JPH0343750B2 - - Google Patents

Info

Publication number
JPH0343750B2
JPH0343750B2 JP58133662A JP13366283A JPH0343750B2 JP H0343750 B2 JPH0343750 B2 JP H0343750B2 JP 58133662 A JP58133662 A JP 58133662A JP 13366283 A JP13366283 A JP 13366283A JP H0343750 B2 JPH0343750 B2 JP H0343750B2
Authority
JP
Japan
Prior art keywords
lead
electrode plate
battery
core
lead alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133662A
Other languages
Japanese (ja)
Other versions
JPS6025153A (en
Inventor
Keiji Senoo
Masao Nakazawa
Takamasa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP58133662A priority Critical patent/JPS6025153A/en
Publication of JPS6025153A publication Critical patent/JPS6025153A/en
Publication of JPH0343750B2 publication Critical patent/JPH0343750B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • H01M4/84Multi-step processes for manufacturing carriers for lead-acid accumulators involving casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉛あるいは鉛合金よりも電気抵抗の
小さい良電導性の金属芯体に、鉛あるいは鉛合金
からなるシートで被覆した側導体を有する鉛蓄電
池に関するものである。 鉛蓄電池は鉛合金からなる格子体に正極および
負極活物質を保持させ、セパレータを介在させ、
電解液として希硫酸を用いて電気エネルギーを取
り出すようにしたもので、正極および負極活物質
の電気化学反応により生じた電気エネルギーが格
子体によつて集電される。ところが、格子体であ
る鉛合金の比抵抗は20〜24×10-6Ω−cmと非常に
大きく、大電流が流れた時、この格子体の抵抗に
よるエネルギー損失は無視できない。特に、床面
積が制限されている場所に大容量の電池を設置す
る場合には、高さ方向に電池スペースを確保する
ために電池の高さを高くする必要があり、前記エ
ネルギー損失はさらに顕著である。つまり、端子
からの距離が長くなる極板下部ほど端子までの格
子体の抵抗は大きくなるため、活物質の利用率の
低下、電圧特性、充電効率が低下することになる
からである。 このような欠点を小さくするために、鉛合金よ
りも電気抵抗の小さい銅やアルミニウムなどの金
属を格子体に用いたり、このような金属を芯体に
して鉛あるいは鉛合金で被覆し、またはさらに耐
酸被覆を施したものを側導体として用いることが
提案されている。 従来、このような側導体は銅などの芯体を鋳造
金型に固定し、鉛合金溶湯を流し込んで鋳造によ
り鉛合金の被覆を形成していた。そして、銅など
の芯体の比率を大きくし、鉛合金の被覆を薄くす
ると、容積合あたりの電気抵抗も小さくなるの
で、電池の性能を向上させる点において有利であ
つた。 しかしながら、鉛合金の被覆が薄いと、湯流な
どに起因する鋳造巣や被覆厚さのバラツキによ
り、電池使用中に芯体の金属が溶出して電池鋳造
寿命を短縮させるという欠点があつた。そこで、
電気寿命末までに芯体の金属が溶出しないような
信頼性を得るためには、鉛合金の被覆を厚くする
必要があり、その厚さは3mm以上にする必要があ
つた。その結果、容積当たりの電気抵抗が大きく
なり、電池の溶積効率を低下させていた。 また、芯体の金属を鋳造金型に固定する方法も
難しく、金型に固定された部分は一回の鋳造では
鉛合金の被覆ができず、再度他の金型で鋳造する
か、固定部に鉛合金を付加して火当をするかとい
うことを行わなければならず、工数を要してい
た。 本発明は上記欠点を解消するもので、銅などの
芯体を厚さのバラツキやピンホールのない鉛ある
いは鉛合金シートで被覆することにより、芯体の
金属が電池使用中に溶出しないようにしたもので
ある。 以下に本発明を一実施例により詳述する。 厚さ3mm、幅70mm、長さ600mmの銅板に鉛と錫
からなる半田合金をメツキし、芯体を作成した。
次にこの芯体に、厚さ0.5mm、幅75mm、長さ620mm
の鉛とアンチモンとからなり、圧延により成型し
た鉛合金圧延シートを200℃で圧接接合して被覆
した。次に、この鉛合金圧延シートを被覆した銅
芯体を鋳型に取り付け、鉛、アンチモン合金溶湯
を流し込み、第1図の一部切断斜視図のような銅
電体Aを製造した。第1図においてaは銅芯体、
bは鉛合金圧延シート、cは鋳造部である。また
導電体Aと同一の製法で鉛合金圧延シートの厚さ
を1mm、1.5mm、2mmとした導電体B、C、Dを
製作した。また、同一の寸法の導芯体に、従来の
鋳造法によつて被覆厚さが1mm、2mm、3mmとな
る導電体E、F、Gを製作した。この7種類の導
電体を比重1.30の硫酸中に浸漬して定電流で正極
通電し、銅が硫酸中に溶出するまでの時間を電解
液中の銅を分析して調べたところ表−1のような
結果となつた。
The present invention relates to a lead-acid battery having a conductive metal core having a lower electric resistance than lead or a lead alloy, and a side conductor covered with a sheet made of lead or a lead alloy. A lead-acid battery has a positive electrode and negative electrode active material held in a grid made of lead alloy, with a separator interposed,
Electrical energy is extracted using dilute sulfuric acid as an electrolyte, and the electrical energy generated by the electrochemical reaction between the positive electrode and negative electrode active materials is collected by the grid. However, the specific resistance of the lead alloy that is the lattice body is extremely high, 20 to 24×10 -6 Ω-cm, and when a large current flows, energy loss due to the resistance of this lattice body cannot be ignored. In particular, when installing a large-capacity battery in a place where floor space is limited, the height of the battery must be increased to secure battery space in the height direction, and the energy loss is even more significant. It is. In other words, the resistance of the lattice body up to the terminal increases as the distance from the terminal increases as the distance from the electrode plate increases, resulting in a decrease in the utilization rate of the active material, voltage characteristics, and charging efficiency. In order to minimize these defects, metals such as copper and aluminum, which have lower electrical resistance than lead alloys, are used for the grid, such metals are used as cores and coated with lead or lead alloys, or further It has been proposed to use a material coated with an acid-resistant coating as a side conductor. Conventionally, such side conductors have been formed by fixing a core made of copper or the like in a casting mold, and pouring molten lead alloy into the core to form a lead alloy coating. Increasing the proportion of the core made of copper or the like and making the lead alloy coating thinner reduces the electrical resistance per unit volume, which is advantageous in terms of improving battery performance. However, when the lead alloy coating is thin, there is a drawback that the core metal is eluted during battery use due to casting cavities and variations in coating thickness caused by the flow of the metal, shortening the battery casting life. Therefore,
In order to obtain reliability that prevents the core metal from leaching out by the end of the electrical life, it was necessary to make the lead alloy coating thicker, and the thickness needed to be 3 mm or more. As a result, the electrical resistance per volume increased, reducing the molten efficiency of the battery. In addition, it is difficult to fix the core metal to the casting mold, and the part fixed to the mold cannot be coated with lead alloy in one casting, so it must be cast again in another mold, or the fixed part cannot be coated with lead alloy. This required a lot of man-hours, as it required adding a lead alloy to the fire pit. The present invention solves the above-mentioned drawbacks by covering a core made of copper with a lead or lead alloy sheet that has no thickness variations or pinholes, thereby preventing the core metal from leaching out during battery use. This is what I did. The present invention will be explained in detail below using one example. The core was created by plating a copper plate with a thickness of 3 mm, width of 70 mm, and length of 600 mm with a solder alloy made of lead and tin.
Next, add a thickness of 0.5 mm, a width of 75 mm, and a length of 620 mm to this core.
A rolled lead alloy sheet made of lead and antimony was formed by rolling and welded together at 200°C to cover the material. Next, the copper core coated with this rolled lead alloy sheet was attached to a mold, and molten lead and antimony alloy was poured into it to produce a copper electric body A as shown in the partially cutaway perspective view of FIG. In Fig. 1, a is a copper core,
b is a rolled lead alloy sheet, and c is a casting part. Further, conductors B, C, and D were manufactured using the same manufacturing method as conductor A, using rolled lead alloy sheets with thicknesses of 1 mm, 1.5 mm, and 2 mm. Further, conductors E, F, and G having coating thicknesses of 1 mm, 2 mm, and 3 mm were manufactured using a conventional casting method on a conductor core having the same dimensions. These seven types of conductors were immersed in sulfuric acid with a specific gravity of 1.30, and the positive electrode was energized with a constant current.The time required for copper to dissolve into the sulfuric acid was investigated by analyzing the copper in the electrolyte. The result was as follows.

【表】 表−1から、本発明の鉛合金圧延シートで被覆
した導電体は、正極通電により鉛合金被覆層が腐
蝕され、二酸化鉛として脱落するまでの時間とほ
ぼ合致した時間で銅が溶出したが、従来法では早
期に銅が溶出しており鋳造欠陥があることが明ら
かである。次に、上記導電体を第2図の破断正断
面図に示すように、高さ1000mmの極板で正極板5
枚、負極板6枚用いてそれぞれの極板耳に側導体
として接続した電池を組み立て、電池試験を実施
した。 なお、導電体は腐食を防止するため、ピツチ系
あるいは塩素系ポリエチレン系塗料を塗布したの
ち、さらに熱収縮ポリエチレンで被覆した。 第2図において1はクラツド式正極板、2は負
極板、3はセパレータであり、積層状態にて電槽
4内に収納されている。5は正極板に用いられた
側導体であり、正極板1の耳6と接続突起7との
間で接続されている。8は負極板に用いられた側
導体であり、負極板2の耳9と接続突起10との
間で接続されている。11はストラツプ、12は
極柱、13は電槽蓋、14は電槽鞍、15は正極
板受を示す。 このようにして組み込まれた電池を4HRの放
電と、放電量の150%の充電を繰り返して電池試
験を実施した。側導体を用いない場合の電池の定
格容量の60%を電池寿命とし、電解液の分析、お
よび電池を解体調査した。その結果を表−2に示
す。
[Table] From Table 1, it can be seen that in the conductor coated with the rolled lead alloy sheet of the present invention, the lead alloy coating layer is corroded by positive electrode energization, and copper is eluted in a time that is almost the same as the time it takes for the lead alloy coating layer to fall off as lead dioxide. However, in the conventional method, copper is eluted early and it is clear that there are casting defects. Next, as shown in the cutaway front cross-sectional view of FIG.
A battery was assembled using six negative electrode plates and six negative electrode plates connected to each electrode plate lug as a side conductor, and a battery test was conducted. In order to prevent corrosion, the conductor was coated with pitch-based or chlorine-based polyethylene paint, and then covered with heat-shrinkable polyethylene. In FIG. 2, 1 is a clad positive electrode plate, 2 is a negative electrode plate, and 3 is a separator, which are housed in a battery case 4 in a stacked state. Reference numeral 5 denotes a side conductor used in the positive electrode plate, which is connected between the lug 6 of the positive electrode plate 1 and the connecting protrusion 7. 8 is a side conductor used for the negative electrode plate, and is connected between the lug 9 of the negative electrode plate 2 and the connecting protrusion 10. 11 is a strap, 12 is a pole pole, 13 is a battery case lid, 14 is a battery case saddle, and 15 is a positive electrode plate holder. A battery test was conducted by repeatedly discharging the thus assembled battery for 4 hours and charging it to 150% of the discharge amount. The battery life was assumed to be 60% of the rated capacity of the battery when no side conductor was used, and the electrolyte was analyzed and the battery was disassembled and investigated. The results are shown in Table-2.

【表】 表−2から明らかなように、鉛合金圧延シート
で被覆した導電体を側導体に用いた電池は初期容
量にすぐれ、正極板に用いた側導体も被覆厚さが
0.5〜1.5mmであれば電池寿命まで銅が溶出するこ
とはなかつた。これに対し、鋳造法で鉛合金被覆
したものは、被覆厚さが3mmでも電池寿命末に銅
が電解液中に溶出していた。また、導電体の鉛合
金被覆厚さを厚くても初期容量が増加しないの
は、導電体の電気抵抗はほとんど同じであるが、
その容積が大きくなつて電槽内に入る電解液量が
減少するためである。 以上、本発明の一実施例について説明したが、
本発明はその趣旨を逸脱しない範囲で種々な実施
態様が考えられる。 たとえば、電池重量を軽くすることが望まれる
ような場合は、アルミニウムを芯体とし、錫また
は錫と亜鉛、鉛と錫と合金のようなメツキをして
もよい。つまり芯体と鉛合金圧延シートとの間に
第3の金属を介して得た導電体を使用した鉛蓄電
池はすべて含まれる。また、上記実施例では正極
板と負極板とに施した鉛合金の被覆厚さは同じて
あつたが、負極板に取り付けられた側導体に被覆
された鉛合金は腐蝕をほとんど受けないため、負
極板の側導体の鉛合金圧延シートの被覆厚さより
も薄くしたり、側導体をを負極板のみに配設する
こともできるし、側導体をストラツプに接続する
こともできる。また側導体を2分割して3点以上
で極板に接続することもできる。 上述の如く、本発明によれば銅あるいはアルミ
ニウムなどの金属を芯体にし、鉛あるいは鉛合金
の成型シートで被覆した側導体を用いることによ
り、集電性能にすぐれた、寿命の長い、高性能の
鉛蓄電池を提供することができ工業的価値の大な
るものである。
[Table] As is clear from Table 2, batteries using a conductor coated with a rolled lead alloy sheet for the side conductor have excellent initial capacity, and the side conductor used for the positive electrode plate also has a small coating thickness.
If the thickness was 0.5 to 1.5 mm, copper would not be eluted until the battery life. On the other hand, in batteries coated with lead alloy using a casting method, copper was leached into the electrolyte at the end of the battery's life even if the coating thickness was 3 mm. Also, the reason why the initial capacity does not increase even if the thickness of the lead alloy coating on the conductor is increased is because the electrical resistance of the conductor is almost the same.
This is because the volume increases and the amount of electrolyte that enters the battery container decreases. Although one embodiment of the present invention has been described above,
Various embodiments of the present invention are possible without departing from the spirit thereof. For example, if it is desired to reduce the weight of the battery, the core may be made of aluminum and plated with tin, tin and zinc, or lead and tin alloy. In other words, all lead-acid batteries that use a conductor obtained by interposing a third metal between a core and a rolled lead alloy sheet are included. Furthermore, in the above embodiment, the thickness of the lead alloy coating applied to the positive electrode plate and the negative electrode plate was the same, but since the lead alloy coated on the side conductor attached to the negative electrode plate is hardly subject to corrosion, The coating thickness can be made thinner than the coating thickness of the rolled lead alloy sheet of the side conductor of the negative electrode plate, the side conductor can be provided only on the negative electrode plate, or the side conductor can be connected to the strap. Alternatively, the side conductor can be divided into two parts and connected to the electrode plate at three or more points. As described above, according to the present invention, by using a core made of metal such as copper or aluminum and a side conductor covered with a molded sheet of lead or lead alloy, a high-performance product with excellent current collection performance and long life can be achieved. lead-acid batteries of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の側導体に使用する導電体
の一部切断斜視図である。第2図は本発明電池の
一実施例の破断正断面図である。 a……銅芯体、b……鉛合金圧延シート、c…
…鋳造部、1……正極板、2……負極板、3……
セパレータ、4……電槽、5……正極板に用いら
れた側導体、8……負極板に用いられた側導体。
FIG. 1 is a partially cutaway perspective view of a conductor used as a side conductor of a battery according to the present invention. FIG. 2 is a cutaway front sectional view of an embodiment of the battery of the present invention. a...Copper core, b...Lead alloy rolled sheet, c...
...Casting section, 1... Positive electrode plate, 2... Negative electrode plate, 3...
Separator, 4... Battery case, 5... Side conductor used for positive electrode plate, 8... Side conductor used for negative electrode plate.

Claims (1)

【特許請求の範囲】 1 正極板1と、負極板2と、セパレーター3
と、電槽4とを有し、 正極板1または負極板2の少なくとも一方に側
導体5または8を有し、 正極板1と負極板2との間にセパレータ3を介
在させて複数組積層し、電槽4内に収納してなる
鉛蓄電池において、 側導体5または8は、鉛あるいは鉛合金よりも
電気抵抗が小さい金属からなる芯体aに、鉛ある
いは鉛合金からなるシートbが被覆され、芯体a
とシートbとが接合されていることを特徴とする
鉛蓄電池。 2 鉛あるいは鉛合金からなるシートbは、厚さ
が0.5〜1.5mmである特許請求の範囲第1項記載の
鉛蓄電池。 3 芯体aは、銅またはアルミニウムであり、芯
体aと鉛あるいは鉛合金からなるシートbとの間
に錫または亜鉛の金属もしくは錫と亜鉛または鉛
と錫の合金を介在させてなる特許請求の範囲第1
項記載の鉛蓄電池。
[Claims] 1. Positive electrode plate 1, negative electrode plate 2, and separator 3.
and a battery case 4, and has a side conductor 5 or 8 on at least one of the positive electrode plate 1 and the negative electrode plate 2, and a separator 3 is interposed between the positive electrode plate 1 and the negative electrode plate 2, and a plurality of sets are laminated. In a lead-acid battery housed in a battery case 4, the side conductor 5 or 8 consists of a core a made of a metal with lower electrical resistance than lead or a lead alloy, covered with a sheet b made of lead or a lead alloy. and core body a
A lead-acid battery comprising: and sheet b joined together. 2. The lead-acid battery according to claim 1, wherein the sheet b made of lead or a lead alloy has a thickness of 0.5 to 1.5 mm. 3. A patent claim in which the core a is made of copper or aluminum, and a tin or zinc metal or an alloy of tin and zinc or lead and tin is interposed between the core a and a sheet b made of lead or a lead alloy. range 1
Lead-acid batteries as described in section.
JP58133662A 1983-07-21 1983-07-21 Lead storage battery Granted JPS6025153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133662A JPS6025153A (en) 1983-07-21 1983-07-21 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133662A JPS6025153A (en) 1983-07-21 1983-07-21 Lead storage battery

Publications (2)

Publication Number Publication Date
JPS6025153A JPS6025153A (en) 1985-02-07
JPH0343750B2 true JPH0343750B2 (en) 1991-07-03

Family

ID=15109991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133662A Granted JPS6025153A (en) 1983-07-21 1983-07-21 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS6025153A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149754A (en) * 1989-11-06 1991-06-26 Japan Storage Battery Co Ltd Manufacture of sealed lead-acid battery
US6519871B2 (en) 2001-05-25 2003-02-18 Maytag Corporation Self programming clothes dryer system
EP3598539A4 (en) 2017-12-11 2021-03-24 Takasaki Denka Kougyousho Co., Ltd. Lead storage battery electrode body and lead storage battery using same

Also Published As

Publication number Publication date
JPS6025153A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
EP0664054B1 (en) Method of fabricating a battery
US5223354A (en) Lead-acid battery plate and its manufacturing method
US3287165A (en) High capacity lead acid battery with lead calcium negative grids
US2282760A (en) Electrode
JP7296016B2 (en) Lead alloy foil, positive electrode for lead-acid battery, lead-acid battery, and power storage system
JP2010170939A (en) Lead storage battery
US2713079A (en) Battery plate
US2739997A (en) Storage battery
JP2006512719A (en) Batteries having vibration-resistant joints between positive electrode and conductive strap
JPH0343750B2 (en)
JPH1021889A (en) Container of lithium ion secondary battery and electrode collector
JP2002175798A (en) Sealed lead-acid battery
JP5050309B2 (en) Lead acid battery
JP2004158433A (en) Base plate for lead storage battery, and lead storage battery using the same
US3981742A (en) High power lead acid battery
CN218039499U (en) Battery with a battery cell
JPH0992262A (en) Packed lead-acid battery
US3117893A (en) Electrode plate grid for storage battery
JPS632253A (en) Lead-acid battery and its manufacture
JPS6386256A (en) Lead acid battery
JPS60253160A (en) Manufacture of negative plate for lead storage battery utilizing copper grating
JPS58198860A (en) Lead storage battery
JPH09147814A (en) Organic electrolyte battery
JPS63133452A (en) Grid member for lead battery
US20190319311A1 (en) Lead acid battery with titanium core grids having titanium suboxide coating