JPH01143150A - Manufacture of electrode plate for lead storage battery - Google Patents

Manufacture of electrode plate for lead storage battery

Info

Publication number
JPH01143150A
JPH01143150A JP62299137A JP29913787A JPH01143150A JP H01143150 A JPH01143150 A JP H01143150A JP 62299137 A JP62299137 A JP 62299137A JP 29913787 A JP29913787 A JP 29913787A JP H01143150 A JPH01143150 A JP H01143150A
Authority
JP
Japan
Prior art keywords
alloy
current collector
layer
alloy layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299137A
Other languages
Japanese (ja)
Inventor
Masayuki Terada
正幸 寺田
Shinji Saito
慎治 斉藤
Asahiko Miura
三浦 朝比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62299137A priority Critical patent/JPH01143150A/en
Publication of JPH01143150A publication Critical patent/JPH01143150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the performance stored after being overcharged by heat- treating at 170$ or above a current collector formed with an Sn layer or a Pb-Sn layer on the surface by dip brazing. CONSTITUTION:A Pb-Ca alloy current collector is immersed in a fused Sn or Pb-Sn alloy bath, an Sn or Pb-Sn alloy layer is formed on the surface, then it is heat-treated at 170 deg. or above for the preset time. As a result, Sn is diffused in a current collector alloy matrix to prevent the collapse of the alloy layer, and an Sn-rich current collector which is effective for the overdischarge shelf performance can be obtained. The diffusion of Sn into the current collector alloy depends on the heat treatment temperature, the collapse of the current collector surface alloy layer can be suppressed as the diffusion of Sn proceeds toward the inside of the alloy layer. The performance stored after being discharged can be thereby improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は過放電放置後の充電性を改善した鉛蓄電池の製
造法に関す゛るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a lead-acid battery with improved charging performance after being left over-discharged.

従来の技術 一般に鉛蓄電池は長期間放置されたり、過放電放置後れ
ると自己放電により充電不可能な状態となる。そこで、
従来この欠点を改善するために鉛蓄電池の格子体合金や
格子体−活物質界面の処理に工夫がされている0例えば
、格子体Sbの含有量を減らしたり、Sbを含まない合
金としてPb −Ca系合金を使用して自己放電を減少
させている。
BACKGROUND OF THE INVENTION Generally, if a lead-acid battery is left unused for a long period of time or left over-discharged, it will self-discharge and become unchargeable. Therefore,
Conventionally, in order to improve this drawback, improvements have been made to the lattice alloy of lead-acid batteries and the treatment of the lattice-active material interface. Ca-based alloys are used to reduce self-discharge.

また、過放電放置性能を向上させる方策として格子体合
金のSn含有量を増加させることや格子体表面にSn又
はPb −Snメツキをすることなどが知られている。
In addition, as measures to improve the overdischarge storage performance, it is known to increase the Sn content of the lattice alloy and to plate the surface of the lattice with Sn or Pb-Sn.

発明が解決しようとする問題点 しかしながら、過放電放置性能を向上させるために格子
体合金のSn含有量を増加させたり、格子体表面にSn
、 Pb−Sn合金メツキすることは以下に示す欠点を
有している。すなわち、格子体合金のSn含有量増加は
価格が非常に高くなる。
Problems to be Solved by the Invention However, in order to improve the overdischarge performance, the Sn content of the lattice alloy may be increased, or the Sn content on the lattice surface may be increased.
, Pb-Sn alloy plating has the following disadvantages. That is, as the Sn content of the lattice alloy increases, the price becomes very high.

また、メツキ処理において、化成中又は充電中メツキ層
が溶出崩壊して過放電放置性能に対して効果が小さくな
ったり、溶出したSnが陰極板にデンドライト析出して
陽極板と貫通ショートする等の問題があるこの欠点はド
ブ漬けによる集電体表面の合金層成形についても言える
In addition, during plating treatment, the plating layer elutes and collapses during chemical formation or charging, reducing the effect on overdischarge storage performance, and the eluted Sn deposits dendrites on the cathode plate, causing short-circuiting with the anode plate. This problematic drawback also applies to forming an alloy layer on the surface of a current collector by dipping.

問題点を解決するための手段 本発明は上記の如き欠点を除去するもので、ドブ漬けに
より表面にSnN又はPb −5nJiを形成した集電
体を170“C以上で熱処理するものである。
Means for Solving the Problems The present invention eliminates the above-mentioned drawbacks by heat-treating a current collector whose surface is coated with SnN or Pb-5nJi by dipping at 170"C or higher.

作用 過放電放置後の充電性が向上する。action Charging performance after over-discharging is improved.

実施例 鉛蓄電池は充電せず□に長期間放置すると自己放電が大
きくなり、また過放電放置後れると同様に充電不能な状
態になる。これは格子体−活物質界面に非反応性をPb
so、皮膜が生成し、電池内部抵抗が高くなるためであ
る。特に過放電放置の場合、陽極板のみの内部抵抗の上
昇が著しい。これは格子体−活物質界面でPbSPbO
!、H,SO,による局部電池反応が生じる結果、Pb
SO4が界面に形成されるからである。従って、過放電
放置性能を向上させるにはPb5Oaの生成を抑制する
か、生成しても格子体−活物質界面の導電性を維持させ
ればよい。
If the lead-acid battery of the example is left uncharged for a long period of time, self-discharge will increase, and if left uncharged, it will become unchargeable. This makes Pb non-reactive at the lattice-active material interface.
This is because a film is formed and the internal resistance of the battery increases. In particular, when left over-discharged, the internal resistance of only the anode plate increases significantly. This is PbSPbO at the lattice-active material interface.
! , H, SO, as a result of the local cell reaction, Pb
This is because SO4 is formed at the interface. Therefore, in order to improve the overdischarge storage performance, the generation of Pb5Oa may be suppressed, or even if Pb5Oa is generated, the conductivity at the lattice-active material interface may be maintained.

従来、Snは過放電放置性能に対して効果があると言わ
れておりその効果について詳細は不明ながら、おそら(
Snは酸化してSnugとなって格子界面に存在し抵抗
皮膜が生成してもその中でSnO□が導電体となって界
面に存在し充電を可能にするものと考えられる。
Conventionally, Sn is said to have an effect on overdischarge storage performance, and although the details of this effect are unknown, it is probably (
It is thought that Sn oxidizes to become Snug and exists at the lattice interface, and even if a resistive film is formed, SnO□ becomes a conductor and exists at the interface to enable charging.

以上のことから、Snは集電体表面に存在していれば実
用上効果的に作用すると考えられ、ドブ漬は法はこの観
点から見て非常に有効であると考えられる。しかしなが
ら、ドブ漬は処理は化成中又は充電中に皮膜が崩壊し実
用上問題が多い。そこでドブ漬けしだ集電体を熱処理す
ることにより、Snを集電体合金マトリックス中に拡散
させ、合金層の崩壊を防止するとともに過放電放置に対
して効果のあるSnリッチ集電体を得ることができる。
From the above, it is considered that Sn acts effectively in practice if it exists on the surface of the current collector, and the doubuke method is considered to be very effective from this point of view. However, the treatment of soaking in water causes the film to collapse during chemical formation or charging, which poses many practical problems. Therefore, by heat-treating the soaked current collector, Sn is diffused into the current collector alloy matrix to prevent collapse of the alloy layer and to obtain a Sn-rich current collector that is effective against over-discharging. be able to.

集電体合金中へのSnの拡散は熱処理温度に依存する。Diffusion of Sn into the current collector alloy depends on the heat treatment temperature.

 Snの拡散が合金層内部に進むほど集電体表面合金層
の崩壊が抑制できると考えられる。
It is considered that the more the diffusion of Sn progresses inside the alloy layer, the more the collapse of the alloy layer on the surface of the current collector can be suppressed.

そこでその効果を確認するために、温度を変えて16時
間熱処理したドフ漬は合金板を硫酸溶液中で定電流酸化
してドブ漬けによる合金層崩壊までの時間を測定した。
Therefore, in order to confirm the effect, an alloy plate heat-treated for 16 hours at different temperatures was oxidized at a constant current in a sulfuric acid solution, and the time until the alloy layer collapsed due to dipping was measured.

その結果を第1図に示す。熱処理温度が増加するにつれ
て崩壊時間は170’C以下の領域では熱処理による効
果はあるものの、170’C以上で熱処理したものと同
様な効果を持たせるためには100時間以上の処理時間
が必要であり、120”℃以下に到っては効果が得られ
ず実用に供さない0以上のように熱処理はドブ漬けによ
る合金層崩壊に対して大きな効 l果を持つ。
The results are shown in FIG. As the heat treatment temperature increases, the collapse time increases.Although heat treatment has an effect in the region of 170'C or less, a treatment time of 100 hours or more is required to have the same effect as that of heat treatment at 170'C or more. Heat treatment has a great effect on the collapse of the alloy layer due to soaking, as shown in the temperature above 0, which is not effective and cannot be used for practical purposes at temperatures below 120"C.

次に実施例について説明する。Next, an example will be described.

ドブ漬は後熱処理した極板の過放電放置後の充電性能の
効果を見るために、上記極板を用いて、4Ah−2Vの
電池を作製し、初充電後24hr定抵抗放電後開路状態
で7日間放置した。放置後2.45V定電圧充電し、そ
の時の10秒口重30秒口重60秒口の充電電流を測定
した。その結果を第2図2に示す。熱処理品Aは従来品
Bと比較して2倍程度の電流が流れており、未処理品C
は1.6倍程度となっている。しかし、過放電前に10
サイクル充放電を繰り返した場合(第3図)未処理品C
は従来品Bとほぼ同じレベルまで劣下するが、熱処理品
Aはほとんど劣下がない。
In order to examine the effect of post-heat-treated electrode plates on charging performance after over-discharging and leaving them, a 4Ah-2V battery was prepared using the above-mentioned electrode plates, and after the initial charge, 24 hours of constant resistance discharge were carried out in an open circuit state. It was left for 7 days. After being left standing, the battery was charged at a constant voltage of 2.45V, and the charging current was measured for 10 seconds, 30 seconds, and 60 seconds. The results are shown in FIG. Heat-treated product A has about twice as much current flowing as conventional product B, and untreated product C
is about 1.6 times. However, before over-discharge 10
When cycle charging and discharging are repeated (Figure 3) Untreated product C
is degraded to almost the same level as conventional product B, but heat-treated product A has almost no degradation.

発明の効果 上述のように本発明によれば過放電放置性能に対して大
なる効果を奏し得る等工業的価値共だ大なるものである
Effects of the Invention As described above, the present invention has great industrial value, such as being able to have a great effect on over-discharge storage performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はドブ漬けした合金板を定電流酸化したときの処
理温度と崩壊時間の関係を示す曲線図にして、tは未処
理板の崩壊時間を示す。第2図および第3図は初充電後
および10サイクル充放電後の過放電放置7日後の充電
性比較曲線図である。
FIG. 1 is a curve diagram showing the relationship between treatment temperature and disintegration time when a soaked alloy plate is subjected to constant current oxidation, and t indicates the disintegration time of an untreated plate. FIGS. 2 and 3 are chargeability comparison curve charts after the initial charge and after 7 days of over-discharging after 10 cycles of charging and discharging.

Claims (1)

【特許請求の範囲】[Claims] Sbを含まないPb−Ca合金集電体を溶融したSn又
はPb−Sn合金浴中に浸漬して表面にSn又はPb−
Sn合金層を形成後170℃以上で所定時間熱処理する
ことを特徴とする鉛蓄電池用極板の製造法。
A Pb-Ca alloy current collector that does not contain Sb is immersed in a molten Sn or Pb-Sn alloy bath to coat the surface with Sn or Pb-
A method for producing an electrode plate for a lead-acid battery, which comprises heat-treating the Sn alloy layer at 170° C. or higher for a predetermined period of time after forming the Sn alloy layer.
JP62299137A 1987-11-27 1987-11-27 Manufacture of electrode plate for lead storage battery Pending JPH01143150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299137A JPH01143150A (en) 1987-11-27 1987-11-27 Manufacture of electrode plate for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299137A JPH01143150A (en) 1987-11-27 1987-11-27 Manufacture of electrode plate for lead storage battery

Publications (1)

Publication Number Publication Date
JPH01143150A true JPH01143150A (en) 1989-06-05

Family

ID=17868600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299137A Pending JPH01143150A (en) 1987-11-27 1987-11-27 Manufacture of electrode plate for lead storage battery

Country Status (1)

Country Link
JP (1) JPH01143150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104466A (en) * 1990-08-22 1992-04-06 Shin Kobe Electric Mach Co Ltd Manufacture of current collector for lead-acid battery
JPH04292862A (en) * 1991-03-20 1992-10-16 Shin Kobe Electric Mach Co Ltd Manufacture of electrode base for lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104466A (en) * 1990-08-22 1992-04-06 Shin Kobe Electric Mach Co Ltd Manufacture of current collector for lead-acid battery
JPH04292862A (en) * 1991-03-20 1992-10-16 Shin Kobe Electric Mach Co Ltd Manufacture of electrode base for lead storage battery

Similar Documents

Publication Publication Date Title
JPH0467306B2 (en)
JPS6037663A (en) Manufacture of electrode base body for lead storage battery
JPH01143150A (en) Manufacture of electrode plate for lead storage battery
JPS6039766A (en) Manufacture of electrode base body for lead storage battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
JPS632253A (en) Lead-acid battery and its manufacture
JPS6180756A (en) Method of manufacturing grid for lead storage battery
JP3111475B2 (en) Manufacturing method of sealed lead-acid battery
JPS6386352A (en) Lead acid battery
JP2969888B2 (en) Lead storage battery
JPH01302661A (en) Lead acid battery and its manufacture
JP2555634B2 (en) Manufacturing method of sealed lead-acid battery
JPS60218774A (en) Manufacture of rechargeable negative electrode
KR950004457B1 (en) Lead battery
JPS63244568A (en) Lead-acid battery
JPS58198860A (en) Lead storage battery
JPS6216506B2 (en)
JPS63108675A (en) Lead acid battery
JPS6048867B2 (en) lead acid battery
JPS63174276A (en) Grid for use in lead battery
JPH01140557A (en) Lead-acid battery
JPH01195667A (en) Manufacture of electrode for lead-acid battery
JPS6212062A (en) Lead storage battery
JPH04292862A (en) Manufacture of electrode base for lead storage battery
JPS61198574A (en) Lead storage battery