JP2003261477A - Method for producing (z)-1,2,3,3,4,4-hexafluorocyclobutane - Google Patents

Method for producing (z)-1,2,3,3,4,4-hexafluorocyclobutane

Info

Publication number
JP2003261477A
JP2003261477A JP2003045216A JP2003045216A JP2003261477A JP 2003261477 A JP2003261477 A JP 2003261477A JP 2003045216 A JP2003045216 A JP 2003045216A JP 2003045216 A JP2003045216 A JP 2003045216A JP 2003261477 A JP2003261477 A JP 2003261477A
Authority
JP
Japan
Prior art keywords
reaction
dichlorohexafluorocyclobutane
hexafluorocyclobutane
hydrogen
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045216A
Other languages
Japanese (ja)
Other versions
JP3840553B2 (en
Inventor
Tatsuo Nakada
龍夫 中田
Hiroichi Aoyama
博一 青山
Akinori Yamamoto
明典 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003045216A priority Critical patent/JP3840553B2/en
Publication of JP2003261477A publication Critical patent/JP2003261477A/en
Application granted granted Critical
Publication of JP3840553B2 publication Critical patent/JP3840553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing Z-1,2,3,3,4,4-hexafluorocyclobutane which is a useful compound affording a substitute compound for CFC or HCFC used as a refrigerant, a foaming agent or a detergent in high yield. <P>SOLUTION: This method for producing the (Z)-1,2,3,3,4,4- hexafluorocyclobutane comprises carrying out a hydrogenating reaction (hydrogen reduction) of 1,2-dichlorohexafluorocyclobutane as a raw material in the presence of a rhodium catalyst using especially ≥2 equivalents of hydrogen especially at 150-300°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒、発泡剤、洗
浄剤として使用されているCFCやHCFCの代替化合
物となり得る有用な化合物である(Z)−1,2,3,
3,4,4−ヘキサフルオロシクロブタンの製造方法に
関するものである。
TECHNICAL FIELD The present invention is a useful compound (Z) -1,2,3, which can be a substitute compound for CFC and HCFC used as a refrigerant, a foaming agent, and a cleaning agent.
The present invention relates to a method for producing 3,4,4-hexafluorocyclobutane.

【0002】[0002]

【従来の技術】1,2−ジクロロヘキサフルオロシクロ
ブタンよりヘキサフルオロシクロブテンを得る反応とし
ては、アルコール中で亜鉛と反応させる方法〔G. Fulle
r andJ. C. Tatlow, J. Chem. Soc., 3198(1961)〕な
どが知られている。
2. Description of the Related Art As a reaction for obtaining hexafluorocyclobutene from 1,2-dichlorohexafluorocyclobutane, a method of reacting with zinc in alcohol [G. Fulle
r and J. C. Tatlow, J. Chem. Soc., 3198 (1961)] and the like are known.

【0003】しかし、この反応は、多量の溶媒を必要と
し、また反応によって生成する塩化亜鉛の処理に多くの
コストを要するため、工業的に用いるには有効なプロセ
スとは言いがたい。
However, this reaction requires a large amount of solvent, and the treatment of zinc chloride produced by the reaction requires a large amount of cost, so it cannot be said to be an effective process for industrial use.

【0004】また、(Z)−1,2,3,3,4,4−
ヘキサフルオロシクロブタンの製造方法としては、1,
2−ジクロロヘキサフルオロシクロブタンを水素化リチ
ウムアルミニウム(LiAlH4)で還元する方法(上
記文献)が知られている。
Further, (Z) -1,2,3,3,4,4-
As a method for producing hexafluorocyclobutane, 1,
A method of reducing 2-dichlorohexafluorocyclobutane with lithium aluminum hydride (LiAlH 4 ) is known (the above document).

【0005】しかしながら、この公知の方法では、目的
とする(Z)−1,2,3,3,4,4−ヘキサフルオ
ロシクロブタンの収率は30%と低く、目的物の幾何異
性体である(E)−1,2,3,3,4,4−ヘキサフ
ルオロシクロブタンを多量に副生するため、工業的には
適していない。なお、ここで、(Z)とはZ体を意味
し、cis体に対応するものであり、また、(E)とはE
体を意味し、trans体に対応するものである。
However, according to this known method, the yield of the desired (Z) -1,2,3,3,4,4-hexafluorocyclobutane is as low as 30%, which is a geometric isomer of the desired product. (E) -1,2,3,3,4,4-hexafluorocyclobutane is produced as a by-product in a large amount and is not industrially suitable. Here, (Z) means a Z-form, which corresponds to a cis-form, and (E) means E.
It means the body and corresponds to the trans body.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、収率
よく(Z)−1,2,3,3,4,4−ヘキサフルオロ
シクロブタンを得るために、1,2−ジクロロヘキサフ
ルオロシクロブタンの水素還元反応によって(Z)−
1,2,3,3,4,4−ヘキサフルオロシクロブタン
を高収率に製造する方法を提供することにある。
The object of the present invention is to obtain 1,2-dichlorohexafluorocyclobutane in order to obtain (Z) -1,2,3,3,4,4-hexafluorocyclobutane in good yield. By the hydrogen reduction reaction of (Z)-
It is to provide a method for producing 1,2,3,3,4,4-hexafluorocyclobutane in high yield.

【0007】[0007]

【課題を解決するための手段】本発明者は、(Z)−
1,2,3,3,4,4−ヘキサフルオロシクロブタン
の製造方法について鋭意検討した結果、1,2−ジクロ
ロヘキサフルオロシクロブタンを原料として、ロジウム
触媒の存在下に水素還元を行えば、高収率、高選択率に
て、目的物が得られることを見出し、本発明を完成する
に至った。この本発明の方法では、目的生成物の幾何異
性体である(E)−1,2,3,3,4,4−ヘキサフ
ルオロシクロブタンは生成しなかった。
Means for Solving the Problems The present inventor has (Z)-
As a result of diligent studies on the method for producing 1,2,3,3,4,4-hexafluorocyclobutane, if 1,2-dichlorohexafluorocyclobutane was used as a raw material and hydrogen reduction was carried out in the presence of a rhodium catalyst, high yield was obtained. The inventors have found that the target product can be obtained at a high rate and a high selectivity, and have completed the present invention. This method of the present invention did not produce the geometric isomer (E) -1,2,3,3,4,4-hexafluorocyclobutane of the desired product.

【0008】即ち、この本発明の要旨は、1,2−ジク
ロロヘキサフルオロシクロブタンを原料として、原料に
対して特に2当量以上の水素を用いて、ロジウム触媒の
存在下に特に150〜300℃の温度にて水素添加反応
を行うことによって、高収率にて、(Z)−1,2,
3,3,4,4−ヘキサフルオロシクロブタンを製造す
る方法にある。
That is, the gist of the present invention is that 1,2-dichlorohexafluorocyclobutane is used as a raw material, and hydrogen is used in an amount of 2 equivalents or more relative to the raw material, particularly in the presence of a rhodium catalyst at 150 to 300 ° C. By carrying out the hydrogenation reaction at a temperature, (Z) -1,2,
It is a method for producing 3,3,4,4-hexafluorocyclobutane.

【0009】ハロゲン化合物の水素化分解の触媒として
は、パラジウム、白金、ロジウム、ラネーニッケルなど
が知られているが、パラジウム触媒(後述の比較例1)
や白金触媒(後述の比較例2)を用いて1,2−ジクロ
ロヘキサフルオロシクロブタンの水素還元を行うと、原
料の転化率が低いばかりでなく、目的とする(Z)−
1,2,3,3,4,4−ヘキサフルオロシクロブタン
の幾何異性体である(E)−1,2,3,3,4,4−
ヘキサフルオロシクロブタンも生成し、選択率が低くな
る。
Palladium, platinum, rhodium, Raney nickel and the like are known as catalysts for hydrogenolysis of halogen compounds, but palladium catalysts (Comparative Example 1 described later)
When 1,2-dichlorohexafluorocyclobutane is hydrogen-reduced using a platinum catalyst (Comparative Example 2 described later), not only the conversion rate of the raw material is low, but also the desired (Z)-
(E) -1,2,3,3,4,4- which is a geometric isomer of 1,2,3,3,4,4-hexafluorocyclobutane
Hexafluorocyclobutane is also formed and the selectivity is low.

【0010】これに対し、本発明に基いてロジウム触媒
を用いた場合には、原料の転化率も非常に高く、また幾
何異性体である(E)−1,2,3,3,4,4−ヘキ
サフルオロシクロブタンがほとんど、もしくは、まった
く生成せず、目的生成物である(Z)−1,2,3,
3,4,4−ヘキサフルオロシクロブタンが高い選択率
で得られることが明らかになった。
On the other hand, when the rhodium catalyst is used according to the present invention, the conversion rate of the raw material is very high, and the geometrical isomer (E) -1,2,3,3,4, is used. Almost no or no 4-hexafluorocyclobutane is produced, and the desired product (Z) -1,2,3,3
It was revealed that 3,4,4-hexafluorocyclobutane can be obtained with high selectivity.

【0011】触媒の担体としては、通常知られている、
活性炭、アルミナ、シリカ、ジルコニアなどから選ばれ
た少なくとも1種からなる担体を用いることができる
が、活性炭が最も好ましく、高い目的物の選択性が得ら
れる。
As a catalyst carrier, it is generally known that
A carrier composed of at least one selected from activated carbon, alumina, silica, zirconia and the like can be used, but activated carbon is most preferable and high selectivity of the target substance can be obtained.

【0012】気相反応の方式としては、固定床型気相反
応、流動床型気相反応などの方式をとることができる。
The system of the gas phase reaction may be a fixed bed type gas phase reaction, a fluidized bed type gas phase reaction, or the like.

【0013】また、担体の粒径については反応にほとん
ど影響を及ぼさないが、好ましくは0.1〜10mmが
好適である。
Although the particle size of the carrier has almost no effect on the reaction, it is preferably 0.1 to 10 mm.

【0014】担持濃度としては、0.05〜10%と幅
広いものが使用可能であるが、通常0.5〜5%担持品
が推奨される。
A wide range of supported concentrations of 0.05 to 10% can be used, but normally 0.5 to 5% supported product is recommended.

【0015】反応温度は、通常150〜300℃であ
り、好ましくは175〜250℃である。150℃より
も低い反応温度では、選択率は高いものの、転化率が低
下し易く、また300℃を超える反応温度では、副生成
物が多量に生成し易い。
The reaction temperature is usually 150 to 300 ° C, preferably 175 to 250 ° C. At a reaction temperature lower than 150 ° C, the selectivity is high, but the conversion rate tends to decrease, and at a reaction temperature higher than 300 ° C, a large amount of by-products are likely to be formed.

【0016】1,2−ジクロロヘキサフルオロシクロブ
タンの上記水素還元反応において、水素と原料の割合
は、水素が1,2−ジクロロヘキサフルオロシクロブタ
ンに対して化学量論量以上であれば、大幅に変動させ得
る。しかしながら、通常化学量論量の2〜10倍、特に
2〜4倍の水素を使用して水素化を行う。出発物質の全
モルに対して、化学量論量よりかなり多い量、例えば1
0モルまたはそれ以上の水素を使用し得る。過剰の水素
は回収して再使用できる。
In the above-mentioned hydrogen reduction reaction of 1,2-dichlorohexafluorocyclobutane, the ratio of hydrogen to the raw material varies greatly as long as hydrogen is in a stoichiometric amount or more with respect to 1,2-dichlorohexafluorocyclobutane. Can be done. However, the hydrogenation is usually carried out using 2 to 10 times, especially 2 to 4 times the stoichiometric amount of hydrogen. A much greater than stoichiometric amount, based on the total moles of starting material, eg 1
0 mol or more hydrogen may be used. Excess hydrogen can be recovered and reused.

【0017】反応の圧力は特に限定されず、加圧下、減
圧下、常圧下で可能であるが、減圧下では装置が複雑に
なるため、加圧下、常圧下で反応を行う方が好ましい。
The reaction pressure is not particularly limited, and it can be carried out under pressure, under reduced pressure, or under normal pressure. However, since the apparatus becomes complicated under reduced pressure, it is preferable to carry out the reaction under pressure or under normal pressure.

【0018】接触時間は、通常0.1〜300秒、特に
は1〜30秒である。
The contact time is usually 0.1 to 300 seconds, especially 1 to 30 seconds.

【0019】この水素還元反応の原料である1,2−ジ
クロロヘキサフルオロシクロブタンは、1,2,2−ト
リフルオロ−1−クロロエチレン(クロロトリフルオロ
エチレン)を加圧下、特に2kg/cm2以上の圧力、
200〜400℃の温度範囲で気相2量化反応させるこ
とによって合成できる。
1,2-Dichlorohexafluorocyclobutane, which is a raw material for this hydrogen reduction reaction, is 1,2,2-trifluoro-1-chloroethylene (chlorotrifluoroethylene) under pressure, especially 2 kg / cm 2 or more. Pressure of
It can be synthesized by performing a gas phase dimerization reaction in a temperature range of 200 to 400 ° C.

【0020】このクロロトリフルオロエチレンの気相2
量化反応を常圧下で行うと、500℃以下では転化率が
低くなり、また、500℃以上では炭素数4の直鎖化合
物の生成による選択率の低下が生じ、工業的な製造方法
としては適さなくなる。しかし、この反応を加圧下で行
えば、400℃以下においても、良好な転化率、選択率
で、1,2−ジクロロヘキサフルオロシクロブタンを合
成できる。
Gas phase 2 of this chlorotrifluoroethylene
When the quantification reaction is carried out under normal pressure, the conversion becomes low at 500 ° C. or lower, and the selectivity decreases due to the formation of a linear compound having 4 carbon atoms at 500 ° C. or higher, which is suitable as an industrial production method. Disappear. However, if this reaction is carried out under pressure, 1,2-dichlorohexafluorocyclobutane can be synthesized with good conversion and selectivity even at 400 ° C. or lower.

【0021】この2量化反応の圧力は、高くするほど、
低い温度で高転化率、高選択的に、目的の1,2−ジク
ロロヘキサフルオロシクロブタンが得られる。反応圧力
をより高圧にすると、反応装置として高耐圧のものが必
要であるため、通常、2〜20kg/cm2で反応させ
るのがよい。
The higher the pressure of this dimerization reaction,
The desired 1,2-dichlorohexafluorocyclobutane can be obtained with high conversion and high selectivity at low temperature. When the reaction pressure is further increased, a reactor having a high pressure resistance is required. Therefore, it is usually preferable to carry out the reaction at 2 to 20 kg / cm 2 .

【0022】この気相2量化反応において、原料のクロ
ロトリフルオロエチレンの流量を小さくすると、転化率
が向上するが、適当な充填剤を用いることによっても転
化率を向上させ得る。充填剤としては、ガラスビーズ、
ニッケルビーズ、球状シリカ、活性炭などを用いること
ができる。
In this gas phase dimerization reaction, if the flow rate of chlorotrifluoroethylene as a raw material is reduced, the conversion rate improves, but the conversion rate can also be improved by using an appropriate filler. As the filler, glass beads,
Nickel beads, spherical silica, activated carbon and the like can be used.

【0023】[0023]

【発明の作用効果】本発明の方法によれば、1,2−ジ
クロロヘキサフルオロシクロブタンを原料として、ロジ
ウム触媒の存在下に水素添加反応(水素還元)を行うこ
とによって、高収率にて、冷媒、発泡剤、洗浄剤として
使用されているCFCやHCFCの代替化合物となり得
る有用な化合物である(Z)−1,2,3,3,4,4
−ヘキサフルオロシクロブタンを製造することができ
る。
According to the method of the present invention, 1,2-dichlorohexafluorocyclobutane is used as a raw material and hydrogenation reaction (hydrogen reduction) is carried out in the presence of a rhodium catalyst to give a high yield. (Z) -1,2,3,3,4,4, which is a useful compound that can be a substitute compound for CFC or HCFC used as a refrigerant, a foaming agent, or a cleaning agent.
Hexafluorocyclobutane can be produced.

【0024】[0024]

【実施例】以下、実施例により本発明を更に具体的に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0025】実施例1 内径7mm、長さ150mmのSUS316製反応管
に、活性炭に0.5%濃度で担持されたロジウム触媒1
gを充填し、窒素ガスを流しながら、電気炉にて225
℃に加熱し、所定の温度に達した後、1,2−ジクロロ
ヘキサフルオロシクロブタンを1.1ml/分、水素を
10.0ml/分の割合で導入した。反応温度は225
℃を保った。生成ガスは、水洗後、ガスクロマトグラフ
ィにより分析を行った。結果を下記の表1に示す。
Example 1 Rhodium catalyst 1 supported on activated carbon at a concentration of 0.5% in a SUS316 reaction tube having an inner diameter of 7 mm and a length of 150 mm.
225 g in an electric furnace while charging nitrogen and flowing nitrogen gas
After heating to 0 ° C. and reaching a predetermined temperature, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.1 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. Reaction temperature is 225
The temperature was kept at ℃. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0026】実施例2 実施例1と同じ反応装置に、活性炭に3%濃度で担持さ
れたロジウム触媒1gを充填し、窒素ガスを流しなが
ら、電気炉にて225℃に加熱し、所定の温度に達した
後、1,2−ジクロロヘキサフルオロシクロブタンを
1.4ml/分、水素を10.0ml/分の割合で導入
した。反応温度は225℃を保った。生成ガスは、水洗
後、ガスクロマトグラフィにより分析を行った。結果を
下記の表1に示す。
Example 2 The same reactor as in Example 1 was charged with 1 g of rhodium catalyst supported on activated carbon at a concentration of 3%, heated to 225 ° C. in an electric furnace while flowing nitrogen gas, and heated to a predetermined temperature. Then, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.4 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. The reaction temperature was maintained at 225 ° C. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0027】実施例3 実施例1と同じ反応装置に、活性炭に3%濃度で担持さ
れたロジウム触媒1gを充填し、窒素ガスを流しなが
ら、電気炉にて250℃に加熱し、所定の温度に達した
後、1,2−ジクロロヘキサフルオロシクロブタンを
1.5ml/分、水素を10.0ml/分の割合で導入
した。反応温度は250℃を保った。生成ガスは、水洗
後、ガスクロマトグラフィにより分析を行った。結果を
下記の表1に示す。
Example 3 The same reactor as in Example 1 was charged with 1 g of rhodium catalyst supported on activated carbon at a concentration of 3%, heated to 250 ° C. in an electric furnace while flowing nitrogen gas, and heated to a predetermined temperature. Then, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.5 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. The reaction temperature was kept at 250 ° C. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0028】実施例4 実施例1と同じ反応装置に、活性炭に3%濃度で担持さ
れたロジウム触媒1gを充填し、窒素ガスを流しなが
ら、電気炉にて150℃に加熱し、所定の温度に達した
後、1,2−ジクロロヘキサフルオロシクロブタンを
1.5ml/分、水素を10.0ml/分の割合で導入
した。反応温度は150℃を保った。生成ガスは、水洗
後、ガスクロマトグラフィにより分析を行った。結果を
下記の表1に示す。
Example 4 The same reactor as in Example 1 was charged with 1 g of rhodium catalyst supported on activated carbon at a concentration of 3%, heated to 150 ° C. in an electric furnace while flowing nitrogen gas, and heated to a predetermined temperature. Then, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.5 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. The reaction temperature was maintained at 150 ° C. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0029】比較例1 実施例1と同じ反応装置に、活性炭に0.5%濃度で担
持されたパラジウム触媒1gを充填し、窒素ガスを流し
ながら、電気炉にて200℃に加熱し、所定の温度に達
した後、1,2−ジクロロヘキサフルオロシクロブタン
を1.7ml/分、水素を10.0ml/分の割合で導
入した。反応温度は200℃を保った。生成ガスは、水
洗後、ガスクロマトグラフィにより分析を行った。結果
を下記の表1に示す。
Comparative Example 1 The same reactor as in Example 1 was charged with 1 g of a palladium catalyst supported on activated carbon at a concentration of 0.5%, heated to 200 ° C. in an electric furnace while flowing a nitrogen gas, and then heated to a predetermined temperature. After the temperature was reached, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.7 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. The reaction temperature was kept at 200 ° C. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0030】比較例2 実施例1と同じ反応装置に、活性炭に0.5%濃度で担
持された白金触媒1gを充填し、窒素ガスを流しなが
ら、電気炉にて150℃に加熱し、所定の温度に達した
後、1,2−ジクロロヘキサフルオロシクロブタンを
1.4ml/分、水素を10.0ml/分の割合で導入
した。反応温度は150℃を保った。生成ガスは、水洗
後、ガスクロマトグラフィにより分析を行った。結果を
下記の表1に示す。
Comparative Example 2 The same reactor as in Example 1 was charged with 1 g of a platinum catalyst supported on activated carbon at a concentration of 0.5% and heated to 150 ° C. in an electric furnace while flowing a nitrogen gas to a predetermined temperature. After the temperature was reached, 1,2-dichlorohexafluorocyclobutane was introduced at a rate of 1.4 ml / min and hydrogen was introduced at a rate of 10.0 ml / min. The reaction temperature was maintained at 150 ° C. The produced gas was washed with water and then analyzed by gas chromatography. The results are shown in Table 1 below.

【0031】[0031]

【表1】 [Table 1]

【0032】この結果から、本発明に基づく方法では、
目的とする(Z)−1,2,3,3,4,4−ヘキサフ
ルオロシクロブタンが高選択率で得られ、反応温度によ
って高反応率で得られることが分かる。
From this result, in the method according to the present invention,
It can be seen that the desired (Z) -1,2,3,3,4,4-hexafluorocyclobutane can be obtained with a high selectivity and can be obtained with a high reaction rate depending on the reaction temperature.

【0033】実施例5 内径2cm、長さ40cmのSUS316製反応管に、
直径約1mmのガラスビーズ20mlを充填し、窒素ガ
スを流しながら、反応管内圧を逆圧調整弁で2kg/c
2にし、電気炉にて300℃に加熱し、所定の温度に
達した後、クロロトリフルオロエチレンを18ml/分
の割合で導入した。反応温度は300℃を保った。生成
ガスは、ガスクロマトグラフィにより分析を行った。結
果を下記の表2に示す。
Example 5 In a reaction tube made of SUS316 having an inner diameter of 2 cm and a length of 40 cm,
20 ml of glass beads having a diameter of about 1 mm were filled, and the internal pressure of the reaction tube was adjusted to 2 kg / c by a reverse pressure adjusting valve while flowing nitrogen gas.
The temperature was adjusted to m 2 , heated to 300 ° C. in an electric furnace, and after reaching a predetermined temperature, chlorotrifluoroethylene was introduced at a rate of 18 ml / min. The reaction temperature was kept at 300 ° C. The produced gas was analyzed by gas chromatography. The results are shown in Table 2 below.

【0034】実施例6 実施例5と同じ装置に、直径約1mmのガラスビーズ2
0mlを充填し、窒素ガスを流しながら、反応管内圧を
逆圧調整弁で2kg/cm2にし、電気炉にて400℃
に加熱し、所定の温度に達した後、クロロトリフルオロ
エチレンを18ml/分の割合で導入した。反応温度は
400℃を保った。生成ガスは、ガスクロマトグラフィ
により分析を行った。結果を下記の表2に示す。
Example 6 In the same apparatus as in Example 5, glass beads 2 having a diameter of about 1 mm were used.
0 ml was filled, the internal pressure of the reaction tube was adjusted to 2 kg / cm 2 with a back pressure adjusting valve while flowing nitrogen gas, and 400 ° C. in an electric furnace.
After reaching a predetermined temperature, chlorotrifluoroethylene was introduced at a rate of 18 ml / min. The reaction temperature was kept at 400 ° C. The produced gas was analyzed by gas chromatography. The results are shown in Table 2 below.

【0035】実施例7 実施例5と同じ装置に、直径約2mmのニッケルビーズ
20mlを充填し、窒素ガスを流しながら、反応管内圧
を逆圧調整弁で4kg/cm2にし、電気炉にて350
℃に加熱し、所定の温度に達した後、クロロトリフルオ
ロエチレンを75ml/分の割合で導入した。反応温度
は350℃を保った。生成ガスは、ガスクロマトグラフ
ィにより分析を行った。結果を下記の表2に示す。
Example 7 The same apparatus as in Example 5 was charged with 20 ml of nickel beads having a diameter of about 2 mm, the internal pressure of the reaction tube was adjusted to 4 kg / cm 2 by a back pressure adjusting valve while flowing nitrogen gas, and the electric furnace was used. 350
After heating to ℃ and reaching a predetermined temperature, chlorotrifluoroethylene was introduced at a rate of 75 ml / min. The reaction temperature was kept at 350 ° C. The produced gas was analyzed by gas chromatography. The results are shown in Table 2 below.

【0036】実施例8 実施例5と同じ装置に、直径約3mmの球状シリカゲル
(CARiACT)20mlを充填し、窒素ガスを流し
ながら、反応管内圧を逆圧調整弁で4kg/cm2
し、電気炉にて350℃に加熱し、所定の温度に達した
後、クロロトリフルオロエチレンを75ml/分の割合
で導入した。反応温度は350℃を保った。生成ガス
は、ガスクロマトグラフィにより分析を行った。結果を
下記の表2に示す。
Example 8 The same apparatus as in Example 5 was charged with 20 ml of spherical silica gel (CARIiACT) having a diameter of about 3 mm, the internal pressure of the reaction tube was adjusted to 4 kg / cm 2 by a back pressure adjusting valve while flowing nitrogen gas, and electricity was supplied. After heating to 350 ° C. in a furnace and reaching a predetermined temperature, chlorotrifluoroethylene was introduced at a rate of 75 ml / min. The reaction temperature was kept at 350 ° C. The produced gas was analyzed by gas chromatography. The results are shown in Table 2 below.

【0037】[0037]

【表2】 [Table 2]

【0038】この結果から、クロロトリフルオロエチレ
ンを加圧下で気相2量化反応させることにより、実施例
1〜4で原料として用いた1,2−ジクロロヘキサフル
オロシクロブタンが高選択率で得られることが分かる。
From these results, it is possible to obtain 1,2-dichlorohexafluorocyclobutane used as a raw material in Examples 1 to 4 with high selectivity by subjecting chlorotrifluoroethylene to a gas phase dimerization reaction under pressure. I understand.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 明典 大阪府摂津市西一津屋1の1 ダイキン工 業株式会社淀川製作所内 Fターム(参考) 4H006 AA02 AC13 AC28 BA24 BA55 BC10 BC11 BC13 BC30 BC31 BE20 4H039 CA40 CD20 CE40    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akinori Yamamoto             Daikin Co., Ltd. 1 Nishiichitsuya, Settsu City, Osaka Prefecture             Yodogawa Manufacturing Co., Ltd. F-term (reference) 4H006 AA02 AC13 AC28 BA24 BA55                       BC10 BC11 BC13 BC30 BC31                       BE20                 4H039 CA40 CD20 CE40

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 1,2−ジクロロヘキサフルオロシクロ
ブタンをロジウム触媒の存在下に気相法で水素還元す
る、(Z)−1,2,3,3,4,4−ヘキサフルオロ
シクロブタンの製造方法。
1. A process for producing (Z) -1,2,3,3,4,4-hexafluorocyclobutane, which comprises hydrogenating 1,2-dichlorohexafluorocyclobutane in the presence of a rhodium catalyst by a gas phase method. .
【請求項2】 ロジウムを活性炭、アルミナ、シリカ及
びジルコニアのうちから選ばれた少なくとも1種からな
る担体に担持した触媒を用いる、請求項1に記載した製
造方法。
2. The method according to claim 1, wherein a catalyst in which rhodium is supported on at least one carrier selected from activated carbon, alumina, silica and zirconia is used.
【請求項3】 担体へのロジウム触媒の担持濃度を0.
05〜10%とする、請求項2に記載した製造方法。
3. The supported concentration of the rhodium catalyst on the carrier is set to 0.
The manufacturing method according to claim 2, wherein the amount is set to 05 to 10%.
【請求項4】 1,2−ジクロロヘキサフルオロシクロ
ブタンに対して水素を2〜10当量用いる、請求項1〜
3のいずれか1項に記載した製造方法。
4. Hydrogen is used in an amount of 2 to 10 equivalents based on 1,2-dichlorohexafluorocyclobutane.
3. The manufacturing method described in any one of 3.
【請求項5】 反応を150〜300℃の温度範囲で行
う、請求項1〜4のいずれか1項に記載した製造方法。
5. The production method according to any one of claims 1 to 4, wherein the reaction is performed in a temperature range of 150 to 300 ° C.
【請求項6】 1,2,2−トリフルオロ−1−クロロ
エチレンを気相法で2量化反応させることによって1,
2−ジクロロヘキサフルオロシクロブタンを合成する、
請求項1〜5のいずれか1項に記載した製造方法。
6. A dimerization reaction of 1,2,2-trifluoro-1-chloroethylene by a gas phase method
Synthesize 2-dichlorohexafluorocyclobutane,
The manufacturing method according to claim 1.
【請求項7】 2量化反応を2〜20kg/cm2の圧
力範囲で行う、請求項6に記載した製造方法。
7. The production method according to claim 6, wherein the dimerization reaction is performed in a pressure range of 2 to 20 kg / cm 2 .
【請求項8】 2量化反応を200〜400℃の温度範
囲で行う、請求項6又は7に記載した製造方法。
8. The production method according to claim 6, wherein the dimerization reaction is carried out in a temperature range of 200 to 400 ° C.
JP2003045216A 1993-08-27 2003-02-24 Process for producing (Z) -1,2,3,3,4,4-hexafluorocyclobutane Expired - Fee Related JP3840553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045216A JP3840553B2 (en) 1993-08-27 2003-02-24 Process for producing (Z) -1,2,3,3,4,4-hexafluorocyclobutane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23553193 1993-08-27
JP5-235531 1993-08-27
JP2003045216A JP3840553B2 (en) 1993-08-27 2003-02-24 Process for producing (Z) -1,2,3,3,4,4-hexafluorocyclobutane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01220994A Division JP3500617B2 (en) 1993-08-27 1994-01-10 Method for producing hexafluorocyclobutane

Publications (2)

Publication Number Publication Date
JP2003261477A true JP2003261477A (en) 2003-09-16
JP3840553B2 JP3840553B2 (en) 2006-11-01

Family

ID=28676627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045216A Expired - Fee Related JP3840553B2 (en) 1993-08-27 2003-02-24 Process for producing (Z) -1,2,3,3,4,4-hexafluorocyclobutane

Country Status (1)

Country Link
JP (1) JP3840553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225296A (en) * 2005-02-16 2006-08-31 National Institute Of Advanced Industrial & Technology Method for producing trans-1,1,2,2,3,4-hexafluorocyclobutane
WO2024016438A1 (en) * 2022-07-19 2024-01-25 福建省杭氟电子材料有限公司 Preparation method for hexafluorobutadiene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225296A (en) * 2005-02-16 2006-08-31 National Institute Of Advanced Industrial & Technology Method for producing trans-1,1,2,2,3,4-hexafluorocyclobutane
JP4691702B2 (en) * 2005-02-16 2011-06-01 独立行政法人産業技術総合研究所 Process for producing trans-1,1,2,2,3,4-hexafluorocyclobutane
WO2024016438A1 (en) * 2022-07-19 2024-01-25 福建省杭氟电子材料有限公司 Preparation method for hexafluorobutadiene

Also Published As

Publication number Publication date
JP3840553B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP3158440B2 (en) Method for producing 1,1,1,2,3-pentafluoropropene and method for producing 1,1,1,2,3-pentafluoropropane
JPH0267235A (en) Production of 1, 1, 1, 2-tetrafluoroethane
JP2746478B2 (en) Improved hydrocracking / dehalogenation method
TW200920720A (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
JP3407379B2 (en) Method for producing 1,1,1,3,3-pentafluoropropane
JPWO2018012511A1 (en) Process for producing 1-chloro-1,2-difluoroethylene
WO2017146189A1 (en) 1-chloro-2,3,3,3-tetrafluoropropene manufacturing method
JP2011506611A (en) Method for synthesizing 3-chloroperfluoro-2-pentene, octafluoro-2-pentyne, and 1,1,1,4,4,5,5,5-octafluoro-2-pentene
US5523501A (en) Catalytic hydrogenolysis
WO1993004024A1 (en) CATALYTIC PROCESS FOR PRODUCING CCl3CF¿3?
CA2167698A1 (en) Process for combining chlorine-containing molecules to synthesize fluorine-containing products
US6291729B1 (en) Halofluorocarbon hydrogenolysis
JP2003261477A (en) Method for producing (z)-1,2,3,3,4,4-hexafluorocyclobutane
US5302765A (en) Catalytic process for producing CF3 CHClF
JPH07112944A (en) Production of hexafluorocyclobutene and production of hexafluorocyclobutane
JP3134312B2 (en) Method for producing 1,1,1,2,2,4,4,5,5,5-decafluoropentane and intermediate for producing the same
JP2638154B2 (en) Method for producing 1,1,2,2-tetrafluoroethane
JP6978700B2 (en) Method for producing alkane compound
JPH08217705A (en) Production of 1,1,1,3,3-pentafluoropropane
JPH02233625A (en) Selective hydrogenolysis of perhalogenated ethane derivative
JPH07138194A (en) Production of 1,1,1,3,3-pentafluoropropane
CN112209803A (en) Process for producing vinyl compound
JP2019151629A (en) Method of producing compound
JP3995451B2 (en) Method for producing 1,1,1-trifluoroacetone
JP4306081B2 (en) Method for producing 1,1,2,2,3,3,4-heptafluorocyclopentane and apparatus for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Effective date: 20050816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

LAPS Cancellation because of no payment of annual fees