JPH04252849A - Exhaust gas recirculation valve controller for internal combustion engine - Google Patents

Exhaust gas recirculation valve controller for internal combustion engine

Info

Publication number
JPH04252849A
JPH04252849A JP3009100A JP910091A JPH04252849A JP H04252849 A JPH04252849 A JP H04252849A JP 3009100 A JP3009100 A JP 3009100A JP 910091 A JP910091 A JP 910091A JP H04252849 A JPH04252849 A JP H04252849A
Authority
JP
Japan
Prior art keywords
egr valve
back pressure
egr
valve
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3009100A
Other languages
Japanese (ja)
Other versions
JP3159718B2 (en
Inventor
Shigeiku Enomoto
滋郁 榎本
Yasuyuki Sakakibara
榊原 康行
Masayuki Abe
誠幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP00910091A priority Critical patent/JP3159718B2/en
Publication of JPH04252849A publication Critical patent/JPH04252849A/en
Application granted granted Critical
Publication of JP3159718B2 publication Critical patent/JP3159718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To restrain the worsening of emission caused by a variation in exhaust gas recirculation rate due to back pressure fluctuations and so on. CONSTITUTION:This controller is provided with a back-pressure sensor 17 installed at the upstream of an EGR valve 5, two means 18, 19 detecting engine speed and load either, a means 11 controlling the EGR valve 5 for its on-off operation into the desired determined by the engine speed and load, a means 11b storing a reference back-pressure valve conformed to the engine load and speed, and another means 11b compensating the desired opening of the EGR valve in conformity with a deviation between this reference back-pressure valve and a back-pressure value out of the back-pressure sensor, respectively.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は内燃機関のEGR弁制御
装置に関し、特にEGR開度の補正方法に特徴があるE
GR弁制御装置に関する。 【0002】 【従来の技術】排気ガスを吸気管に還流させるためEG
R管内に配設されたEGR弁の開度を制御するEGR弁
制御装置が従来より各々提案されており、例えば特開昭
63−75345号公報にはEGR弁をダイヤフラムを
介して負圧で作用させ、この負圧と、EGR管上流の圧
力を検出して、両者の圧力信号よりEGR等の故障を判
別するものが開示されている。 【0003】 【発明が解決しようとする課題】上記の装置では例えば
排気管に配設されるディーゼル・パティキュレート・フ
ィルタ(D,P,F,)の補集・再生によるEGR管内
の背圧変化や、排気管のカーボン堆積による背圧上昇や
、EGR弁のカーボン堆積によるEGRガス通路面積減
少等によるEGR率の異常を検出することは可能であっ
た。 【0004】しかしながら、背圧変化によるEGR率の
変動や、EGR弁のカーボン堆積によるEGR率の減少
等を抑制するためのEGR弁開度の補正はできず、EG
R率が適正に制御されずエミッションが悪化するという
問題があった。本発明は背圧変化等によるEGR率の変
動を抑制してエミッションを向上させることを目的とす
る。 【0005】 【課題を解決するための手段】上記課題を解決するため
に本発明は、図1に示す吸気管と排気管とを連結するE
GR管を具備した内燃機関において、この内燃機関の負
荷を検出するための負荷検出手段と、前記内燃機関の回
転数を検出する回転数検出手段と、前記EGR管内に配
設されて、EGRガス量を調節するためのEGR弁と、
このEGR弁を前記負荷と前記回転数とで定まる目標開
度になるように開閉制御するEGR弁制御手段と、前記
EGR弁の上流側の圧力を検出する背圧検出手段と、前
記負荷と前記回転数とに対応した基準背圧値を記憶する
第1の記憶手段と、前記背圧検出手段からの背圧値と前
記基準背圧値との偏差に応じて前記目標開度を補正する
第1の補正手段とを備えたことを特徴とする内燃機関の
EGR弁制御装置を提案する。 【0006】さらに、前記EGR弁の第1の開度時の背
圧とこの第1の開度とは異なる第2の開度時の背圧との
基準偏差を前記負荷と前記回転数とに対応させて記憶す
る第2の記憶手段と、前記EGR弁を前記第1の開度に
強制的に制御する第1の制御手段と、この第1の制御手
段により前記EGR弁が前記第1の開度に制御された後
、前記EGR弁を前記第2の開度に制御する第2の制御
手段と、前記第1の制御手段により前記EGR弁が前記
第1の開度に制御されたときの背圧と、前記第2の制御
手段により前記EGR弁が前記第2の開度に制御された
ときの背圧との偏差を算出する算出手段と、この偏差と
前記基準偏差とを比較する比較手段と、この比較手段の
比較結果に応じて前記目標開度を大きくする様に補正す
る第2の補正手段とを備えたことを特徴とする内燃機関
のEGR弁制御装置も提案する。 【0007】 【作用】これにより、排気管にカーボン等が堆積して背
圧が上昇すると、この背圧と第1の記憶手段に記憶され
ている基準背圧との偏差が大きくなり、この偏差に応じ
てEGR弁の目標開度が補正され、背圧上昇に伴うEG
R率の変動が防止される。 【0008】さらに、EGR弁を強制的に第1開度から
第2の開度に制御し、このときの背圧の変動量と、第2
の記憶手段に記憶されている基準偏差とを比較し、この
比較結果に応じてEGR弁の目標開度を大きくするよう
に補正され、EGR弁のカーボン堆積によるEGRガス
通路面積減少に伴うEGR率の変動が防止される。 【0009】 【実施例】以下本発明実施例を図面に基づいて説明する
。図2は本発明実施例の全体構成を示したブロック図で
あって、エンジン1には排気ガスを排出するための排気
マニホールド2,吸入ガスを吸入するための吸気マニホ
ールド3が取付けられており、この吸気マニホールド3
の集合部には吸入空気量を調節するためのアクセルペダ
ル(図示せず)に連動するスロットル弁15が設けられ
ている。 【0010】4は排気マニホールド2から吸気マニホー
ルド3へ排気ガスを還流するための再循環通路(以下E
GR管と書く)であって、このEGR管4にはEGRガ
ス量を調節するためのEGR弁5が設けられている。6
は排気管であって、排気マニホールド2から排出される
排気ガスを外部に排出するためのものである。この排気
管6の途中には排気ガス中のパティキュレートを捕集す
るためのディーゼル・パティキュレート・フィルタ7(
以下D,P,Fと書く)が配設されている。このD,P
,F,7には熱線が埋め込まれておりパティキュレート
の捕集が進み背圧が上昇するとこの熱線によってパティ
キュレートが燃やされる(再生)。 【0011】8は負圧を発生させるためのバキュームポ
ンプであって、このバキュームポンプ8からの負圧は負
圧通路9を介して電子式負圧調整弁10(以下E−VR
Vと書く)に導入される。11は周知のRAM11a,
ROM11b等より構成される電子制御装置(以下EC
Uと書く)であって、運転状態に応じたEGR弁5の開
度(ダイヤフラム室12aの負圧)を制御すべくデュー
ティー信号(500Hz)をE−VRV10に出力して
いる(詳細は後述)。 【0012】E−VRV10はこのデューティ信号のデ
ューティ比に応じてバキュームポンプ8からの負圧を調
整して、調整した負圧をダイヤフラム通路13を介して
ダイヤフラム12に供給している。そしてダイヤフラム
12は供給された負圧に応じてEGR弁5の開度を調節
している。またダイヤフラム12にはダイヤフラム室1
2aの負圧(EGR弁負圧)を検出する負圧センサ14
が配設され、この負圧センサ14からのEGR弁負圧信
号はECU11に入力されている。 【0013】16は吸気マニホールド13内の圧力即ち
吸気圧を検出するための吸気圧センサ、17はEGR管
4の途中に配設された背圧センサである。この背圧セン
サ17はD,P,F,7のパティキュレートの捕集・再
生による背圧変化を測定するためのものである。ECU
11にはこれらセンサからの負圧信号,吸気圧信号,背
圧信号の他に、エンジン回転数センサ18やアクセル開
度センサ19からの信号も入力している。 【0014】また、ECU11のROM11bには、エ
ンジン回転数とアクセル開度との2次元マップに予め実
験で求めたパティキュレート捕集前(新品)時のEGR
弁負圧(基準EGR負圧),背圧(基準背圧)および吸
気圧(基準吸気圧)が記憶されている。そして、ECU
11は吸気圧センサ16及び背圧センサ17からの信号
と上記基準圧力とに基づいて目標EGR弁負圧を算出し
、さらに負圧センサ14からのEGR弁負圧と目標EG
R弁負圧とを比較して、EGR弁負圧が目標EGR弁負
圧になる様フィードバック制御している。 【0015】以下本発明の要旨である目標EGR弁負圧
(PMF)の算出方法を図3に基づいて説明する。この
算出ルーチンは所定時間毎例えば60ms毎に実行され
る。まずステップS10では、エンジン回転数センサ1
8及びアクセル開度センサ19からの信号に基づいてエ
ンジン回転数Ne及びアクセル開度THAを算出する。 【0016】次にステップS20ではステップS10で
算出したエンジン回転数Neとアクセル開度THAに対
応する基準EGR弁負圧PSF,基準背圧PSB及び基
準吸気圧PSQをROM11bに記憶された2次元マッ
プより算出する。そして、ステップS30では吸気圧セ
ンサ16からの信号に基づいて吸気圧PQ を算出し、
さらに背圧センサ17の信号に基づいて背圧PB を算
出する。 【0017】ここで背圧PB は図4に示す様に大きく
脈動しているため、エンジン1回転で例えば37個サン
プリングして1回転毎のそれらの平均値を背圧PB と
している。図3に戻って、以上の様に吸気圧PQ,背圧
PB を算出するとステップS40に進む。 【0018】ステップS40では以下の演算式を用いて
目標EGR弁負圧PMFを算出する。 【0019】 【数1】     PMF=(PSF−PF1)・{(PSB−P
SQ)/(PB −PQ )}K +PF1−    
      {(PB −PQ )−(PSB−PSQ
)}/N              …(1)上記演
算式を詳細に説明すると、(1)式の第1項の定数PF
1はEGR弁5が開き始める時のEGR弁負圧値に設定
される。本実施例では図5に示す様にEGR弁5が開き
始めるEGR弁負圧は24(KPa)であるため定数P
F1は24に設定してある。 【0020】またEGRガス流量QはEGR管4の流路
面積Sと、背圧PBと吸気圧PQ との偏差の平方根と
の積に比例し、次式の様に表される。 【0021】 【数2】Q∝S・(PB −PQ )1/2 そのため
、理論上は(1)式中の乗数Kは1/2となるが背圧P
B の脈動、背圧センサ17の取り付け位置等の影響に
より実際は必ずしも1/2とならず乗数Kは実験によっ
て求めている。 【0022】(1)式の第3項即ち 【0023】 【数3】{(PB −PQ )−(PSB−PSQ)}
/NはD,P,F,7がパティキュレートの捕集による
排気抵抗の上昇によって背圧PB が大きくなると、図
6に示す様に背圧PB の上昇によってEGR弁5が押
し上げられEGRガスの通路面積が大きくなってEGR
率が上昇してしまうことを防ぐための補正項である。 【0024】ところで分母のNはダイヤフラム室12a
の断面積S1 とEGR弁5の面積S2 との面積比で
あってS1,S2 は以下の様に求められる。 【0025】 【数4】S1 =π×(72/2)2 【0026】 【数5】S2 =π×(18/2)2 従って面積比S
2 /S1 は16となるため分母Nは16に設定され
ている。この様にD,P,F,7のパティキュレート捕
集前の圧力偏差(PSB−PSQ)からの背圧PB と
吸気圧PQ との偏差の変化量を面積比Nで割った値(
補正項)だけ、目標EGR弁負圧を小さくすることで背
圧PB の上昇に伴う通路面積の上昇が抑制される。 【0027】以上の様にして算出された目標EGR弁負
圧PMFになるようにEGR弁負圧PF を制御した場
合のエミッションの出力状態を図7に示す。図7におい
て、従来技術とは目標EGR弁負圧をエンジン回転数と
エンジン負荷のみで定めた場合のものである。図より明
らかの様に、従来では背圧の上昇に伴ってEGR率が上
昇してその結果炭化水素の排出量が増えエミッションが
悪化していたが、本実施例では、パティキュレート捕集
による背圧の上昇に伴って目標EGR弁負圧を小さくし
てEGR弁5の開度を小さくしているためEGR率は一
定に保たれ、炭化水素の排出量は低く抑えられる。 【0028】次にEGR弁5のカーボン等の堆積による
EGRガスの通路面積減少に伴うEGR率減少を補正す
る方法を説明する。EGR弁5にカーボン等が堆積する
とEGRガスの通路面積が減少するためEGR弁5の開
度を一定量変化させた場合、カーボンが堆積したときは
堆積していないときに比べ背圧の変化量は小さくなる。 【0029】そして、この変化量はカーボンが多く堆積
してより通路面積が減少するほど小さくなる。またEG
R弁の開度を一定量変化させた場合の背圧の変化具合は
D,P,F,7の再生直前が図8に示すように大きいた
め、再生直前にEGR弁5を変化させ、そのときの背圧
の変化量よりEGR弁5のカーボン堆積具合を検出する
のがよい。 【0030】以下具体的な作動を図9に基づいて説明す
る。本ルーチンはD,P,F,7の再生直前(例えばE
CU11よりD,P,F,7に再生信号が出力される1
0秒前)毎に実行される。まず、ステップS100では
エンジン回転数センサ18,スロットル開度センサ19
からの信号に基づいてエンジン回転数Ne,スロットル
開度THAを算出する。 【0031】ステップS110ではエンジン回転数Ne
とスロットル開度THAとの2次元マップよりEGR弁
5にカーボンが堆積していない状態(新品時)における
EGR弁5全閉時の背圧PSBC と半開時の背圧PS
BOとの偏差(PSBC −PSBO )を算出する。 この偏差(PSBC −PSBO )は予め各エンジン
回転数,スロットル開度毎に実験で求めておきROM1
1bに記憶してある。 【0032】次にステップS120でEGR弁5を全閉
にし、ステップ130で所定時間(例えば0.5秒)経
過したか否かの判別を行ない、YESのとき即ちEGR
弁5が全閉するのに十分な時間が経過したときはステッ
プS140に進む。NOのときは所定時間経過するまで
S130で待機する。ステップS140ではEGR弁5
全閉時の背圧PBCを算出する。次にステップS150
ではEGR弁5を半開にし、ステップS160で半開し
てから所定時間(例えば0.5秒)経過したか否かの判
別を行ないYESのときはステップS170に進み、N
Oのときは所定時間経過するまでステップS160で待
機する。 【0033】ステップS170ではEGR弁5半開時の
背圧PBOを検出し、ステップS180で全閉時の背圧
PBCと半開時の背圧PBOとの偏差(背圧の変化量)
を算出する。そしてステップS190で、カーボンによ
ってどの程度EGR弁5が詰まっているかを検出するた
めに、新品時における背圧の変化量(PSBC −PS
BO )と、現在の背圧の変化量(PBC−PBO)と
の比(PBC−PBO)/(PSBC −PSBO )
を算出する。 【0034】ステップS200では回転数Ne,スロッ
トル開度THA毎に予め実験で求めてROM11bに記
憶しておいた上記比(PBC−PBO)/(PSBC 
−PSBO )に対応する補正量ΔPを求める。図10
はNeが1000rpm,THAが20%時の上記比と
補正量ΔPとの関係を表したマップであり、比が小さく
なるに従い即ち現在の背圧の変化量(PBC−PBO)
が新品時の背圧変化量(PSBC −PSBO )に対
して小さくなるに従い補正量ΔPは大きく設定してある
。 【0035】というのは、前述した様にカーボンが多く
堆積するに従い背圧変化量が減少するため、現在の背圧
変化量がより小さい場合は新品時に比べより通路面積が
減少してEGR率が低下してしまい、これを補正するた
めに補正量ΔPは背圧変化量が小さくなるに応じて大き
く設定してEGR率の低下を防いでいる。この補正量Δ
PをステップS210で図3のステップS40で求めら
れる目標EGR弁負圧PMFに加算して本ルーチンを終
了する。 【0036】目標EGR弁負圧PMFを補正量ΔPだけ
高めることで、EGR弁5の開度は補正量ΔPに対応す
る分だけ大きくなりカーボン堆積によるEGR率低下が
防止される。以上述べた実施例は、吸入空気量を調整す
るためスロットル弁15を具備したEGR弁制御装置の
場合であったが、本発明はスロットル弁のない内燃機関
にも適用できる。 【0037】この場合、図3のステップS40で算出さ
れる目標EGR弁負圧PMFは次式で表される。 【0038】 【数6】   PMF=(PSF−PF1)・(PSB/PB )
K +PF1−(PB −PSB)/Nまた、上述した
実施例ではD,P,F,7のパティキュレートの捕集に
よる背圧変化に対するEGR弁負圧の制御方法について
述べたが、本発明はD,P,F,以外例えば触媒等の経
時変化に対する背圧変化に伴なうEGR率の変動防止に
も適用できる。 【0039】さらに、本発明は負圧で作動するEGR弁
以外のEGR弁(例えばステップモータでEGRガスの
通路面積を制御するもの)にも適用でき、この場合目標
EGR弁負圧PMFを通路面積に置き換えればよい。 【0040】 【発明の効果】本発明により、D,P,F,の捕集・再
生に伴なう背圧変動や、排気管のカーボン堆積による背
圧上昇に伴なうEGR率の変動は防止され、エミッショ
ンの悪化は抑制される。さらに、EGR弁のカーボン堆
積によるEGRガスの通路面積減少に伴なうEGR率の
変動も防止される。
[0001] The present invention relates to an EGR valve control device for an internal combustion engine, and in particular, to an EGR valve control device that is characterized by a method of correcting the EGR opening degree.
This invention relates to a GR valve control device. [Prior Art] EG is used to recirculate exhaust gas to the intake pipe.
Various EGR valve control devices have been proposed in the past to control the opening degree of the EGR valve disposed in the R pipe. A system has been disclosed that detects this negative pressure and the pressure upstream of the EGR pipe, and determines a failure of the EGR or the like based on the pressure signals of both. Problem to be Solved by the Invention In the above device, for example, back pressure changes in the EGR pipe due to collection and regeneration of diesel particulate filters (D, P, F,) installed in the exhaust pipe. It was also possible to detect abnormalities in the EGR rate due to an increase in back pressure due to carbon accumulation in the exhaust pipe, a decrease in EGR gas passage area due to carbon accumulation in the EGR valve, etc. However, it is not possible to correct the EGR valve opening degree to suppress fluctuations in the EGR rate due to changes in back pressure or decreases in the EGR rate due to carbon deposition on the EGR valve.
There was a problem in that the R rate was not properly controlled and emissions deteriorated. An object of the present invention is to improve emissions by suppressing fluctuations in EGR rate due to changes in back pressure and the like. Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an E for connecting an intake pipe and an exhaust pipe as shown in FIG.
In an internal combustion engine equipped with a GR pipe, a load detection means for detecting the load of the internal combustion engine, a rotation speed detection means for detecting the rotation speed of the internal combustion engine, and a rotation speed detection means disposed in the EGR pipe for detecting EGR gas. an EGR valve for adjusting the amount;
EGR valve control means for opening and closing the EGR valve to a target opening determined by the load and the rotational speed; a back pressure detection means for detecting pressure on the upstream side of the EGR valve; a first storage means for storing a reference back pressure value corresponding to the rotation speed; and a first memory means for correcting the target opening according to a deviation between the back pressure value from the back pressure detection means and the reference back pressure value. The present invention proposes an EGR valve control device for an internal combustion engine, characterized in that it is equipped with a correction means. Furthermore, a reference deviation between the back pressure at a first opening of the EGR valve and the back pressure at a second opening different from the first opening is determined based on the load and the rotation speed. a second storage means for storing data in correspondence with each other; a first control means for forcibly controlling the EGR valve to the first opening degree; and a first control means for controlling the EGR valve to the first opening degree. a second control means for controlling the EGR valve to the second opening degree after the EGR valve is controlled to the second opening degree; and when the EGR valve is controlled to the first opening degree by the first control means. calculating means for calculating a deviation between the back pressure of the EGR valve and the back pressure when the EGR valve is controlled to the second opening degree by the second control means, and comparing this deviation with the reference deviation. The present invention also proposes an EGR valve control device for an internal combustion engine, characterized by comprising a comparison means and a second correction means for correcting the target opening degree so as to increase it in accordance with the comparison result of the comparison means. [Operation] As a result, when carbon etc. accumulate in the exhaust pipe and the back pressure increases, the deviation between this back pressure and the reference back pressure stored in the first storage means increases, and this deviation increases. The target opening degree of the EGR valve is corrected according to the
Fluctuations in R rate are prevented. Furthermore, the EGR valve is forcibly controlled from the first opening degree to the second opening degree, and the amount of fluctuation in back pressure at this time and the second opening degree are controlled.
The target opening degree of the EGR valve is corrected to increase the target opening degree of the EGR valve according to the comparison result, and the EGR rate is increased due to the reduction in the EGR gas passage area due to carbon deposition on the EGR valve. fluctuations are prevented. [Embodiments] Hereinafter, embodiments of the present invention will be explained based on the drawings. FIG. 2 is a block diagram showing the overall configuration of an embodiment of the present invention, in which an exhaust manifold 2 for discharging exhaust gas and an intake manifold 3 for taking in intake gas are attached to the engine 1. This intake manifold 3
A throttle valve 15 that is connected to an accelerator pedal (not shown) for adjusting the amount of intake air is provided at the collecting portion. Reference numeral 4 denotes a recirculation passage (hereinafter E) for recirculating exhaust gas from the exhaust manifold 2 to the intake manifold 3.
This EGR pipe 4 is provided with an EGR valve 5 for adjusting the amount of EGR gas. 6
is an exhaust pipe for discharging exhaust gas discharged from the exhaust manifold 2 to the outside. In the middle of this exhaust pipe 6 is a diesel particulate filter 7 (for collecting particulates in the exhaust gas).
(hereinafter referred to as D, P, F) are arranged. This D,P
, F, and 7 are embedded with heating wires, and as the collection of particulates progresses and the back pressure increases, the heating wires burn the particulates (regeneration). 8 is a vacuum pump for generating negative pressure, and the negative pressure from the vacuum pump 8 is passed through a negative pressure passage 9 to an electronic negative pressure regulating valve 10 (hereinafter referred to as E-VR).
(written as V). 11 is a well-known RAM 11a,
Electronic control unit (hereinafter referred to as EC) consisting of ROM11b etc.
It outputs a duty signal (500Hz) to the E-VRV 10 in order to control the opening degree of the EGR valve 5 (negative pressure in the diaphragm chamber 12a) according to the operating state (details will be described later). . The E-VRV 10 adjusts the negative pressure from the vacuum pump 8 according to the duty ratio of this duty signal, and supplies the adjusted negative pressure to the diaphragm 12 via the diaphragm passage 13. The diaphragm 12 then adjusts the opening degree of the EGR valve 5 according to the supplied negative pressure. The diaphragm 12 also has a diaphragm chamber 1.
Negative pressure sensor 14 that detects the negative pressure of 2a (EGR valve negative pressure)
An EGR valve negative pressure signal from this negative pressure sensor 14 is input to the ECU 11. Reference numeral 16 indicates an intake pressure sensor for detecting the pressure within the intake manifold 13, that is, intake pressure. Reference numeral 17 indicates a back pressure sensor disposed in the middle of the EGR pipe 4. This back pressure sensor 17 is for measuring back pressure changes due to collection and regeneration of particulates D, P, F, and 7. ECU
In addition to the negative pressure signal, intake pressure signal, and back pressure signal from these sensors, signals from an engine rotation speed sensor 18 and an accelerator opening sensor 19 are also input to 11. [0014] Furthermore, in the ROM 11b of the ECU 11, the EGR data before particulate collection (when new), which has been obtained through experiments in advance, is stored in a two-dimensional map of engine speed and accelerator opening.
Valve negative pressure (reference EGR negative pressure), back pressure (reference back pressure), and intake pressure (reference intake pressure) are stored. And the E.C.U.
11 calculates a target EGR valve negative pressure based on the signals from the intake pressure sensor 16 and the back pressure sensor 17 and the reference pressure, and further calculates the EGR valve negative pressure from the negative pressure sensor 14 and the target EGR valve negative pressure.
The EGR valve negative pressure is compared with the R valve negative pressure, and feedback control is performed so that the EGR valve negative pressure becomes the target EGR valve negative pressure. The method of calculating the target EGR valve negative pressure (PMF), which is the gist of the present invention, will be explained below with reference to FIG. This calculation routine is executed at predetermined intervals, for example, every 60 ms. First, in step S10, the engine rotation speed sensor 1
8 and the signals from the accelerator opening sensor 19, the engine rotation speed Ne and the accelerator opening THA are calculated. Next, in step S20, the reference EGR valve negative pressure PSF, reference back pressure PSB, and reference intake pressure PSQ corresponding to the engine speed Ne and accelerator opening THA calculated in step S10 are stored in a two-dimensional map stored in the ROM 11b. Calculate from Then, in step S30, the intake pressure PQ is calculated based on the signal from the intake pressure sensor 16,
Furthermore, the back pressure PB is calculated based on the signal from the back pressure sensor 17. Since the back pressure PB pulsates greatly as shown in FIG. 4, for example, 37 samples are sampled during one rotation of the engine, and the average value for each rotation is taken as the back pressure PB. Returning to FIG. 3, once the intake pressure PQ and back pressure PB are calculated as described above, the process proceeds to step S40. In step S40, the target EGR valve negative pressure PMF is calculated using the following arithmetic expression. [Equation 1] PMF=(PSF-PF1) {(PSB-P
SQ)/(PB-PQ)}K +PF1-
{(PB-PQ)-(PSB-PSQ
)}/N...(1) To explain the above calculation formula in detail, the constant PF in the first term of formula (1)
1 is set to the EGR valve negative pressure value when the EGR valve 5 starts to open. In this embodiment, as shown in FIG. 5, the EGR valve negative pressure at which the EGR valve 5 starts to open is 24 (KPa), so the constant P
F1 is set to 24. Further, the EGR gas flow rate Q is proportional to the product of the flow path area S of the EGR pipe 4 and the square root of the deviation between the back pressure PB and the intake pressure PQ, and is expressed by the following equation. [Equation 2]Q∝S・(PB −PQ )1/2 Therefore, theoretically, the multiplier K in equation (1) is 1/2, but the back pressure P
In reality, it is not necessarily 1/2 due to the influence of the pulsation of B, the mounting position of the back pressure sensor 17, etc., and the multiplier K is determined through experiments. [0022] The third term of equation (1), ie, [Equation 3] {(PB - PQ ) - (PSB - PSQ)}
/N is D, P, F, 7. When the back pressure PB increases due to an increase in exhaust resistance due to collection of particulates, the EGR valve 5 is pushed up by the increase in back pressure PB as shown in Fig. 6, and the EGR gas is released. EGR due to larger passage area
This is a correction term to prevent the rate from increasing. By the way, the denominator N is the diaphragm chamber 12a.
The area ratio between the cross-sectional area S1 of the EGR valve 5 and the area S2 of the EGR valve 5, S1 and S2, is determined as follows. [Formula 4] S1 = π×(72/2)2 [Formula 5] S2 =π×(18/2)2 Therefore, the area ratio S
Since 2 /S1 is 16, the denominator N is set to 16. In this way, the value (
By reducing the target EGR valve negative pressure by the correction term), an increase in passage area due to an increase in back pressure PB is suppressed. FIG. 7 shows the emission output state when the EGR valve negative pressure PF is controlled so as to reach the target EGR valve negative pressure PMF calculated as described above. In FIG. 7, the prior art is a case where the target EGR valve negative pressure is determined only by the engine speed and engine load. As is clear from the figure, in the past, the EGR rate increased as the back pressure increased, resulting in an increase in hydrocarbon emissions and worsening emissions, but in this example, the back pressure increases due to particulate collection. As the pressure increases, the target EGR valve negative pressure is reduced and the opening degree of the EGR valve 5 is reduced, so the EGR rate is kept constant and the amount of hydrocarbon emissions is kept low. Next, a method for correcting the decrease in the EGR rate due to the decrease in the EGR gas passage area due to the accumulation of carbon or the like in the EGR valve 5 will be explained. When carbon etc. accumulate on the EGR valve 5, the passage area of the EGR gas decreases. Therefore, when the opening degree of the EGR valve 5 is changed by a certain amount, the amount of change in back pressure when carbon is accumulated compared to when there is no accumulation is becomes smaller. [0029] This amount of change becomes smaller as more carbon is deposited and the passage area decreases. Also EG
The degree of change in back pressure when the opening degree of the R valve is changed by a certain amount is large immediately before the regeneration of D, P, F, and 7, as shown in Fig. 8. It is preferable to detect the degree of carbon accumulation in the EGR valve 5 from the amount of change in back pressure at this time. The specific operation will be explained below based on FIG. 9. This routine is executed immediately before the playback of D, P, F, 7 (for example, E
Playback signal is output from CU11 to D, P, F, 71
0 seconds ago). First, in step S100, the engine rotation speed sensor 18, the throttle opening sensor 19
The engine speed Ne and throttle opening THA are calculated based on the signals from the engine. In step S110, the engine speed Ne
Based on the two-dimensional map of and throttle opening THA, the back pressure PSBC when the EGR valve 5 is fully closed and the back pressure PS when the EGR valve 5 is half open when no carbon is deposited on the EGR valve 5 (when new)
The deviation from BO (PSBC - PSBO) is calculated. This deviation (PSBC - PSBO) is determined in advance by experiment for each engine speed and throttle opening, and is stored in ROM1.
It is stored in 1b. Next, in step S120, the EGR valve 5 is fully closed, and in step S130, it is determined whether a predetermined time (for example, 0.5 seconds) has elapsed. If YES, that is, the EGR valve 5 is closed.
When sufficient time has elapsed for the valve 5 to be fully closed, the process advances to step S140. If NO, the process waits in S130 until a predetermined period of time has elapsed. In step S140, the EGR valve 5
Calculate the back pressure PBC when fully closed. Next step S150
Then, the EGR valve 5 is half-opened, and in step S160 it is determined whether a predetermined time (for example, 0.5 seconds) has elapsed since the EGR valve 5 was half-opened. If YES, the process advances to step S170, and
If the answer is O, the process waits in step S160 until a predetermined period of time has elapsed. In step S170, the back pressure PBO when the EGR valve 5 is half open is detected, and in step S180, the deviation (change amount of back pressure) between the back pressure PBC when fully closed and the back pressure PBO when half open is detected.
Calculate. Then, in step S190, in order to detect how much the EGR valve 5 is clogged with carbon, the amount of change in back pressure (PSBC - PS
The ratio of (PBC-PBO)/(PSBC-PSBO) to the current amount of change in back pressure (PBC-PBO)
Calculate. In step S200, the above ratio (PBC-PBO)/(PSBC
-PSBO) is calculated. Figure 10
is a map showing the relationship between the above ratio and the correction amount ΔP when Ne is 1000 rpm and THA is 20%, and as the ratio becomes smaller, the current amount of change in back pressure (PBC-PBO)
The correction amount ΔP is set to be larger as becomes smaller than the amount of back pressure change (PSBC - PSBO) when new. [0035] As mentioned above, as more carbon accumulates, the back pressure change decreases, so if the current back pressure change is smaller, the passage area will be smaller than when it was new, and the EGR rate will decrease. In order to correct this, the correction amount ΔP is set larger as the amount of change in back pressure becomes smaller, thereby preventing a drop in the EGR rate. This correction amount Δ
In step S210, P is added to the target EGR valve negative pressure PMF determined in step S40 of FIG. 3, and this routine ends. By increasing the target EGR valve negative pressure PMF by the correction amount ΔP, the opening degree of the EGR valve 5 increases by an amount corresponding to the correction amount ΔP, thereby preventing a decrease in the EGR rate due to carbon deposition. Although the embodiment described above is an EGR valve control device equipped with a throttle valve 15 to adjust the amount of intake air, the present invention can also be applied to an internal combustion engine without a throttle valve. In this case, the target EGR valve negative pressure PMF calculated in step S40 of FIG. 3 is expressed by the following equation. [Formula 6] PMF=(PSF-PF1)・(PSB/PB)
K +PF1-(PB-PSB)/NAlso, in the above-mentioned embodiment, a method of controlling the EGR valve negative pressure in response to a change in back pressure due to collection of particulates D, P, F, and 7 was described, but the present invention Other than D, P, and F, it can also be applied to prevent fluctuations in the EGR rate due to changes in back pressure due to changes over time in catalysts and the like. Furthermore, the present invention can be applied to EGR valves other than EGR valves that operate under negative pressure (for example, those that control the passage area of EGR gas using a step motor), and in this case, the target EGR valve negative pressure PMF can be adjusted by adjusting the passage area. You can replace it with Effects of the Invention: The present invention eliminates back pressure fluctuations due to the collection and regeneration of D, P, and F, and fluctuations in the EGR rate due to back pressure increases due to carbon deposition in the exhaust pipe. prevention, and deterioration of emissions is suppressed. Furthermore, fluctuations in the EGR rate due to a decrease in the EGR gas passage area due to carbon deposition on the EGR valve are also prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  クレーム対応図である。FIG. 1 is a complaint correspondence diagram.

【図2】  本発明実施例の構成を示したブロック図で
ある。
FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention.

【図3】  ECU11の作動説明に供したフローチャ
ートである。
FIG. 3 is a flowchart used to explain the operation of the ECU 11.

【図4】  エンジン1回転における背圧の変化を示し
た実験結果である。
FIG. 4 is an experimental result showing the change in back pressure during one rotation of the engine.

【図5】  EGR弁負圧と通路面積との関係を示した
特性図である。
FIG. 5 is a characteristic diagram showing the relationship between EGR valve negative pressure and passage area.

【図6】  EGR弁部の構造を示した拡大図である。FIG. 6 is an enlarged view showing the structure of the EGR valve section.

【図7】  背圧とエミッションとの関係を示した特性
図である。
FIG. 7 is a characteristic diagram showing the relationship between back pressure and emissions.

【図8】  背圧と通路面積との関係を示した特性図で
ある。
FIG. 8 is a characteristic diagram showing the relationship between back pressure and passage area.

【図9】  ECU11の作動説明に供したフローチャ
ートである。
FIG. 9 is a flowchart used to explain the operation of the ECU 11.

【図10】  ROM11bに記憶されたマップである
FIG. 10 is a map stored in the ROM 11b.

【符号の説明】[Explanation of symbols]

4  EGR管 5  EGR弁 11  ECU 17  背圧センサ 18  回転数センサ 19  アクセル開度センサ 4 EGR tube 5 EGR valve 11 ECU 17 Back pressure sensor 18 Rotation speed sensor 19 Accelerator opening sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  吸気管と排気管とを連結するEGR管
を具備した内燃機関において、この内燃機関の負荷を検
出するための負荷検出手段と、前記内燃機関の回転数を
検出する回転数検出手段と、前記EGR管内に配設され
て、EGRガス量を調節するためのEGR弁と、このE
GR弁を前記負荷と前記回転数とで定まる目標開度にな
るように開閉制御するEGR弁制御手段と、前記EGR
弁の上流側の圧力を検出する背圧検出手段と、前記負荷
と前記回転数とに対応した基準背圧値を記憶する第1の
記憶手段と、前記背圧検出手段からの背圧値と前記基準
背圧値との偏差に応じて前記目標開度を補正する第1の
補正手段とを備えたことを特徴とする内燃機関のEGR
弁制御装置。
1. An internal combustion engine equipped with an EGR pipe connecting an intake pipe and an exhaust pipe, comprising: load detection means for detecting a load on the internal combustion engine; and a rotation speed detection means for detecting the rotation speed of the internal combustion engine. means, an EGR valve disposed within the EGR pipe for regulating the amount of EGR gas;
EGR valve control means for controlling the opening and closing of the GR valve to a target opening determined by the load and the rotation speed;
a back pressure detection means for detecting the pressure on the upstream side of the valve; a first storage means for storing a reference back pressure value corresponding to the load and the rotation speed; and a back pressure value from the back pressure detection means. EGR for an internal combustion engine, comprising a first correction means for correcting the target opening according to a deviation from the reference back pressure value.
Valve control device.
【請求項2】  前記EGR弁の第1の開度時の背圧と
この第1の開度とは異なる第2の開度時の背圧との基準
偏差を前記負荷と前記回転数とに対応させて記憶する第
2の記憶手段と、前記EGR弁を前記第1の開度に強制
的に制御する第1の制御手段と、この第1の制御手段に
より前記EGR弁が前記第1の開度に制御された後、前
記EGR弁を前記第2の開度に制御する第2の制御手段
と、前記第1の制御手段により前記EGR弁が前記第1
の開度に制御されたときの背圧と、前記第2の制御手段
により前記EGR弁が前記第2の開度に制御されたとき
の背圧との偏差を算出する算出手段と、この偏差と前記
基準偏差とを比較する比較手段と、この比較手段の比較
結果に応じて前記目標開度を大きくする様に補正する第
2の補正手段とを備えたことを特徴とする請求項1記載
の内燃機関のEGR弁制御装置。
2. A reference deviation between the back pressure at a first opening of the EGR valve and the back pressure at a second opening different from the first opening is determined based on the load and the rotation speed. a second storage means for storing data in correspondence with each other; a first control means for forcibly controlling the EGR valve to the first opening degree; and a first control means for controlling the EGR valve to the first opening degree. a second control means for controlling the EGR valve to the second opening degree after the EGR valve is controlled to the second opening degree; and a second control means for controlling the EGR valve to the first opening degree.
a calculation means for calculating a deviation between a back pressure when the EGR valve is controlled to the opening degree and a back pressure when the EGR valve is controlled to the second opening degree by the second control means; and the reference deviation, and a second correction means for correcting the target opening to increase in accordance with the comparison result of the comparison means. EGR valve control device for internal combustion engine.
JP00910091A 1991-01-29 1991-01-29 EGR valve control device for internal combustion engine Expired - Fee Related JP3159718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00910091A JP3159718B2 (en) 1991-01-29 1991-01-29 EGR valve control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00910091A JP3159718B2 (en) 1991-01-29 1991-01-29 EGR valve control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04252849A true JPH04252849A (en) 1992-09-08
JP3159718B2 JP3159718B2 (en) 2001-04-23

Family

ID=11711207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00910091A Expired - Fee Related JP3159718B2 (en) 1991-01-29 1991-01-29 EGR valve control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3159718B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068809A1 (en) * 2001-02-26 2002-09-06 Mitsubishi Heavy Industries, Ltd. Exhaust gas recirculating engine with scrubber and exhaust gas recirculating system
WO2012128224A1 (en) * 2011-03-18 2012-09-27 ヤンマー株式会社 Method for determining correction amount for degree of opening of egr valve, method for controlling degree of opening of egr valve, and engine
JP2012197681A (en) * 2011-03-18 2012-10-18 Yanmar Co Ltd Exhaust gas recirculation system for engine device
CN112324581A (en) * 2020-11-04 2021-02-05 潍柴动力股份有限公司 EGR transient control method and device and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD771977S1 (en) 2015-05-21 2016-11-22 East Coast Creative, LLC Fitted bed sheet with game board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068809A1 (en) * 2001-02-26 2002-09-06 Mitsubishi Heavy Industries, Ltd. Exhaust gas recirculating engine with scrubber and exhaust gas recirculating system
WO2012128224A1 (en) * 2011-03-18 2012-09-27 ヤンマー株式会社 Method for determining correction amount for degree of opening of egr valve, method for controlling degree of opening of egr valve, and engine
JP2012193723A (en) * 2011-03-18 2012-10-11 Yanmar Co Ltd Method for determining correction amount for degree of opening of egr valve, method for controlling degree of opening of egr valve, and engine
JP2012197681A (en) * 2011-03-18 2012-10-18 Yanmar Co Ltd Exhaust gas recirculation system for engine device
US9243590B2 (en) 2011-03-18 2016-01-26 Yanmar Co., Ltd. Method of determining correction amount of opening degree of EGR valve, method of controlling opening degree of EGR valve, and engine
CN112324581A (en) * 2020-11-04 2021-02-05 潍柴动力股份有限公司 EGR transient control method and device and electronic equipment

Also Published As

Publication number Publication date
JP3159718B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US7111455B2 (en) Exhaust cleaning device of internal combustion engine
EP1505283B1 (en) Engine control system
EP1723322B1 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
EP1455060B1 (en) Engine exhaust gas purification device
US7219493B2 (en) Filter regeneration in engine exhaust gas purification device
US20050060992A1 (en) Method for restricting excessive temperature rise of filter in internal combustion engine
EP1503065B1 (en) Exhaust gas cleaning apparatus
US20070079607A1 (en) Exhaust purifying apparatus for internal combustion engine
JP2005036663A (en) Exhaust gas control device and exhaust gas flow rate estimating method for internal combustion engine
US20050109028A1 (en) Turbocharged engine control system
US6282889B1 (en) Air/fuel ration control system of internal combustion engine
US5228421A (en) Idle speed control system
JPS6212380B2 (en)
US20080034737A1 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method therefor
US7322182B2 (en) Filter regeneration control
JP2860851B2 (en) Evaporative fuel control system for internal combustion engine
JPH06200843A (en) Method and system of controlling idle speed of engine
JP4556800B2 (en) Engine back pressure control device
JPH05106518A (en) Exhaust gas reflux device of diesel engine
JPH04252849A (en) Exhaust gas recirculation valve controller for internal combustion engine
EP1936139B1 (en) Differential pressure calculating device and method for calculating differential pressure between the upstream section and the downstream section of filter, and deposition amount estimating device and method for estimating deposition amount of particulate matter on the filter
US10928275B1 (en) Systems and methods for coordinating engine-off vehicle diagnostic monitors
JP3396220B2 (en) Tank ventilation method and apparatus
EP1515029B1 (en) Exhaust purification system of an internal combustion engine
JP2008121518A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990803

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees