JPH03149754A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPH03149754A
JPH03149754A JP1288195A JP28819589A JPH03149754A JP H03149754 A JPH03149754 A JP H03149754A JP 1288195 A JP1288195 A JP 1288195A JP 28819589 A JP28819589 A JP 28819589A JP H03149754 A JPH03149754 A JP H03149754A
Authority
JP
Japan
Prior art keywords
lead
copper
coating layer
lattice
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288195A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Shigeharu Osumi
重治 大角
Masahiko Onari
小齊 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1288195A priority Critical patent/JPH03149754A/en
Publication of JPH03149754A publication Critical patent/JPH03149754A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To make a lead-acid battery lightweight and obtain high performance by immersing an expand-machined copper lattice in a molten metal with the melting point higher than that of lead to form the first film layer, and immersing it into molten lead or lead alloy to form the second film layer. CONSTITUTION:An expand-machined copper lattice is immersed in molten metal with the melting point higher than that of lead, e.g. zinc or aluminum, to form the first film layer 4, then it is immersed in the molten lead or lead alloy to form the second film layer 5. When the copper lattice is immersed in the molten metal with the melting point higher than that of lead, a lattice frame 1 is formed into a roundish cross section shape with no edge section as a whole, thus uniform film layers 4 and 5 are formed by immersing it in molten lead. The elution of copper is prevented by simple fusion plating, a lead-acid battery is made lightweight, and its performance is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 電池の充電中に発生する酸素ガスを負極板に吸収させる
タイプの密閉形鉛蓄電池にはリテーナ式とゲル式の二種
類があり、現在ではリテーナ式が多く用いられている。
Conventional technology and its challenges There are two types of sealed lead-acid batteries that allow the negative electrode plate to absorb oxygen gas generated during battery charging: a retainer type and a gel type.Currently, the retainer type is most commonly used. .

リテーナ式の密閉形鉛蓄電池は正極板と負極板との間に
微細ガラス繊維を素材とするマット状セパレータ(ガラ
スセパレータ)を挿入し、これによって放電に必要な硫
酸電解液の保持と両極板の隔離を行っている。
Retainer-type sealed lead-acid batteries have a mat-like separator (glass separator) made of fine glass fiber inserted between the positive and negative electrode plates, which holds the sulfuric acid electrolyte necessary for discharge, and Isolation is in place.

この密閉形鉛蓄電池は無保守、無漏液、ポジションフリ
ーなどの優れた特徴がある上信頼性も高いので、ポータ
ブル機器や通信機器の電源として急速に需要が伸びてお
り、今後は自動車の始動用など用途はさらに拡大するも
のと思われる。これに伴ってより一層の高性能化や小形
軽量化の要求が高まっており、従来と異なった新しい技
術が求められている。
This sealed lead-acid battery has excellent features such as no maintenance, no leakage, and no positioning, and is also highly reliable, so the demand for it as a power source for portable equipment and communication equipment is rapidly increasing, and in the future it will be used for starting cars. It is expected that its uses will further expand. Along with this, demands for higher performance, smaller size and lighter weight are increasing, and new technologies different from conventional ones are required.

鉛蓄電池の軽量、高性能化を図るためには、電池に使用
する鉛部品や電池の内部抵抗をできる限り小さくする必
要があり、従来から極板の薄形化や低抵抗セパレータの
採用によって、一定の成果が得られている。しかし、鉛
蓄電池の性能に大きな影響を及ぼす格子体は金属の中で
も密度が大きく、かつ電気抵抗もかなり大きい鉛を材料
としているため、鉛合金の格子体を用いるかぎり、性能
の向上はあまり望めない。
In order to make lead-acid batteries lightweight and high-performance, it is necessary to reduce the lead parts used in the battery and the internal resistance of the battery as much as possible. Certain results have been achieved. However, since the lattice body, which has a major influence on the performance of lead-acid batteries, is made of lead, which has the highest density among metals and also has a fairly high electrical resistance, as long as a lead alloy lattice body is used, it is not possible to expect much improvement in performance. .

そこで、鉛よりも軽く、電気抵抗の小さな金属、例えば
銅を集電体として用いる提案がされている。
Therefore, it has been proposed to use a metal that is lighter than lead and has lower electrical resistance, such as copper, as the current collector.

ただここで問題となるのは銅の溶出である。#Jは鉛よ
りも水素過電圧が低いので、溶出した銅が負極板に析出
すると自己放電を促進し、水素ガスの発生量も多くなる
。そこで銅の溶出を防止するために従来から銅格子を鉛
または鉛合金で完全に被覆する方法がとられてきた。こ
の口的に最も適しているのは電気メッキによって銅格子
を鉛または鉛合金で被覆する方法である。ところが電気
メッキするにはかなりの時間を要し、またコストも高く
つくので自動車用鉛蓄電池のように大量生産される場合
には適当でない。
However, the problem here is copper elution. Since #J has a lower hydrogen overvoltage than lead, when eluted copper is deposited on the negative electrode plate, self-discharge is promoted and the amount of hydrogen gas generated increases. Therefore, in order to prevent the elution of copper, a method has conventionally been used in which the copper grid is completely coated with lead or a lead alloy. The most suitable method is to coat the copper grid with lead or a lead alloy by electroplating. However, electroplating requires a considerable amount of time and is expensive, so it is not suitable for mass production such as lead-acid batteries for automobiles.

そこで電気メッキするかわりに銅格子を鉛または鉛合金
の溶融浴に浸漬する、いわゆる溶融メッキ法(俗にドブ
漬けと呼んでいる)によれば極めて短時間に被覆層が形
成できて便利である。しかしながら、銅の圧延シートを
エキスパンド加工した格子に鉛の溶融メッキを施したも
のと鉛の電気ツキを施したものを用いて密閉形鉛蓄電池
を組んで電池性能を比べたところ、溶融メッキした銅格
子を用いた電池の過放電特性が劣っており、銅の溶;I
s 31も多かった。そこでこの原因を調べたところ、
鉛被覆層の形状が両者で著しく異なっており、溶融メッ
キした場合は鉛被覆層が不均一であることがわかった。
Therefore, instead of electroplating, the so-called hot-dip plating method (commonly called dobuzuke), in which the copper grid is immersed in a molten bath of lead or lead alloy, is convenient because a coating layer can be formed in an extremely short time. . However, when we compared the battery performance of sealed lead-acid batteries using a lattice made of expanded rolled copper sheets with lead hot-dip plating and one with lead electrification applied, we found that The overdischarge characteristics of batteries using grids are poor, and copper melts; I
There were also many s31. So when we investigated the cause of this, we found that
It was found that the shape of the lead coating layer was significantly different between the two, and that the lead coating layer was non-uniform when hot-dip plating was applied.

鉛被覆層を形成させた銅エキスパンド格子の棧断面を顕
微鏡観察した結果を第2図を用いて説明すれば、Aおよ
びBはそれぞれ溶融メッキした場合および電気メッキし
た場合の格子棧断面を示し、1は銅格子の棧、2は鉛の
被覆層、3は格子桟の矩形断面の尖端部分である。図か
ら明らかなように電気メッキを施したBでは鉛被覆Jl
12の厚みはほぼ均一であったのに対して、溶融メッキ
を施したAでは格子桟1の矩形断面中央付近はど鉛被覆
層が厚く、尖端部3では&iとんど鉛層が形成されてい
なかった。溶融メッキを施した銅格子を用いた密閉形鉛
蓄電池の過放電性能が劣ったのは、上述した鉛被覆層の
不均一が原因であった。
The results of microscopic observation of the cross section of a copper expanded grid on which a lead coating layer has been formed are explained using FIG. 2. A and B show the cross sections of the grid when hot-dip plated and electroplated, respectively. Reference numeral 1 indicates a copper lattice beam, 2 a lead coating layer, and 3 a tip of a rectangular cross section of the lattice crosspiece. As is clear from the figure, in B with electroplating, lead coating Jl
12 was almost uniform in thickness, whereas in A, which was hot-dip plated, the lead coating layer was thick near the center of the rectangular cross section of the lattice crosspiece 1, and a lead coating layer was formed at the tip 3. It wasn't. The poor overdischarge performance of sealed lead-acid batteries using hot-dip plated copper grids was due to the non-uniformity of the lead coating layer described above.

そこで上記欠点を解決するための手段として、例えば特
開昭63−174276号公報によれば、銅エキスパン
ド格子に鉛合金の溶融浸漬メッキを施して第一被覆層を
形成させた後、鉛の電気メッキを行って均一な第二被覆
層を形成させる方法が提案されている。しかし、この方
法では上述したように時間とコストのかかる電気メッキ
をしなければならないので、大量生産される鉛蓄電池に
は不適当である。また、鉛の電気メッキを施す代わりに
、鉛の溶融浸漬メッキで第二被覆層を形成しようとする
と、第一被覆層の鉛合金が鉛の融点以下であるため、鉛
の溶融浴に浸漬すると第一被覆層の鉛合金が溶は出して
均一な被覆層を形成することができない。
Therefore, as a means to solve the above-mentioned drawbacks, for example, according to Japanese Patent Application Laid-Open No. 63-174276, after forming a first coating layer by hot-dipping a lead alloy on a copper expanded grid, A method has been proposed in which a uniform second coating layer is formed by plating. However, this method requires time-consuming and costly electroplating as described above, and is therefore unsuitable for mass-produced lead-acid batteries. Also, if you try to form the second coating layer by hot-dip immersion plating of lead instead of electroplating with lead, the lead alloy in the first coating layer has a temperature below the melting point of lead, so if you immerse it in a molten lead bath, The lead alloy of the first coating layer melts out, making it impossible to form a uniform coating layer.

課題を解決するための手段 本発明は上記欠点を解消するものであって、エキスパン
ドした銅格子をまず鉛よりも融点の高い金属、例えば亜
鉛またはアルミニウムなどの溶融浴に浸漬して第一の被
覆層を形成させ、ついで鉛または鉛合金の溶融浴に浸漬
して第二の被覆層を形成させることを骨子とするもので
、これによって銅の棧周囲に均一な被覆層を容易に形成
させることができた。以下、本発明を実施例に基づいて
説明する。
SUMMARY OF THE INVENTION The present invention overcomes the above drawbacks by first immersing an expanded copper grid in a molten bath of a metal with a higher melting point than lead, such as zinc or aluminum, to form a first coating. The main idea is to form a second coating layer by immersing the copper in a molten bath of lead or lead alloy, thereby easily forming a uniform coating layer around the copper hem. was completed. Hereinafter, the present invention will be explained based on examples.

実施例 まず厚み0.2mmの銅の圧延シートを展開してエキス
パンド格子を作製した。ついでこの銅格子を有nsu、
で洗浄して脱脂したのち乾燥した。乾燥後の銅格子に亜
鉛の第一被覆層を形成させるために塩化亜@ (Zn 
Cl t )の水溶液をフラックスとして亜鉛(Zn)
の溶融メッキを行った。亜鉛の溶融浴は450〜460
℃とし、銅格子を短時間浸漬して引上げ、溶融亜鉛のし
ずくを振り払って亜鉛の被覆層を形成させた。この時点
で格子桟の断面を観察するとやはり第2図Aと同様の形
状で、格子断面の四隅(エツジ部)はほとんど亜鉛の被
覆層がなく、矩形断面の中央部はど被覆層の厚みが大き
かった。そこで亜鉛の第一被覆層を形成させた上記銅格
子を再び塩化亜鉛の水溶液フラックスに漬けた後、温度
約350℃の鉛層3%錫合金の溶融浴に浸漬して第一被
覆層の上に該鉛合金の第二被Wi層を形成させた。鉛合
金浴の温度は第一被覆層である亜鉛の融点(420℃)
より低いので、亜鉛が溶は出すことなく均一な鉛合金の
第二被覆層が形成された。
Example First, an expanded grid was prepared by rolling out a rolled copper sheet having a thickness of 0.2 mm. Next, I installed this copper grid,
After cleaning and degreasing, it was dried. Zinc chloride (Zn) was added to form a first coating layer of zinc on the dried copper grid.
Zinc (Zn) using an aqueous solution of Cl t ) as a flux
Hot-dip plating was performed. Zinc molten bath is 450-460
℃, the copper grid was briefly dipped and pulled up, and the molten zinc droplets were shaken off to form a coating layer of zinc. Observing the cross section of the lattice cross section at this point, the shape is similar to that shown in Figure 2A, with almost no zinc coating layer at the four corners (edges) of the lattice cross section, and the thickness of the coating layer at the center of the rectangular cross section. It was big. Therefore, the above-mentioned copper grid on which the first coating layer of zinc was formed was immersed again in an aqueous solution flux of zinc chloride, and then immersed in a molten bath of a 3% tin alloy with a lead layer at a temperature of about 350°C. A second Wi layer of the lead alloy was formed. The temperature of the lead alloy bath is the melting point of zinc (420°C), which is the first coating layer.
Since the temperature was lower, a uniform second coating layer of lead alloy was formed without zinc dissolving.

第1図は上記処理を施したエキスパンド銅格子の棧断面
を示し、4は亜鉛の第一被覆層、5は鉛合金の第二被覆
層である。亜鉛の代わりにアルミニウム(融点660℃
)を用いても第1図に示すような鉛合金の均一な被覆層
が得られた。
FIG. 1 shows a cross section of an expanded copper grid subjected to the above treatment, in which numeral 4 indicates a first coating layer of zinc, and numeral 5 indicates a second coating layer of lead alloy. Aluminum instead of zinc (melting point 660℃
), a uniform coating layer of lead alloy as shown in FIG. 1 was obtained.

このように均一な鉛合金の被覆層の形成が可能となった
のは、鉛(融点321℃)よりも融点の高い金属層(勿
論銅の融点1083℃より低くなければならない)の溶
融浴に銅格子を浸漬することによって、結果的に格子桟
はエツジ部のない全体に丸みを帯びた断面形状となった
ため、これを鉛合金浴に浸漬することによって均一な被
覆層が形成されたものである。
The formation of a uniform lead alloy coating layer was made possible by using a molten bath of a metal layer with a higher melting point than lead (which has a melting point of 321°C) (of course, it must be lower than the melting point of copper, 1083°C). By immersing the copper grid, the cross-section of the grid cross section was rounded throughout with no edges, and a uniform coating layer was formed by immersing it in the lead alloy bath. be.

つぎに本発明の効果を実証するために上記格子を用いて
密閉形地鉛蓄電池を試作し、銅の溶出が最も問題となる
過放電放置試験を行った。試験結果を第1表に示ず。
Next, in order to demonstrate the effects of the present invention, a sealed lead-acid battery was prototyped using the above-mentioned grid, and an over-discharge storage test was conducted in which copper elution was the most problematic issue. Test results are not shown in Table 1.

第1表 1電池1負極格子の処理1shR容i l SAE寿命
III第一層l第二層1 時−分1 (〜)[A 亜鉛
  鉛合金   4−35  40000 アルミ 鉛
合金   4−38  40000 鉛合金 無し  
  4−30  500過放電放置試験は試験電池に1
0Wのランプを接続して1カ月放置し、ついで2.5 
V/セルの定電圧で充電した後5hR容量試験を行った
。その後S^[に規定されている寿命試験を行った。第
1表の試験結果から、定電圧充電後の5hR容量は本発
明による試験電池AおよびBは従来品Cとほとんど差が
なかったが、容量試験後に行ったSAE寿命試験では、
本発明品A、Bが4000〜と良好な寿命性能を示した
のに対して、銅格子を鉛合金の溶融メッキのみを施した
従来品Cはわずかに500〜で寿命となった。従来品は
減液量が多く、また寿命試験中の充電終期電流が大きく
なっていたことから、銅が溶出したものと思われる。本
発明晶A、B4まこのようなこともなく、銅格子を第一
層および第二層のM融メッキを施した効果は顕著であっ
た。
Table 1 1 Treatment of battery 1 negative electrode grid 1shR capacity SAE life III 1st layer 1 second layer 1 hour-minute 1 (~) [A Zinc Lead alloy 4-35 40000 Aluminum Lead alloy 4-38 40000 Lead alloy none
4-30 500 over discharge test
Connect a 0W lamp and leave it for a month, then turn on the 2.5W lamp.
A 5 hR capacity test was performed after charging at a constant voltage of V/cell. After that, the life test specified in S^[ was conducted. From the test results in Table 1, test batteries A and B according to the present invention had almost no difference in 5hR capacity after constant voltage charging from conventional product C, but in the SAE life test conducted after the capacity test,
Inventive products A and B showed good life performance of 4,000 or more, while conventional product C, in which the copper grid was only hot-dipped with a lead alloy, had a life of only 500 or more. The conventional product had a large amount of liquid loss, and the current at the end of charging during the life test was large, so it seems that copper was eluted. Invention Crystals A and B4 There was no such problem, and the effect of applying M-dip plating to the first and second layers of the copper lattice was remarkable.

発明の効果 以上述べた如く、本発明によれば簡便な溶融メッキによ
り銅の溶出が防止でき、鉛蓄電池の軽量化と性能向上に
顕著な効果を示した。なお、本実施例では第一被覆層と
して亜鉛またはアルミニウムを用いたが、これらの合金
または銅よりも融点が低くかつ鉛よりも融点の高い金属
や合金であれば同様の効果が得られるのはいうまでもな
Vl。
Effects of the Invention As described above, according to the present invention, the elution of copper can be prevented by simple hot-dip plating, and the present invention has shown remarkable effects in reducing the weight and improving the performance of lead-acid batteries. Although zinc or aluminum was used as the first coating layer in this example, the same effect can be obtained with any metal or alloy that has a melting point lower than these alloys or copper and higher than lead. Needless to say, Vl.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく銅格子機の断面を示す図、第2
図は従来の溶融鉛メ・フキおよび電気メ・ツキを施した
銅格子機の断面を示す図である。 1・・・銅格子機、2.5・・・鉛被覆層、4・−・亜
鉛被覆メ   l
Fig. 1 is a cross-sectional view of a copper grate machine according to the present invention;
The figure is a cross-sectional view of a conventional copper grid machine with molten lead foil and electric wire. 1...Copper lattice machine, 2.5...Lead coating layer, 4...Zinc coating layer l

Claims (1)

【特許請求の範囲】[Claims] 1、銅または銅合金の薄板をエキスパンド加工した格子
体を鉛よりも融点の高い金属の溶融浴に浸漬して銅の表
面に該金属より成る第一被覆層を形成させ、ついで鉛ま
たは鉛合金の溶融浴に浸漬して第二の被覆層を上記第一
被覆層の上に形成させた後、負極ペーストを充填してな
る負極板を用いることを特徴とする密閉形鉛蓄電池の製
造方法。
1. A lattice formed by expanding a thin plate of copper or a copper alloy is immersed in a molten bath of a metal whose melting point is higher than that of lead to form a first coating layer of the metal on the surface of the copper, and then a first coating layer of the metal is formed on the surface of the copper. A method for manufacturing a sealed lead-acid battery, comprising: forming a second coating layer on the first coating layer by immersing the plate in a molten bath of the invention, and then filling the negative electrode plate with a negative electrode paste.
JP1288195A 1989-11-06 1989-11-06 Manufacture of sealed lead-acid battery Pending JPH03149754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288195A JPH03149754A (en) 1989-11-06 1989-11-06 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288195A JPH03149754A (en) 1989-11-06 1989-11-06 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH03149754A true JPH03149754A (en) 1991-06-26

Family

ID=17727044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288195A Pending JPH03149754A (en) 1989-11-06 1989-11-06 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH03149754A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162256A (en) * 1981-03-31 1982-10-06 Hitachi Chem Co Ltd Electrode member for lead acid battery and its manufacture
JPS6025153A (en) * 1983-07-21 1985-02-07 Yuasa Battery Co Ltd Lead storage battery
JPS632253A (en) * 1986-06-20 1988-01-07 Yuasa Battery Co Ltd Lead-acid battery and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162256A (en) * 1981-03-31 1982-10-06 Hitachi Chem Co Ltd Electrode member for lead acid battery and its manufacture
JPS6025153A (en) * 1983-07-21 1985-02-07 Yuasa Battery Co Ltd Lead storage battery
JPS632253A (en) * 1986-06-20 1988-01-07 Yuasa Battery Co Ltd Lead-acid battery and its manufacture

Similar Documents

Publication Publication Date Title
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
EP1348239B1 (en) Method for making an alloy coated battery grid
CN111525138A (en) Copper foil with excellent adhesion
US20060292448A1 (en) Current Collector Structure and Methods to Improve the Performance of a Lead-Acid Battery
US5093970A (en) Lead-acid battery plate and its manufacturing method
Czerwiński et al. New high-energy lead-acid battery with reticulated vitreous carbon as a carrier and current collector
JP4136674B2 (en) Lithium battery negative electrode material and method for producing the same
US3933524A (en) Antimony plating of lead-acid storage batteries grids
US2282760A (en) Electrode
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
US2713079A (en) Battery plate
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JPH03149754A (en) Manufacture of sealed lead-acid battery
US20030165742A1 (en) Electrode
JPH0212386B2 (en)
CN110546791B (en) Electrode body for lead-acid battery and lead-acid battery using same
WO2013106419A1 (en) Improved substrate for electrode of electrochemical cell
Prengaman Current-collectors for lead–acid batteries
JPH0765821A (en) Lead storage battery
US20060165876A1 (en) Current Collector Structure and Methods to Improve the Performance of a Lead-Acid Battery
KR100250381B1 (en) The method to support active material of plate for lead acid battery and its applied battery
JPH03152872A (en) Manufacture of sealed lead-acid storage battery
JPS632253A (en) Lead-acid battery and its manufacture
WO2006092060A1 (en) Method to improve the performance of lead acid battery
JP2722555B2 (en) Manufacturing method of electrode plate for lead-acid battery