JPH0343462B2 - - Google Patents

Info

Publication number
JPH0343462B2
JPH0343462B2 JP14695981A JP14695981A JPH0343462B2 JP H0343462 B2 JPH0343462 B2 JP H0343462B2 JP 14695981 A JP14695981 A JP 14695981A JP 14695981 A JP14695981 A JP 14695981A JP H0343462 B2 JPH0343462 B2 JP H0343462B2
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
gas recirculation
control valve
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14695981A
Other languages
Japanese (ja)
Other versions
JPS5848764A (en
Inventor
Tadashi Fukuyama
Michio Kawagoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56146959A priority Critical patent/JPS5848764A/en
Publication of JPS5848764A publication Critical patent/JPS5848764A/en
Publication of JPH0343462B2 publication Critical patent/JPH0343462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、デイーゼルエンジンの排気再循環制
御装置に係わり、特に、エンジンの排気通路に排
気微粒子を捕捉するためのパテイキユレートトラ
ツパを装着した排気再循環制御装置の改良に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust gas recirculation control device for a diesel engine, and in particular, a particulate trapper for trapping exhaust particulates is installed in the exhaust passage of the engine. This invention relates to improvements to exhaust gas recirculation control devices.

〔従来の技術〕[Conventional technology]

デイーゼルエンジンにおいて排気ガス中の
NOx(窒素酸化物)を低減するためには、ガソリ
ンエンジンと同様に、運転状態に応じた所定量の
排気再循環(以下、EGRという)を行うことが
有効である。また、近年においては、排気微粒子
(パテイキユレート)の大気への放出を防止する
ため、排気後処理装置としてのパテイキユレート
トラツパを装着する必要性が要求されている。
in the exhaust gas of a diesel engine.
In order to reduce NO x (nitrogen oxides), it is effective to perform a predetermined amount of exhaust gas recirculation (hereinafter referred to as EGR) depending on the operating conditions, similar to gasoline engines. Furthermore, in recent years, it has become necessary to install a particulate trapper as an exhaust aftertreatment device in order to prevent exhaust particulates (particulates) from being released into the atmosphere.

したがつて、EGR制御装置を備えたデイーゼ
ルエンジンにパテイキユレートトラツパを装着し
て、NOxとパテイキユレートの大気への放出量
を低減することが考えられている。
Therefore, it has been considered to reduce the amount of NO x and particulate released into the atmosphere by installing a particulate trapper on a diesel engine equipped with an EGR control device.

この場合、デイーゼルエンジンの吸気負圧は小
さい、あるいは、吸気絞り弁を備えており大きな
吸気負圧が発生する構成であつても、吸気負圧が
発生するのは限られた運転状態に限定される。し
たがつて、必要なEGR量を確保するために、排
気ガスは排気圧力が比較的高いパテイキユレート
トラツパ上流の排気通路から取り出される構成と
なる。
In this case, even if the intake negative pressure of the diesel engine is small, or even if the diesel engine is equipped with an intake throttle valve and is configured to generate a large intake negative pressure, the generation of intake negative pressure is limited to limited operating conditions. Ru. Therefore, in order to ensure the required amount of EGR, the exhaust gas is taken out from the exhaust passage upstream of the particulate trapper where the exhaust pressure is relatively high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、パテイキユレートトラツパによ
るパテイキユレートのの捕捉量が増大するに連れ
て、トラツパの目詰まりが発生し、トラツパ上流
の排気圧力(排圧)が上昇する。
However, as the amount of particulate collected by the particulate trapper increases, the trapper becomes clogged and the exhaust pressure upstream of the trapper increases.

したがつて、EGR制御弁の開度が同一開度で
あつても、排圧上昇分だけEGR量が多くなり、
EGR量の増大分だけ新気吸入空気量が減少する。
このため、新気吸入空気量の減少し、またEGR
量も過大となるので、スモークの発生を助長し、
エンジン本体の耐久性上も好ましくないという問
題がある。
Therefore, even if the opening degree of the EGR control valve is the same, the amount of EGR will increase by the increase in exhaust pressure.
The amount of fresh air intake decreases by the amount of increase in EGR amount.
As a result, the amount of fresh air intake decreases, and the EGR
Since the amount is too large, it promotes the generation of smoke,
There is also the problem that the durability of the engine itself is not desirable.

本発明は、パテイキユレートトラツパ上流の排
圧上昇によるEGR量の増大を、エンジンに供給
される新気空気量の減少によつて検出し、EGR
制御弁の開度を補正して、パテイキユレートトラ
ツパの詰まりによるEGR量の増大及び新気吸入
空気量の減少を防止することを目的とする。
The present invention detects an increase in the amount of EGR due to a rise in exhaust pressure upstream of the particulate trapper by reducing the amount of fresh air supplied to the engine, and
The purpose is to correct the opening degree of the control valve to prevent an increase in the amount of EGR and a decrease in the amount of fresh air intake due to clogging of the particulate trapper.

〔課題を達成するための手段〕[Means to accomplish the task]

上記目的を達成するための本発明の手段は、パ
テイキユレートトラツパ上流の排気通路と吸気通
路を連通する排気再循環通路を備え、この排気再
循環通路に設けた排気再循環制御弁によつて排気
再循環量を制御するデイーゼルエンジンの排気再
循環制御装置において、エンジン運転状態に基づ
いて前記排気再循環制御弁の開度要求量を算出す
る手段と、エンジンに供給される新気空気量を検
出する新気吸入空気量検出手段と、前記パテイキ
ユレートトラツパの詰まりが発生していない初期
状態に前記排気再循環制御弁の開度要求量で排気
再循環を実行した場合にエンジンへ供給される新
気空気量を初期吸入空気量として算出する初期吸
入空気量算出手段と、前記新気吸入空気量検出手
段から検出された新気吸入空気量と初期吸入空気
量を比較する比較手段と、その比較結果に基づい
て新気吸入空気量と初期吸入空気量の偏差が零に
なる方向に前記排気再循環制御弁の開度要求量を
補正する手段と、その補正された開度要求量に基
づいて排気再循環制御弁を駆動する駆動手段とを
備えることを特徴とする。
The means of the present invention for achieving the above object includes an exhaust gas recirculation passage that communicates an exhaust passage upstream of a particulate trapper with an intake passage, and an exhaust gas recirculation control valve provided in the exhaust gas recirculation passage. In the exhaust gas recirculation control device for a diesel engine, the exhaust recirculation control device for a diesel engine controls the amount of exhaust gas recirculated, comprising: means for calculating a required opening amount of the exhaust gas recirculation control valve based on an engine operating state; and an amount of fresh air supplied to the engine. fresh air intake air amount detection means for detecting the amount of fresh air intake; Initial intake air amount calculation means for calculating the supplied fresh air amount as an initial intake air amount; and comparison means for comparing the fresh air intake air amount detected by the fresh air intake air amount detection means with the initial intake air amount. and means for correcting the required opening amount of the exhaust recirculation control valve in a direction such that the deviation between the fresh intake air amount and the initial intake air amount becomes zero based on the comparison result, and the corrected opening request. and driving means for driving the exhaust gas recirculation control valve based on the amount of exhaust gas recirculation.

〔作用〕[Effect]

この手段によれば、エンジン運転状態に基づい
て排気再循環制御弁の開度要求量が算出される。
According to this means, the required opening amount of the exhaust gas recirculation control valve is calculated based on the engine operating state.

また、新気吸入空気量がパテイキユレートトラ
ツパの詰まりが発生していない初期状態における
初期吸入空気量と比較され、パテイキユレートト
ラツパ上流の排圧上昇によるEGR量の増加が新
気吸入空気量の減少として検出される。そして、
新気吸入空気量が初期吸入空気量と一致するよう
に、排気再循環制御弁の開度要求量が補正され、
その補正された開度要求量に基づいて排気再循環
制御弁が制御される。
In addition, the amount of fresh air intake was compared with the initial amount of intake air in the initial state when the particulate trapper was not clogged, and it was found that the increase in EGR amount due to the increase in exhaust pressure upstream of the particulate trapper caused the intake of fresh air. Detected as a decrease in air volume. and,
The required opening amount of the exhaust recirculation control valve is corrected so that the fresh air intake amount matches the initial intake air amount,
The exhaust gas recirculation control valve is controlled based on the corrected opening degree request amount.

これによつて、パテイキユレートトラツパ上流
の排圧上昇によるEGR量の増大及び新気吸入空
気量の減少が防止される。
This prevents an increase in the amount of EGR and a decrease in the amount of fresh air intake due to an increase in the exhaust pressure upstream of the particulate trapper.

〔実施例〕〔Example〕

以下、本発明の望ましい実施例を図面に基づい
て説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図は、本発明に係わる排気再循環制御装置
の一実施例を示す概略図である。
FIG. 1 is a schematic diagram showing an embodiment of an exhaust gas recirculation control device according to the present invention.

デイーゼルエンジン本体1の排気通路41にパ
テイキユレートトラツパ4が装着され、また吸気
通路42の上流側には新気吸入空気量検出手段と
してのエアフローメータ12が装着される。エン
ジン本体1から排出された排気ガスの一部はトラ
ツパ4上流側から取出され、矢印で示す如く排気
再循環通路(EGR通路)43を介して、エアフ
ローメータ12下流側吸気通路42に還流され
る。したがつて、エアフローメータ12は、エン
ジン本体1に供給される新気吸入空気量を検出す
ることになる。また、EGR通路43と吸気通路
42の接続部にはEGR制御弁22が装着される。
A particulate trapper 4 is attached to an exhaust passage 41 of the diesel engine body 1, and an air flow meter 12 is attached to the upstream side of the intake passage 42 as means for detecting the amount of fresh intake air. A part of the exhaust gas discharged from the engine body 1 is taken out from the upstream side of the trapper 4 and is returned to the intake passage 42 on the downstream side of the air flow meter 12 via the exhaust gas recirculation passage (EGR passage) 43 as shown by the arrow. . Therefore, the air flow meter 12 detects the amount of fresh intake air supplied to the engine body 1. Further, an EGR control valve 22 is installed at a connecting portion between the EGR passage 43 and the intake passage 42.

EGR制御弁22は、第2図に示す如き周知な
構造に係わるものであり、ダイヤフラムにより隔
定されたダイヤフラム室22″に印加される負圧
レベルに応じ、シヤフト先端の弁体22′が弁座
220との開口量を制御するものである。EGR
制御弁22の駆動手段は、負圧制御弁21、定圧
弁23および負圧源であるバキユームポンプ24
から構成される。定圧弁23はバキユームポンプ
24で発生される負圧を一定に保つためのもので
ある。負圧制御弁21はエアフイルタ25により
大気と連通可能なポートを有する一種の負圧切換
弁であり、EGR制御弁22のダイヤフラム室2
2″を負圧源(バキユームポンプ24側)と大気
(エアフイルタ25側)とに切換連通させるもの
である。すなわち、この負圧制御弁21は、コン
ピユータ11から出力されるデユーテイ比に応じ
てその通電時間を制御されるもので、EGR制御
弁22に印加される負圧レベルは、そのデユーテ
イ比により調整される。
The EGR control valve 22 has a well-known structure as shown in FIG. It controls the opening amount with the seat 220.EGR
The control valve 22 is driven by a negative pressure control valve 21, a constant pressure valve 23, and a vacuum pump 24 which is a negative pressure source.
It consists of The constant pressure valve 23 is for keeping the negative pressure generated by the vacuum pump 24 constant. The negative pressure control valve 21 is a type of negative pressure switching valve that has a port that can communicate with the atmosphere through an air filter 25, and the diaphragm chamber 2 of the EGR control valve 22
2'' is switched between a negative pressure source (on the side of the vacuum pump 24) and the atmosphere (on the side of the air filter 25). The energization time is controlled, and the negative pressure level applied to the EGR control valve 22 is adjusted by its duty ratio.

コンピユータ11には、エンジンの各種運転状
態を検出するため、エンジン本体1に設けられた
水温センサ15、油温センサ16や圧力センサ1
7、温度センサ18、さらにエアフローメータ1
2の他、回転数センサ13、負荷センサ14の出
力信号が入力されている。そして、コンピユータ
11は前記した各センサの入力信号に対応した出
力信号(駆動デユーテイ)を負圧制御弁21に伝
える。
The computer 11 includes a water temperature sensor 15, an oil temperature sensor 16, and a pressure sensor 1 provided in the engine body 1 in order to detect various operating states of the engine.
7. Temperature sensor 18, and air flow meter 1
2, output signals from a rotation speed sensor 13 and a load sensor 14 are input. Then, the computer 11 transmits an output signal (drive duty) corresponding to the input signal of each sensor described above to the negative pressure control valve 21.

上記構成に係わる本実施例の作用を説明する。
パテイキユレートトラツパ4の詰まによる経時変
化によつて、パテイキユレートトラツパ4上流の
排圧が上昇すると、EGR弁制御22はその開弁
量が同じであつても排圧上昇によりEGR量は増
加する。すなわち、このEGR量が増加した分、
新気吸入空気量は減少する。したがつて、パテイ
キユレートトラツパ4の詰まりが発生していない
初期状態でEGRを実行した時にエンジン本体1
へ供給される新気空気量を初期吸入空気量とした
場合、この初期吸入空気量とエアフローメータ1
2の出力である現在の新気吸入空気量との比較に
よりEGR量の増加を検出できる。そして、コン
ピユータ11にはこの比較結果に基づく出力信号
を負圧制御弁21に出力する。この出力信号(デ
ユーテイ比)によつて、負圧制御弁21はエアフ
ローメータ12から実測される新気吸入空気量を
初期吸入空気量に一致させるべくデユーテイ制御
される。その結果、負圧制御弁21はEGR制御
弁22の開弁量を減少させる。
The operation of this embodiment related to the above configuration will be explained.
When the exhaust pressure upstream of the particulate trapper 4 increases due to changes over time due to blockage of the particulate trapper 4, the EGR valve control 22 will control the EGR amount due to the increased exhaust pressure even if the opening amount remains the same. increases. In other words, as this EGR amount increases,
The amount of fresh air intake decreases. Therefore, when EGR is executed in the initial state where the particulate trapper 4 is not clogged, the engine body 1
If the amount of fresh air supplied to the
An increase in the EGR amount can be detected by comparing it with the current fresh intake air amount, which is the output of step 2. Then, the computer 11 outputs an output signal based on the comparison result to the negative pressure control valve 21. Based on this output signal (duty ratio), the duty of the negative pressure control valve 21 is controlled so that the fresh intake air amount actually measured by the air flow meter 12 matches the initial intake air amount. As a result, the negative pressure control valve 21 reduces the opening amount of the EGR control valve 22.

上記コンピユータ11における演算処理のフロ
ーチヤートを第3図に基づき説明する。
A flowchart of the arithmetic processing in the computer 11 will be explained based on FIG. 3.

まず、初期化を行つた上で、エンジン回転数を
計算する。次に、エンジン運転状態から、初期吸
入空気量Base Ga及びEGR量をBaseEGRとする
ための要求量を計算する。このBaseEGR要求量
は、具体的には、負圧制御弁21のデユーテイ比
であり、EGR制御弁22の開度要求量を表すも
のである。次に、前記初期吸入空気量Base Ga
とエアフローメータ12から実測された新気吸入
空気量(実測Ga)とを比較する。そして、Base
Ga−実測Ga=0、すなわち、Base Ga=実測
Gaであれば、トラツパ4による排圧上昇は発生
してしないので、EGR要求量(負圧制御弁21
のデユーテイ比)をBaseEGRとする。従つて、
補正制御は行われない場合となる。
First, after initialization, the engine speed is calculated. Next, the initial intake air amount Base Ga and the required amount for setting the EGR amount to BaseEGR are calculated from the engine operating state. Specifically, this Base EGR request amount is the duty ratio of the negative pressure control valve 21 and represents the opening degree request amount of the EGR control valve 22. Next, the initial intake air amount Base Ga
and the amount of fresh air intake (actually measured Ga) actually measured by the air flow meter 12. And Base
Ga - actual measurement Ga = 0, i.e. Base Ga = actual measurement
If it is Ga, no increase in exhaust pressure occurs due to the trapper 4, so the required EGR amount (negative pressure control valve 21
(duty ratio) is set as BaseEGR. Therefore,
This is a case where correction control is not performed.

一方、初期吸入空気量Base Gaと実測Gaとに
差がある場合、すなわち、Base Ga−実測Ga≠
0の場合、Ga補正係数(K)を計算し、EGR量
をBaseEGRとすべき要求量(負圧制御弁21の
デユーテイ比)に補正を加える。このGa補正係
数(K)によつて補正されたデユーテイ比で負圧
制御弁21を制御し、EGRを実行する。そして、
この処理をBase Gaと実測Gaが等しく、すなわ
ち、Base Ga−実測Ga=0になるまで行う。こ
れによつて、EGR要求量(負圧制御弁21のデ
ユーテイ比)は、補正されたK・BaseEGRとな
り、補正制御が完了する。
On the other hand, if there is a difference between the initial intake air amount Base Ga and the actual measurement Ga, that is, Base Ga - actual measurement Ga≠
In the case of 0, a Ga correction coefficient (K) is calculated, and a correction is made to the required amount (duty ratio of the negative pressure control valve 21) to set the EGR amount to BaseEGR. The negative pressure control valve 21 is controlled with the duty ratio corrected by this Ga correction coefficient (K) to execute EGR. and,
This process is performed until Base Ga and actual measurement Ga are equal, that is, Base Ga - actual measurement Ga=0. As a result, the required amount of EGR (duty ratio of the negative pressure control valve 21) becomes the corrected K·BaseEGR, and the correction control is completed.

これにより、トラツパ4の排圧上昇によつて
EGR量が増大するとEGR制御弁22の開度が減
少補正され、EGR量の増大が防止できる。また、
新気吸入空気量も初期吸入空気量に一致し、新気
吸入空気量の減少も防止できる。
As a result, due to the increase in the exhaust pressure of the trapper 4,
When the EGR amount increases, the opening degree of the EGR control valve 22 is corrected to decrease, thereby preventing an increase in the EGR amount. Also,
The fresh air intake amount also matches the initial intake air amount, and a decrease in the fresh air intake air amount can be prevented.

なお、本実施例においては、吸入空気量センサ
としてエアフローメータ12を、またEGR弁2
2に印加される負圧レベルを制御するため、デユ
ーテイ比が変化する負圧制御弁21を用いて説明
したが、これに限定されるものでない。例えば、
吸入空気量検出として圧力センサ、温度センサを
用いてコンピユータによる計算から求めることも
でき、また、負圧制御弁21として可変インダク
タンス制御弁等を用いることはもちろん可能であ
る。
In this embodiment, the air flow meter 12 is used as the intake air amount sensor, and the EGR valve 2 is used as the intake air amount sensor.
Although the negative pressure control valve 21 whose duty ratio changes is used to control the negative pressure level applied to the valve 2, the present invention is not limited thereto. for example,
It is also possible to use a pressure sensor and a temperature sensor to detect the amount of intake air, and to calculate the intake air amount by a computer, and it is of course possible to use a variable inductance control valve or the like as the negative pressure control valve 21.

〔効果〕〔effect〕

以上説明したように、本発明によれば、新気吸
入空気量と初期吸入空気量の偏差を検出し、新気
吸入空気量が初期吸入空気量に一致するように
EGR弁開度を補正するので、パテイキユレート
トラツパ上流の排圧上昇が発生しても、EGR量
の増大が防止できる。また、新気吸入空気量もパ
テイキユレートトラツパの目詰まりが発生してい
ない初期状態と同量となる。
As explained above, according to the present invention, the deviation between the fresh air intake air amount and the initial intake air amount is detected, and the fresh air intake air amount is adjusted to match the initial intake air amount.
Since the EGR valve opening degree is corrected, an increase in the EGR amount can be prevented even if an increase in exhaust pressure occurs upstream of the particulate trapper. Further, the amount of fresh air intake is also the same amount as in the initial state when the particulate trapper is not clogged.

したがつて、新気吸入空気量が初期状態に保た
れ、かつ、EGR量も過大になることがなく、ス
モークの発生が確実に防止でき、エンジン本体の
耐久性を向上することもできる。
Therefore, the amount of fresh air intake is maintained at the initial state, and the amount of EGR does not become excessive, so that smoke generation can be reliably prevented and the durability of the engine body can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る排気再循環制御装置の
一実施例を示す概略図、第2図は排気再循環制御
弁22の詳細な断面図である。第3図は、コンピ
ユータ11における演算処理を示すフローチヤー
トである。 2…燃料噴射ノズル、3…燃料噴射ポンプ、4
…パテイキユレートトラツパ、11…コンピユー
タ、12…エアフローメータ、21…負圧制御
弁、22…排気再循環制御弁(EGR制御弁)、4
1…排気通路、42…吸気通路、43…排気再循
環通路(EGR通路)。
FIG. 1 is a schematic diagram showing an embodiment of an exhaust gas recirculation control device according to the present invention, and FIG. 2 is a detailed sectional view of an exhaust gas recirculation control valve 22. As shown in FIG. FIG. 3 is a flowchart showing arithmetic processing in the computer 11. 2...Fuel injection nozzle, 3...Fuel injection pump, 4
... Particulate trapper, 11 ... Computer, 12 ... Air flow meter, 21 ... Negative pressure control valve, 22 ... Exhaust gas recirculation control valve (EGR control valve), 4
1...Exhaust passage, 42...Intake passage, 43...Exhaust gas recirculation passage (EGR passage).

Claims (1)

【特許請求の範囲】 1 パテイキユレートトラツパ上流の排気通路と
吸気通路を連通する排気再循環通路を備え、この
排気再循環通路に設けた排気再循環制御弁によつ
て排気再循環量を制御するデイーゼルエンジンの
排気再循環制御装置において、 エンジン運転状態に基づいて排気再循環制御弁
の開度要求量を算出する手段と、 エンジンに供給される新気空気量を検出する新
気吸入空気量検出手段と、 前記パテイキユレートトラツパの詰まりが発生
していない初期状態に前記排気再循環制御弁の開
度要求量で排気再循環を実行した場合にエンジン
へ供給される新気空気量を初期吸入空気量として
算出する初期吸入空気量算出手段と、 前記新気吸入空気量検出手段から検出された新
気吸入空気量と初期吸入空気量を比較する比較手
段と、 その比較結果に基づいて新気吸入空気量と初期
吸入空気量の偏差が零になる方向に前記排気再循
環制御弁の開度要求量を補正する手段と、 その補正された開度要求量に基づいて排気再循
環制御弁を駆動する駆動手段とを備えることを特
徴とするデイーゼルエンジンの排気再循環制御装
置。
[Claims] 1. An exhaust gas recirculation passage is provided that communicates the exhaust passage upstream of the particulate trapper with the intake passage, and an exhaust gas recirculation control valve provided in the exhaust gas recirculation passage controls the amount of exhaust gas recirculation. In an exhaust gas recirculation control device for a diesel engine to be controlled, there is provided a means for calculating the required opening amount of the exhaust recirculation control valve based on the engine operating state, and a means for detecting the amount of fresh air supplied to the engine. an amount detecting means; and an amount of fresh air supplied to the engine when exhaust gas recirculation is executed at the opening amount required of the exhaust gas recirculation control valve in an initial state in which the particulate trapper is not clogged. an initial intake air amount calculation means for calculating the initial intake air amount as an initial intake air amount; a comparison means for comparing the fresh air intake air amount detected by the fresh air intake air amount detection means with the initial intake air amount; and based on the comparison result. means for correcting the required opening amount of the exhaust gas recirculation control valve in a direction such that the deviation between the fresh intake air amount and the initial intake air amount becomes zero; An exhaust gas recirculation control device for a diesel engine, comprising a drive means for driving a control valve.
JP56146959A 1981-09-16 1981-09-16 Apparatus of exhaust gas recirculation controlling valve for diesel engine Granted JPS5848764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146959A JPS5848764A (en) 1981-09-16 1981-09-16 Apparatus of exhaust gas recirculation controlling valve for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146959A JPS5848764A (en) 1981-09-16 1981-09-16 Apparatus of exhaust gas recirculation controlling valve for diesel engine

Publications (2)

Publication Number Publication Date
JPS5848764A JPS5848764A (en) 1983-03-22
JPH0343462B2 true JPH0343462B2 (en) 1991-07-02

Family

ID=15419445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146959A Granted JPS5848764A (en) 1981-09-16 1981-09-16 Apparatus of exhaust gas recirculation controlling valve for diesel engine

Country Status (1)

Country Link
JP (1) JPS5848764A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013730A (en) * 1973-05-02 1975-02-13
JPS5132767A (en) * 1974-07-02 1976-03-19 Unilever Nv
JPS52110329A (en) * 1976-03-12 1977-09-16 Toyota Motor Corp Exhaust gas recirculation control for internal-combustion engine
JPS5325729A (en) * 1976-08-23 1978-03-09 Nissan Motor Co Ltd Electronic exhaust gas re-circulation control system
JPS5332233A (en) * 1976-09-07 1978-03-27 Nissan Motor Co Ltd Exhaust gas re-circulation control means for electronically controlled fuel injection engine
JPS5572645A (en) * 1978-11-15 1980-05-31 Bosch Gmbh Robert Device for controlling gas composition in cylinder of internal combustion engine
JPS5726656B2 (en) * 1976-07-07 1982-06-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120290Y2 (en) * 1980-07-22 1986-06-18

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013730A (en) * 1973-05-02 1975-02-13
JPS5132767A (en) * 1974-07-02 1976-03-19 Unilever Nv
JPS52110329A (en) * 1976-03-12 1977-09-16 Toyota Motor Corp Exhaust gas recirculation control for internal-combustion engine
JPS5726656B2 (en) * 1976-07-07 1982-06-05
JPS5325729A (en) * 1976-08-23 1978-03-09 Nissan Motor Co Ltd Electronic exhaust gas re-circulation control system
JPS5332233A (en) * 1976-09-07 1978-03-27 Nissan Motor Co Ltd Exhaust gas re-circulation control means for electronically controlled fuel injection engine
JPS5572645A (en) * 1978-11-15 1980-05-31 Bosch Gmbh Robert Device for controlling gas composition in cylinder of internal combustion engine

Also Published As

Publication number Publication date
JPS5848764A (en) 1983-03-22

Similar Documents

Publication Publication Date Title
US6230697B1 (en) Integrated internal combustion engine control system with high-precision emission controls
US6983591B2 (en) Particulate filter regenerating device
US7147688B2 (en) Engine exhaust gas purification device
US20040200198A1 (en) Engine exhaust gas purification device
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
JPH034742B2 (en)
US11067026B2 (en) Engine controller, engine control method, and memory medium
KR940004347B1 (en) Fuel control system
JPH0343462B2 (en)
JP3306144B2 (en) Pressure sensor failure detection device
JPS646339B2 (en)
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH0554057B2 (en)
JPH0518323A (en) Egr device of engine
JP2621032B2 (en) Fuel injection control device
JPH04252849A (en) Exhaust gas recirculation valve controller for internal combustion engine
JP4186517B2 (en) Device for detecting clogging of an air cleaner for an internal combustion engine
JPH062606A (en) Device for controlling engine
JPH10274108A (en) Evaporated fuel purging device for engine
JPH0517394Y2 (en)
JP2816437B2 (en) Internal combustion engine fuel control device
JP3306146B2 (en) Control device for engine with evaporative fuel supply device
JPH1077883A (en) Air-fuel ratio control device for internal combustion engine
JPH0559246B2 (en)
JPH0932650A (en) Exhaust gas recirculation control device for internal combustion engine