5
%であり、トリメトキシシランの選択率は95%であ、
った。
As a result, after an induction period of 1 hour, methoxysilane started to be produced, and the production rate was about 0.5 mmol/hour. In addition, the conversion rate of metallic silicon 3 hours after the start of the reaction was 5
%, the selectivity of trimethoxysilane is 95%,
It was.

Claims (1)

【特許請求の範囲】[Claims] (1)金属硅素とメチルアルコールとを銅触媒の存在下
に反応させてメトキシシランを製造するに際して、塩化
銅を金属硅素に担持した触体の存在下に、気相で反応を
行うことを特徴とするトリメトキシシランの製造方法。
(1) When producing methoxysilane by reacting metallic silicon and methyl alcohol in the presence of a copper catalyst, the reaction is carried out in the gas phase in the presence of a catalyst in which copper chloride is supported on metallic silicon. A method for producing trimethoxysilane.
JP1179535A 1989-07-12 1989-07-12 Method for producing trimethoxysilane Expired - Lifetime JP2653700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1179535A JP2653700B2 (en) 1989-07-12 1989-07-12 Method for producing trimethoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1179535A JP2653700B2 (en) 1989-07-12 1989-07-12 Method for producing trimethoxysilane

Publications (2)

Publication Number Publication Date
JPH0344393A true JPH0344393A (en) 1991-02-26
JP2653700B2 JP2653700B2 (en) 1997-09-17

Family

ID=16067455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1179535A Expired - Lifetime JP2653700B2 (en) 1989-07-12 1989-07-12 Method for producing trimethoxysilane

Country Status (1)

Country Link
JP (1) JP2653700B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263113A (en) * 1992-01-13 1993-07-14 Toa Gosei Chem Ind A process for producing trialkoxysilanes
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
CN106243145A (en) * 2016-08-03 2016-12-21 江苏大学 A kind of method of fixed bed reaction synthesizing trimethoxy silane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955627A (en) * 1972-09-30 1974-05-30
JPS6296433A (en) * 1985-10-23 1987-05-02 Shin Etsu Chem Co Ltd Production of alkoxysilane
JPS6456685A (en) * 1987-05-21 1989-03-03 Tama Kagaku Kogyo Kk Production of trialkoxysilane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955627A (en) * 1972-09-30 1974-05-30
JPS6296433A (en) * 1985-10-23 1987-05-02 Shin Etsu Chem Co Ltd Production of alkoxysilane
JPS6456685A (en) * 1987-05-21 1989-03-03 Tama Kagaku Kogyo Kk Production of trialkoxysilane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263113A (en) * 1992-01-13 1993-07-14 Toa Gosei Chem Ind A process for producing trialkoxysilanes
JPH05194540A (en) * 1992-01-13 1993-08-03 Toagosei Chem Ind Co Ltd Production of trialkoxysilane
GB2263113B (en) * 1992-01-13 1996-03-20 Toa Gosei Chem Ind Process for producing trialkoxysilane
JP2000178018A (en) * 1998-12-16 2000-06-27 Jgc Corp Production of polycrystalline silicon and high purity silica
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica
CN106243145A (en) * 2016-08-03 2016-12-21 江苏大学 A kind of method of fixed bed reaction synthesizing trimethoxy silane

Also Published As

Publication number Publication date
JP2653700B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JPH0288569A (en) Oxidation of 5-hydroxymethylfuurfural
JP2002532483A (en) Continuous production of epoxides from olefins.
JP2773509B2 (en) Method for producing trialkoxysilane
JPS6346748B2 (en)
US5523501A (en) Catalytic hydrogenolysis
JPH08502065A (en) Method for converting 2-chloropropane to propylene
JPH0344393A (en) Production of trimethoxysilane
JPH01193246A (en) Production of 2,3-dichloropyridine
JP2727480B2 (en) Method for producing trialkoxysilane
JP2002316956A (en) Method for perfluoroalkyl iodide telomer production
JPH02129131A (en) Production of 1,1,2,2-tetrafluoroethane (r-134)
CN111217766A (en) method for synthesizing visible light-promoted beta-amino selenide
JPS6061585A (en) Manufacture of 2-phenylethylchlorosilane
US5602288A (en) Catalytic process for producing CF3 CH2 F
JP2985461B2 (en) Method for producing trialkoxysilane
JP3904854B2 (en) Method for producing fluorine-containing alicyclic dicarboxylic acid compound
JP2727482B2 (en) Method for producing trialkoxysilane
KR0139645B1 (en) Process for preparing di-n-propyl-acetonitrile
JP3795974B2 (en) Process for producing α, β-cyclic unsaturated ether
Khusnutdinov et al. Alkylation of adamantane with alkyl halides catalyzed by ruthenium complexes
JP3995451B2 (en) Method for producing 1,1,1-trifluoroacetone
JPS63214353A (en) Catalyst for reducing carboxylic acid or ester thereof to aldehyde compound
JPS5829735A (en) Preparation of enzaldehydes
JP2003261477A (en) Method for producing (z)-1,2,3,3,4,4-hexafluorocyclobutane
JPH03264543A (en) Production of chlorotrifluoroethylene

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 13