JPH03152872A - Manufacture of sealed lead-acid storage battery - Google Patents

Manufacture of sealed lead-acid storage battery

Info

Publication number
JPH03152872A
JPH03152872A JP1289725A JP28972589A JPH03152872A JP H03152872 A JPH03152872 A JP H03152872A JP 1289725 A JP1289725 A JP 1289725A JP 28972589 A JP28972589 A JP 28972589A JP H03152872 A JPH03152872 A JP H03152872A
Authority
JP
Japan
Prior art keywords
alloy
copper
lead
film layer
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289725A
Other languages
Japanese (ja)
Inventor
Akio Tokunaga
徳永 昭夫
Masahiko Onari
小齊 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1289725A priority Critical patent/JPH03152872A/en
Publication of JPH03152872A publication Critical patent/JPH03152872A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make a sealed lead-acid battery lightweight and improve the performance thereof by applying the constitution wherein copper or a copper alloy sheet is dipped in the melt bath of metal having a higher melting point than copper and not causing a drop in a hydrogen overvoltage for forming the first film layer on the surface thereof, subjected to an expansion process and then further dipped in the melt bath of lead or lead alloy for forming the second film layer on the first film layer. CONSTITUTION:For forming the first film layer of metal having a higher boiling point than lead and not causing a remarkable drop in hydrogen overvoltage, for example, a Pb-3% Ca alloy, on copper grill, the aforesaid alloy is applied by means of a hot dipping process. The melt bath of the aforesaid alloy is kept at 450 to 460 deg.C and a copper sheet is dipped therein for a short time and pulled up for the formation of a film layer thereon. Then, the sheet is subjected to an expansion process and formed into a grill shape. Then, the aforesaid copper grill is dipped in a water solution of zinc chloride and then dipped in the melt bath of Pb-3% Sn alloy having a temperature of about 350 deg.C, thereby forming the second film layer on the first film layer. The temperature of the Pb-3% Sn alloy bath is lower than about 400 deg.C pertaining to the Pb-0.3% Ca alloy as the first film layer. Consequently, the second film layer is formed without causing the melting of the first film layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 電池の充電中に発生する酸素カスを負極板に吸収させる
タイプの密閉形鉛蓄電池にはリテーナ式とゲル式の二種
類があり、現在ではリテーナ式か多く用いられている。
Conventional technology and its challenges There are two types of sealed lead-acid batteries that allow the negative electrode plate to absorb oxygen scum generated during battery charging: a retainer type and a gel type.Currently, the retainer type is the most commonly used type. .

リテーナ式の密閉形鉛蓄電池は正極板と負極板との間に
微細カラス繊維を素材とするマット状セパレータ(カラ
スセパレータ)を挿入し、これによって放電に必要な硫
酸電解液の保持と両極板の隔離を行っている。
A cage-type sealed lead-acid battery has a mat-like separator (glass separator) made of fine glass fibers inserted between the positive and negative electrode plates, which holds the sulfuric acid electrolyte necessary for discharge and separates both electrode plates. Isolation is in place.

この密閉形鉛蓄電池は無保守、無漏液、ポジションフリ
ーなどの優れた特徴かある上信頼性も高いので、ポータ
プル機器や通信機器の電源として急速に需要か仲ひてお
り、今後は自動車の始動用など用途はさらに拡大するも
のと思われる。これに伴ってより一層の高性能化や小形
軽量化の要求が高まっており、従来と異なった新しい技
術が求められている。
This sealed lead-acid battery has excellent features such as no maintenance, no leakage, and no positioning, and is also highly reliable, so it is rapidly gaining demand as a power source for portable equipment and communication equipment, and will be used in automobiles in the future. It is expected that applications such as starting applications will further expand. Along with this, demands for higher performance, smaller size and lighter weight are increasing, and new technologies different from conventional ones are required.

鉛蓄電池の軽量、高性能化を図るためには、電池に使用
する鉛部品や電池の内部抵抗をできる限り小さくする必
要があり、従来から極板の薄形化や低抵抗セパレータの
採用によって、一定の成果が得られている。しかし、鉛
蓄電池の性能に大きな影響を及ぼず格子体は金属の中で
も密度が大きく、かつ電気抵抗もかなり大きい船を材料
とじているため、鉛合金の格子体を用いるかぎり、性能
の向上はあまり望めない。
In order to make lead-acid batteries lightweight and high-performance, it is necessary to reduce the lead parts used in the battery and the internal resistance of the battery as much as possible. Certain results have been achieved. However, it does not have a large effect on the performance of lead-acid batteries, and since the lattice body is made of a material that has the highest density among metals and has a fairly high electrical resistance, as long as a lead alloy lattice body is used, there will be little improvement in performance. I can't hope.

そこで、鉛よりも軽く、電気抵抗の小さな金属、例えば
銅を集電体として用いる提案がされている。
Therefore, it has been proposed to use a metal that is lighter than lead and has lower electrical resistance, such as copper, as the current collector.

ただここで問題となるのは銅の溶出である。銅は鉛より
も水素過電圧が低いので、溶出した銅が負極板に析出す
ると自己放電を促進し、水素ガスの発生量も多くなる。
However, the problem here is copper elution. Since copper has a lower hydrogen overvoltage than lead, when eluted copper is deposited on the negative electrode plate, self-discharge is promoted and the amount of hydrogen gas generated increases.

そこで銅の溶出を防止するために従来から銅格子を鉛ま
たは鉛合金で完全に被覆する方法がとられてきた。この
目的に最も適しているのは電気メツキによって銅格子を
鉛または鉛合金で被覆する方法である。ところが電気メ
ツキするにはかなりの時間を要し、またコストも高くつ
くので自動車用鉛蓄電池のように大量生産される場合に
は適当でない。
Therefore, in order to prevent the elution of copper, a method has conventionally been used in which the copper grid is completely coated with lead or a lead alloy. The method most suitable for this purpose is to coat the copper grid with lead or a lead alloy by electroplating. However, electroplating takes a considerable amount of time and is expensive, so it is not suitable for mass production such as lead-acid batteries for automobiles.

そこで電気メツキするかわりに銅格子を鉛または鉛合金
の溶融浴に浸漬する、いわゆる溶融メツキ法(俗にドブ
潰けと呼んでいる)によれば極めて短時間に被覆層が形
成できて便利である6しかしながら、銅の圧延シートを
エキスパンド加工した格子に鉛の溶融メツキを施したも
のと鉛の電気ツキを施したものを用いて密閉形鉛蓄電池
を組んで電池性能を比べたところ、溶融メツキした銅格
子を用いた電池の過放電特性が劣っており、銅の溶出量
も多かった。そこでこの原因を調べたところ、鉛被覆層
の形状が両者で著しく異なっており、溶融メツキした場
合は鉛被覆層が不均一であることがわかった。
Therefore, instead of electroplating, the so-called hot-dip plating method (commonly called gutter plating), in which the copper grid is immersed in a molten bath of lead or lead alloy, is convenient because a coating layer can be formed in an extremely short time. 6 However, when we built a sealed lead-acid battery using a lattice made from expanded rolled copper sheets and applied lead fusion plating to one and one to which lead electrification lattice was applied, and compared the battery performance, we found that The overdischarge characteristics of batteries using copper grids were poor, and the amount of copper eluted was large. When we investigated the cause of this, we found that the shape of the lead coating layer was significantly different between the two, and that the lead coating layer was non-uniform when hot-dip plating was used.

鉛被覆層を形成させた銅エキスパンド格子の棧断面を顕
微鏡観察した結果を第3図を用いて説明すれば、Aおよ
びBはそれぞれ溶融メツキした場合および電気メツキし
た場合の格子桟断面を示し、1は銅格子の桟、4は鉛の
被覆層、5は格子桟の矩形断面の尖端部分である。図か
ら明らかなように電気メツキを施したBでは鉛被覆層2
の厚みはほぼ均一であったのに対して、溶融メツキを施
したAでは格子桟1の矩形断面中央付近はど鉛被覆層が
厚く、尖端部5ではほとんど鉛層が形成されていなかっ
た。溶融メツキを施した銅格子を用いた密閉形鉛蓄電池
の過放電性能が劣ったのは、上述した鉛被覆層の不均一
が原因であった。
The results of microscopic observation of the cross section of a copper expanded grid on which a lead coating layer has been formed are explained with reference to FIG. 3. A and B show the cross sections of the grid cross section when melt-plated and electroplated, respectively. Reference numeral 1 indicates a copper lattice crosspiece, 4 a lead coating layer, and 5 a tip portion of a rectangular cross section of the lattice crosspiece. As is clear from the figure, in B, which was electroplated, the lead coating layer 2
The thickness was almost uniform, whereas in A, which was hot-plated, the lead coating layer was thick near the center of the rectangular cross section of the lattice crosspiece 1, and almost no lead layer was formed at the tip 5. The poor overdischarge performance of sealed lead-acid batteries using melt-plated copper grids was due to the non-uniformity of the lead coating layer described above.

そこで上記欠点を解決するための手段として、例えば特
開昭63−174276号公報によれば、銅エキスパン
ド格子に鉛合金の溶融浸漬メツキを施して第一被覆層を
形成させた後、鉛の電気メツキを行って均一な第二被覆
層を形成させる方法が提案されている。しかし、この方
法では上述したように時間とコストのかかる電気メツキ
をしなければならないので、大量生産される鉛蓄電池に
は不適当である。また、鉛の電気メツキを施す代わりに
、鉛の溶融浸漬メツキで第二被覆層を形成しようとする
と、第一被覆層の鉛合金が鉛の融点以下であるため、鉛
の溶融浴に浸漬すると第一被覆層の鉛合金が溶は出して
均一な被覆層を形成することができない。
Therefore, as a means to solve the above-mentioned drawbacks, for example, according to Japanese Patent Application Laid-open No. 174276/1983, after forming a first coating layer by hot-dip plating a lead alloy on a copper expanded grid, A method has been proposed in which a uniform second coating layer is formed by plating. However, this method requires time-consuming and costly electroplating as described above, and is therefore unsuitable for mass-produced lead-acid batteries. Also, if you try to form the second coating layer by hot-dipping lead plating instead of electroplating lead, the lead alloy in the first coating layer has a temperature below the melting point of lead, so if you immerse it in a molten lead bath, The lead alloy of the first coating layer melts out, making it impossible to form a uniform coating layer.

課題を解決するための手段 本発明は上記欠点を解消するものであって、あらかじめ
、鉛よりも融点が高く、かつ水素過電圧を著しく低下さ
せない金属、例えば円−α合金などの溶融浴に浸漬して
表面に第一の被覆層を形成した銅あるいは銅合金製シー
トをエキスパンド加工し、ついで鉛または鉛合金の溶融
浴に浸漬して第二の被覆層を形成させることを骨子とす
るもので、これによって銅の棧周囲に均一な被覆層を容
易に形成させることができた。以下、本発明を実施例に
基づいて説明する。
Means for Solving the Problems The present invention solves the above-mentioned drawbacks by immersing a metal in advance in a molten bath of a metal that has a higher melting point than lead and does not significantly reduce the hydrogen overvoltage, such as a Yen-α alloy. The basic idea is to expand a copper or copper alloy sheet with a first coating layer formed on its surface, and then immerse it in a molten lead or lead alloy bath to form a second coating layer. This made it possible to easily form a uniform coating layer around the copper shim. Hereinafter, the present invention will be explained based on examples.

実施例 まず厚み0.211の銅の圧延シートを有機溶媒で洗浄
して脱脂したのち乾燥した。乾燥後の銅格子にPb−0
,3%α合金の第一被覆層を形成させるなめに、塩化ア
ンモニウムの水溶液をフラックスとして当該合金の溶融
メツキを行った。Pb−0,3%O合金の溶融浴は45
0〜460℃とし、銅シートを短時間浸漬して引上げ、
溶融合金のしずくを振り払って被覆層を形成させた。つ
いで、当該シートをエキスパンド加工して所定の格子形
状とした。
Example First, a rolled copper sheet having a thickness of 0.211 mm was washed with an organic solvent, degreased, and then dried. Pb-0 on the copper grid after drying
, 3% α alloy, the alloy was melt-plated using an aqueous solution of ammonium chloride as a flux. The molten bath of Pb-0,3%O alloy is 45
0 to 460°C, dipped the copper sheet for a short time and pulled it up,
Drops of molten alloy were shaken off to form a coating layer. Then, the sheet was expanded into a predetermined grid shape.

この時点で格子桟の断面を観察すると、第1図に示すよ
うに銅格子の棧1はエキスパンド加工時の切断面のみに
銅の霧出がみられ、他は偽−〇合金被覆層2に均一に覆
われていた。そこで)−α合金の第一被覆層を形成させ
た上記銅格子を塩化亜鉛の水溶液フラックスに漬けた後
、温度的350°CのPb−3%出合金の溶融浴に浸漬
して第一被覆層の上に該鉛合金の第二被覆層を形成させ
た。Pb−3%Sn合金浴の温度は第一被覆層であるP
b−0,3%α合金の融点く約400℃)より低いので
、該第−被覆層が溶けることなく第二被覆層が形成され
た。
Observing the cross section of the lattice cross section at this point, as shown in Figure 1, copper mist is seen only on the cut surface of the copper lattice cross section 1 during the expanding process, and the rest is on the false-〇 alloy coating layer 2. It was evenly covered. Therefore, the above-mentioned copper grid on which the first coating layer of -α alloy was formed was immersed in an aqueous solution flux of zinc chloride, and then immersed in a molten bath of Pb-3% alloy at a temperature of 350°C to coat the first coating layer. A second coating layer of the lead alloy was formed over the layer. The temperature of the Pb-3%Sn alloy bath is the same as that of the first coating layer P.
Since the melting point of the b-0,3% alpha alloy is lower than the melting point (approximately 400 DEG C.), the second coating layer was formed without melting the first coating layer.

第2図は上記処理を施したエキスパンド銅格子の棧断面
を示し、2はpb −Ca合金の第一被覆層、3はPb
−8n合金の第二被覆層である。
Figure 2 shows the cross section of the expanded copper grid subjected to the above treatment, 2 is the first coating layer of pb-Ca alloy, 3 is Pb
-8n alloy second coating layer.

このように均一な鉛合金の被覆層の形成が可能となった
のは、鉛(融点327℃)よりも融点が高く、かつ電池
性能に害を及ぼさないレーα合金層の溶融浴に浸漬した
銅シー1〜を工A−スパント加工することによって、結
果的に格子桟はエツジ部は鉛合金となってさらに第二被
覆層を形成しても銅製機のエツジ部が露出せずに、代り
に第一被覆層のエツジが露出したためである。
The formation of a uniform lead alloy coating layer was made possible by immersing the lead-α alloy layer in a molten bath, which has a higher melting point than lead (melting point 327°C) and does not harm battery performance. By subjecting the copper sheaths 1 to 1 to A-spant processing, the edges of the lattice bars are made of lead alloy, so that even when a second coating layer is formed, the edges of the copper machine will not be exposed and will be replaced. This is because the edges of the first coating layer were exposed.

つぎに本発明の効果を実証するために上記格子を用いて
密閉形他船’4電池を試作し、銅の溶出が最も問題とな
る過放電放置試験を行った。試験結果を第1表に示す。
Next, in order to demonstrate the effects of the present invention, a sealed type 4 battery was prototyped using the above-mentioned grid, and an over-discharge storage test was conducted in which copper elution was the most problematic issue. The test results are shown in Table 1.

第1表 過放電放置試験は試@電池に10Wのランプを接続して
1力月放置し、ついで2.5V/セルの定電圧で充電し
た後5hR容量試験を行った。その後S八Fに規定され
ている寿命試験を行った。第1表の試験結果から、定電
圧充電後の5hR容量は本発明による試験電池Aは従来
品Bとほとんど差がなかったが、容量試験後に行ったS
AE寿命試験では、本発明品Aが4000〜と良好な寿
命性能を示したのに対して、銅シートをエキスパンド加
工後にのみ鉛合金による溶融メツキを施した従来品Bは
わずかに500〜で寿命となった。従来品Bは減液量が
多く、また寿命試験中の充電終期電流が大きくなってい
たことから、銅が溶出したものと思われる本発明品Aは
このようなこともなく、銅シートの時およびエキスパン
ド加工後に溶融メツキを施した効果は顕著であった。
Table 1 Over-discharge storage test was conducted by connecting a 10W lamp to the test battery and leaving it for 1 month, then charging at a constant voltage of 2.5V/cell, and then conducting a 5hR capacity test. After that, a life test specified in S8F was conducted. From the test results in Table 1, the 5hR capacity after constant voltage charging of test battery A according to the present invention was almost the same as that of conventional product B;
In the AE life test, product A of the present invention showed a good lifespan of 4000~, while conventional product B, which was hot-plated with lead alloy only after expanding the copper sheet, had a lifespan of only 500~. It became. Conventional product B had a large amount of liquid loss and a large end-of-charge current during the life test, so it seems that copper was eluted.Product A of the present invention did not have this problem, and when using a copper sheet. The effect of melt plating after expanding was remarkable.

発明の効果・ 以上述べた如く、本発明によれば簡便な溶融メツキによ
り銅の溶出が防止でき、鉛蓄電池の軒量化と性能向上に
顕著な効果を示した。なお、本実施例では第一被覆層と
してPb −0,3%O合金を用いたが、銅よりも融点
が低くかつ鉛よりも融点が高く、さらに水素過電圧を著
しく低下させない合金であれば同様の効果が得られるの
はいうまでもない。
Effects of the Invention As described above, according to the present invention, copper elution can be prevented by simple hot-dip plating, and a remarkable effect has been shown in reducing the eaves weight and improving the performance of lead-acid batteries. In this example, a Pb-0.3%O alloy was used as the first coating layer, but any alloy that has a melting point lower than copper, higher than lead, and does not significantly reduce the hydrogen overvoltage may be used. Needless to say, this effect can be obtained.

【図面の簡単な説明】 第1図は本発明に基づく銅格子製造の途中経過を示すた
めのエキスパンド加工直後の銅格子横断面図、第2図は
本発明に基づく銅格子機の断面を示ず図、第3図は従来
の溶融鉛メツキおよび電気メツキを施した銅格子機の断
面を示ず図である。 1・・・銅格子機、2・・・Pb−Ca合金被覆層、3
・・・Pb−8n合金被覆層
[Brief Description of the Drawings] Figure 1 is a cross-sectional view of a copper grating immediately after expanding to show the progress of manufacturing a copper grating according to the present invention, and Figure 2 is a cross-sectional view of a copper grating machine based on the present invention. Figures 1 and 3 are diagrams, without showing the cross section, of a conventional copper lattice machine which has been subjected to molten lead plating and electroplating. 1... Copper lattice machine, 2... Pb-Ca alloy coating layer, 3
...Pb-8n alloy coating layer

Claims (1)

【特許請求の範囲】[Claims] 1、銅または銅合金の薄板を鉛よりも融点が高く、かつ
水素過電圧を著しく低下させない金属あるいは合金の溶
融浴に浸漬して銅の表面に該金属より成る第一被覆層を
形成させた後エキスパンド加工を施し、ついで鉛または
鉛合金の溶融浴に浸漬して第二の被覆層を上記第一被覆
層の上に形成させた後、負極ペーストを充填してなる負
極板を用いることを特徴とする密閉形鉛蓄電池の製造方
法。
1. After immersing a thin plate of copper or copper alloy in a molten bath of a metal or alloy that has a higher melting point than lead and does not significantly reduce hydrogen overvoltage to form a first coating layer made of the metal on the surface of the copper. It is characterized by using a negative electrode plate that is expanded and then immersed in a molten bath of lead or lead alloy to form a second coating layer on the first coating layer, and then filled with negative electrode paste. A method for manufacturing a sealed lead-acid battery.
JP1289725A 1989-11-07 1989-11-07 Manufacture of sealed lead-acid storage battery Pending JPH03152872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289725A JPH03152872A (en) 1989-11-07 1989-11-07 Manufacture of sealed lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289725A JPH03152872A (en) 1989-11-07 1989-11-07 Manufacture of sealed lead-acid storage battery

Publications (1)

Publication Number Publication Date
JPH03152872A true JPH03152872A (en) 1991-06-28

Family

ID=17746947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289725A Pending JPH03152872A (en) 1989-11-07 1989-11-07 Manufacture of sealed lead-acid storage battery

Country Status (1)

Country Link
JP (1) JPH03152872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053539A1 (en) * 2004-11-16 2006-05-26 Akkumulatorenfabrik Moll Gmbh + Co. Kg Mesh for an electrode of a lead accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053539A1 (en) * 2004-11-16 2006-05-26 Akkumulatorenfabrik Moll Gmbh + Co. Kg Mesh for an electrode of a lead accumulator

Similar Documents

Publication Publication Date Title
EP1348239B1 (en) Method for making an alloy coated battery grid
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
US5093970A (en) Lead-acid battery plate and its manufacturing method
RU2309488C2 (en) Storage battery incorporating foam carbon current collectors
CN1581538A (en) Method for manufacturing secondary metal lighium cell cathode
US2713079A (en) Battery plate
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JPS6037663A (en) Manufacture of electrode base body for lead storage battery
JPH03152872A (en) Manufacture of sealed lead-acid storage battery
EP1009047B1 (en) Battery plate and battery
US20030165742A1 (en) Electrode
KR100250381B1 (en) The method to support active material of plate for lead acid battery and its applied battery
JPS6039766A (en) Manufacture of electrode base body for lead storage battery
JPS632253A (en) Lead-acid battery and its manufacture
JPH03149754A (en) Manufacture of sealed lead-acid battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
JP2722555B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPS6164078A (en) Alkaline zinc storage battery
JPS58198860A (en) Lead storage battery
US3355325A (en) Battery plate manufacture
CN117727854A (en) Reference electrode preparation method, reference electrode and lithium ion battery
JPH01143150A (en) Manufacture of electrode plate for lead storage battery
CN112736366A (en) Method for cast welding light metal negative grid lead storage battery busbar
JP2541355B2 (en) Method for manufacturing electrode plate for lead acid battery