JPH0554057B2 - - Google Patents

Info

Publication number
JPH0554057B2
JPH0554057B2 JP15579483A JP15579483A JPH0554057B2 JP H0554057 B2 JPH0554057 B2 JP H0554057B2 JP 15579483 A JP15579483 A JP 15579483A JP 15579483 A JP15579483 A JP 15579483A JP H0554057 B2 JPH0554057 B2 JP H0554057B2
Authority
JP
Japan
Prior art keywords
amount
map
collection amount
exhaust passage
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15579483A
Other languages
Japanese (ja)
Other versions
JPS6047936A (en
Inventor
Satoshi Kume
Michasu Yoshida
Yoshihiro Konno
Takeo Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58155794A priority Critical patent/JPS6047936A/en
Publication of JPS6047936A publication Critical patent/JPS6047936A/en
Publication of JPH0554057B2 publication Critical patent/JPH0554057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】 本発明はデイーゼルエンジンの排気路に取付け
られたフイルタが捕集するデイーゼルパテイキユ
レートの捕集量を測定する方法、特に、排ガス再
循環装置を備えたデイーゼルエンジンに有効に使
用されるデイーゼルパテイキユレート捕集量測定
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for measuring the amount of diesel particulate collected by a filter installed in the exhaust passage of a diesel engine, and is particularly effective for diesel engines equipped with an exhaust gas recirculation device. This invention relates to a method for measuring the amount of diesel particulate collected used in

本出願人による特願昭58−128781号等に提案さ
れているように、デイーゼルエンジンの排気中の
デイーゼルパテイキユレート(以後単にパテイキ
ユレートと記す)はこれを捕集するフイルタを目
詰りさせ、エンジン出力の低下を招くことより、
このフイルタは所定時にパテイキユレートの焼却
を必要とし、その再生が行なわれる。このフイル
タの再生時期を測定する場合、フイルタを取付け
た排気路の圧力変化値を用い、この値が設定値を
上回つた時点でフイルタの再燃焼装置を作動させ
るというフイードバツク制御を行なうことが多
い。ところが、この排気路の圧力変化値の測定を
行なう際、フイルタの目詰り以外の要因が含まれ
ると測定誤差を起し易い。たとえばデイーゼルエ
ンジンにはその排ガス中の窒素酸化物(NOx)
等の発生を低減させるため、排ガスの一部を給気
路側に戻す排ガス再循環装置(以後単にEGR装
置と記す)が取付けられることが多い。このよう
なEGR装置は、通常エンジンの排気マニホール
ド側より排気を取出し、給気マニホールド内に戻
す。このため、排気路側にあるフイルタがパテイ
キユレートにより目詰まりを起すと、これに応じ
フイルタ上流側圧力が上るが、これに応じて排ガ
スは所定の排ガス再循環量(以後単にEGR量と
記す)以上に給気路側に戻るため、フイルタ上流
側圧力がフイルタの目詰り以外の要因で大きく変
化してしまい、捕集量値が不適切なものとなつて
しまう。しかも、EGR装置により排気中の窒素
酸化物は低減することになるが、パテイキユレー
トはより増加してしまうという不都合もある。
As proposed in Japanese Patent Application No. 58-128781 filed by the present applicant, diesel particulate (hereinafter referred to simply as particulate) in the exhaust gas of a diesel engine clogs the filter that collects it, and Rather than causing a decrease in output,
This filter requires incineration of the particulate at certain times, and its regeneration takes place. When measuring the regeneration timing of this filter, feedback control is often performed by using the value of pressure change in the exhaust passage where the filter is installed, and activating the filter's reburning device when this value exceeds a set value. . However, when measuring the pressure change value in the exhaust passage, measurement errors are likely to occur if factors other than filter clogging are included. For example, diesel engines contain nitrogen oxides (NOx) in their exhaust gas.
In order to reduce the occurrence of such problems, an exhaust gas recirculation device (hereinafter simply referred to as an EGR device) is often installed to return a portion of the exhaust gas to the air supply path. Such an EGR device normally extracts exhaust gas from the exhaust manifold side of the engine and returns it to the intake manifold. For this reason, when the filter on the exhaust path side becomes clogged with particulate matter, the pressure on the upstream side of the filter rises, but the exhaust gas increases in response to a predetermined amount of exhaust gas recirculation (hereinafter simply referred to as EGR amount). Since the air returns to the air supply path side, the pressure on the upstream side of the filter changes greatly due to factors other than filter clogging, resulting in an inappropriate collection amount value. Moreover, although the EGR device reduces nitrogen oxides in the exhaust gas, it also increases particulate matter.

本発明は排ガス再循環装置による悪影響を受け
ることなく、正確なパテイキユレート捕集量を測
定できるデイーゼルパテイキユレート捕集量測定
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring the amount of diesel particulate collected that can accurately measure the amount of particulate collected without being adversely affected by an exhaust gas recirculation device.

本発明は、デイーゼルエンジンの排気路と給気
路を結ぶ再循環路の排ガスの再循環量を制御する
再循環量制御手段と、前記排気路のフイルタによ
るデイーゼルパテイキユレートの捕集量の変化に
よる排気路圧力変化量を検出する排気路圧力変化
量検出手段と、前記デイーゼルエンジンのエンジ
ン回転速度情報を出力するエンジン回転センサ
と、前記デイーゼルエンジンの燃料噴射ポンプの
レバー開度情報を出力するレバー開度センサと、
前記エンジン回転速度、前記レバー開度及び前記
排気路圧力変化量に基づき前記捕集量の測定をす
る捕集量測定手段とを用い、前記再循環路の流路
断面積がカツト状態に保たれた上で一の単一捕集
量においてエンジン回転速度及び燃料噴射ポンプ
のレバー開度が種々に変更された場合に排気路圧
力変化量がどうであるかをあらかじめ実測して一
の単一捕集量マツプを作成し、同様に順次作成さ
れた各々異なる単一捕集量毎の単一捕集量マツプ
を集合して捕集量設定マツプを作成し、その後、
前記再循環量制御手段により前記再循環路の流路
断面積をカツト状態に制御し、続いて前記排気路
圧力変化量検出手段により現在の排気路圧力変化
量を検出し、更に、前記捕集量測定手段により現
在の回転速度及びレバー開度を検出し、次いで、
前記捕集量設定マツプ中から現在の検出状況に合
致する単一捕集量マツプをマイコンを用いて選択
し、この単一捕集量マツプに対応する単一捕集量
を現在の捕集量として把握することを特徴とす
る。 以下本発明を添付図面と共に説明する。
The present invention provides a recirculation amount control means for controlling the amount of recirculation of exhaust gas in a recirculation path connecting an exhaust path and an air supply path of a diesel engine, and a change in the amount of diesel particulate collected by a filter in the exhaust path. an engine rotation sensor that outputs engine rotation speed information of the diesel engine; and a lever that outputs lever opening information of a fuel injection pump of the diesel engine. An opening sensor,
The cross-sectional area of the recirculation path is maintained in a cut state using a collection amount measuring means that measures the collection amount based on the engine rotational speed, the lever opening degree, and the amount of change in exhaust passage pressure. Then, we measured in advance how the exhaust passage pressure would change when the engine rotation speed and the lever opening of the fuel injection pump were changed in various ways for one single collection amount. A collection amount map is created, and a collection amount setting map is created by collecting the single collection amount maps for each different single collection amount that were similarly created sequentially, and then,
The cross-sectional area of the recirculation path is controlled to a cut state by the recirculation amount control means, the current exhaust path pressure change amount is detected by the exhaust path pressure change amount detection means, and the The current rotational speed and lever opening degree are detected by the quantity measuring means, and then,
A single collection amount map that matches the current detection situation is selected from the collection amount setting map using a microcomputer, and the single collection amount corresponding to this single collection amount map is selected as the current collection amount. It is characterized by being understood as The present invention will be described below with reference to the accompanying drawings.

第1図には本発明の一実施例としてのデイーゼ
ルパテイキユレート捕集量測定方法を適用できる
デイーゼルエンジン1を示した。このエンジンの
給気路Iは、大気をエアクリーナ2を介し吸入
し、これを過給機のコンプレツサ3で加圧してエ
ンジン1の図示しないシリンダ内に供給する。一
方、排気路Eは上述のシリンダより排出される排
気を過給機のタービン4に導き、更に、これをセ
ラミツク製のパテイキユレート捕集用のフイルタ
5、その後にマフラ6を通し大気中に放出する。
このエンジンとタービン4との間の排気路Eよ
り、エンジン1とコンプレツサ3との間の給気路
Iとはバイパス路Bで連通可能である。このバイ
パス路はEGR装置7の一部であり、バイパス路
Bの流路断面積を可変とするEGRバルブ8が取
付けられる。EGRバルブ8は弁体801と一体
のダイアフラム802を有し、これは大気開放室
803と負圧室804との圧力差および戻しばね
805の閉弁方向への弾性力とのバランス位置に
保持される。なお、弁体801はその閉弁位置か
らのリフト量に対応した信号を出力できるポジシ
ヨンセンサ806を備える。負圧室804にはソ
レノイドバルブ9を介し真空ポンプ10あるいは
大気開放口901が連通可能である。このソレノ
イドバルブはコントローラとしてのマイクロコン
ピユータ(以後単にマイコンと記す)11側より
デユーテイ比を大小変化させた、出力信号を受
け、これにより負圧室804の負圧値をデユーテ
イ比の増加に比例し大きくするよう作動する。即
ち、出力信号が大きくなるに比例し、弁体801
のリフト量は大きくなり、EGR量も増大するよ
う構成される。
FIG. 1 shows a diesel engine 1 to which a method for measuring the amount of diesel particulate collected as an embodiment of the present invention can be applied. The air supply path I of this engine sucks atmospheric air through an air cleaner 2, pressurizes it with a compressor 3 of a supercharger, and supplies it into a cylinder (not shown) of the engine 1. On the other hand, the exhaust path E guides the exhaust gas discharged from the above-mentioned cylinder to the turbine 4 of the supercharger, and further discharges it into the atmosphere through a ceramic particulate collection filter 5, and then through a muffler 6. .
An exhaust passage E between the engine and the turbine 4 can communicate with an air supply passage I between the engine 1 and the compressor 3 through a bypass passage B. This bypass path is a part of the EGR device 7, and an EGR valve 8 that makes the cross-sectional area of the bypass path B variable is attached thereto. The EGR valve 8 has a diaphragm 802 integrated with a valve body 801, which is maintained in a balanced position with the pressure difference between an atmosphere open chamber 803 and a negative pressure chamber 804 and the elastic force of a return spring 805 in the valve closing direction. Ru. Note that the valve body 801 includes a position sensor 806 that can output a signal corresponding to the amount of lift from the valve closed position. The negative pressure chamber 804 can be communicated with the vacuum pump 10 or the atmosphere opening 901 via the solenoid valve 9 . This solenoid valve receives an output signal that changes the duty ratio from the microcomputer (hereinafter simply referred to as microcomputer) 11 side as a controller, and thereby changes the negative pressure value in the negative pressure chamber 804 in proportion to the increase in the duty ratio. It works to make it bigger. In other words, as the output signal increases, the valve body 801
The lift amount is increased, and the EGR amount is also increased.

フイルタ5の前側である排気路Eの上流側には
このフイルタの目詰りにより変化する排気路圧力
としての排圧Pを検出する圧力センサ12と、排
気温度を検出する温度センサ13とが取付けら
れ、これら両センサの出力信号はマイコン11に
入力される。
On the upstream side of the exhaust passage E, which is the front side of the filter 5, a pressure sensor 12 for detecting the exhaust pressure P as the exhaust passage pressure that changes due to clogging of the filter, and a temperature sensor 13 for detecting the exhaust temperature are installed. , the output signals of these two sensors are input to the microcomputer 11.

デイーゼルエンジン1には燃料噴射ポンプ14
が取付けられており、このポンプの噴射量調整用
のレバー15にはそのレバー開度θを出力するレ
バー開度センサ16が取付けられる。更に、この
ポンプにはエンジン回転速度に応じた数のパルス
を発するパルスゼネレータからなるエンジン回転
センサ17も取付けられる。これら両センサ1
6,17もマイコン11に出力信号を与えられ
る。
Fuel injection pump 14 for diesel engine 1
is attached to the lever 15 for adjusting the injection amount of the pump, and a lever opening sensor 16 is attached to the lever 15 for adjusting the injection amount. Furthermore, an engine rotation sensor 17 consisting of a pulse generator that emits a number of pulses depending on the engine rotation speed is also attached to this pump. Both these sensors 1
6 and 17 are also given output signals to the microcomputer 11.

更に、マイコン11には、この他に冷却水の水
温を検出する水温センサ18やアクセル開度セン
サ19からそれぞれ出力信号が与えられる。
Furthermore, the microcomputer 11 is also provided with output signals from a water temperature sensor 18 that detects the temperature of cooling water and an accelerator opening sensor 19, respectively.

上述のようなデイーゼルエンジン1において、
パテイキユレートの捕集量を測定するには、 () マイコン11がバイパス路Bの排ガスの
再循環量を制御する再循環量制御手段として機
能し、デイーゼルエンジンの運転域が次の少な
くとも1つの設定されたEGRカツト域にある
か否かを判断する。
In the diesel engine 1 as described above,
To measure the amount of particulate matter collected, () The microcomputer 11 functions as a recirculation amount control means for controlling the amount of recirculation of exhaust gas in the bypass path B, and the operating range of the diesel engine is set to at least one of the following. It is determined whether the EGR is in the EGR cut range.

イ 冷却水の水温が設定値(たとえば50℃)よ
り低いか否か。この場合、マイコンは水温セ
ンサ18より入力されている出力信号に基づ
き判断し、下回つているときはEGRカツト
域にあるとしソレノイドバルブ9への出力を
止め、戻しばね805により閉鎖位置に弁体
801を保ち、EGRガスを遮断する。
B. Is the cooling water temperature lower than the set value (for example, 50℃)? In this case, the microcomputer makes a judgment based on the output signal input from the water temperature sensor 18, and when the temperature is below the EGR cut range, the microcomputer stops the output to the solenoid valve 9, and returns the valve body to the closed position by the return spring 805. Keep 801 and shut off EGR gas.

ロ 減速運転域にあるか否かを判断する。この
場合、マイコン11はアクセル開度センサ1
9からの出力信号に基づき、減速運転域にあ
ると判断すると、イ)と同様にEGRガスを
遮断する。
(b) Determine whether or not the vehicle is in the deceleration operation range. In this case, the microcomputer 11 is the accelerator opening sensor 1.
Based on the output signal from 9, if it is determined that the deceleration operation range is reached, EGR gas is shut off in the same way as in a).

() 前段の判断結果がEGRカツト域にない
と判断した時は以後の測定をやめ次の測定行程
に備える。一方、EGRカツト域にあると判断
した場合、マイコン11は、レバー開度センサ
16とエンジン回転センサ17と圧力センサ1
2との各出力信号を基に第2図に示すような単
一捕集量マツプf1,f2,……fxの集合体で
あるパテイキユレート捕集量設定マツプよりパ
テイキユレート捕集量を測定する。
() When it is determined that the previous judgment result is not within the EGR cut range, the subsequent measurement is stopped and preparations are made for the next measurement process. On the other hand, if it is determined that the EGR is in the cut region, the microcomputer 11 controls the lever opening sensor 16, engine rotation sensor 17, and pressure sensor 1.
Based on the respective output signals of 2 and 2, the particulate collection amount is measured from a particulate collection amount setting map which is a collection of single collection amount maps f1, f2, . . . fx as shown in FIG.

なお、ここで用いる単一捕集量マツプf1,
f2,……fx(第2図参照)の集合体である捕
集量設定マツプは次のように予め作成される。
In addition, the single collection amount map f1 used here,
The collection amount setting map, which is a collection of f2, . . . fx (see Fig. 2), is created in advance as follows.

即ち、再循環路の流路断面積がEGRカツト
状態に保持され、その上で、各々異なる捕集量
の増減変化に応じて順次単一捕集量マツプf
1,f2,……fxが作成される。まず、一の単
一捕集量マツプf1の作成に当たつては、捕集
量(ここでは最小値)が一定の基で、エンジン
回転速度Neと燃料噴射ポンプのレバー開度θ
との変化に応じて圧損値(基準圧に対する現在
の排圧の圧力差)がどのように変化するか実測
し、その実測値に対応した設定圧損値Aを順次
求め、一つの単一捕集量マツプfxを作成する。
さらにその他の各々異なる捕集量での単一捕集
量マツプfxも、捕集量が一定の基で、エンジン
回転速度Neと燃料噴射ポンプのレバー開度θ
に応じた設定圧損値Aがどのように変化するか
順次実測し、各々異なる単一捕集量マツプfxを
作成する。
That is, the cross-sectional area of the recirculation path is maintained in the EGR cut state, and then the single collection amount map f is sequentially changed according to the increase/decrease in the collection amount.
1, f2, ...fx are created. First, in creating the single collection amount map f1, the collection amount (here, the minimum value) is constant, and the engine rotation speed Ne and the lever opening degree θ of the fuel injection pump are
We actually measure how the pressure drop value (pressure difference between the standard pressure and the current exhaust pressure) changes in accordance with the change in the Create a quantity map fx.
Furthermore, the single collection amount map fx for each of the other different collection amounts is based on the engine rotational speed Ne and the fuel injection pump lever opening θ, assuming that the collection amount is constant.
We sequentially measure how the set pressure drop value A changes depending on the change, and create a single collection amount map fx that is different from each other.

このように、ここでの単一捕集量マツプf
1,f2,……fxの集合体である捕集量設定マ
ツプはエンジン回転速度Neと燃料噴射ポンプ
のレバー開度θとに応じた設定圧損値Aをデイ
ーゼルパテイキユレートの捕集量Wによつて変
化する値として捕集量毎にそれぞれ設定した3
次元マツプと成つている。
In this way, the single collection amount map f
The collection amount setting map, which is a collection of 1, f2, ...fx, sets the set pressure drop value A according to the engine rotational speed Ne and the lever opening θ of the fuel injection pump to the collection amount W of diesel particulate. Therefore, 3 values were set for each collection amount as values that change.
It consists of a dimensional map.

このような捕集量設定マツプを記憶処理され
たマイコン11は、EGRカツト域において、
この後、排気路圧力変化量検出手段として機能
し、現在の排気路圧力変化量である圧損値を検
出する。更に、捕集量測定手段として機能し、
現在のエンジン回転速度Ne及び燃料噴射ポン
プのレバー開度θを検出し、次いで、現在のエ
ンジン回転速度Ne及び燃料噴射ポンプのレバ
ー開度θに応じた圧損値Aを各単一捕集量マツ
プf1,f2,……fxを用いてそれぞれに算出
し、更に、算出された各単一捕集量マツプ毎の
圧損値Aの中から現在検出されている圧損値と
同一の値を持つ単一捕集量マツプfxを選択し、
同マツプに対応した捕集量Wを現在の捕集量W
として測定する。
The microcomputer 11, which has been stored with such a collection amount setting map, performs the following operations in the EGR cut area:
Thereafter, it functions as an exhaust passage pressure change amount detecting means and detects a pressure loss value that is the current exhaust passage pressure change amount. Furthermore, it functions as a means for measuring the amount of collected
The current engine rotational speed Ne and the lever opening θ of the fuel injection pump are detected, and then the pressure drop value A corresponding to the current engine rotational speed Ne and the lever opening θ of the fuel injection pump is mapped to each single collection amount map. f1, f2, ... fx are calculated respectively, and from among the calculated pressure loss values A for each single collection amount map, a single one having the same value as the currently detected pressure loss value is selected. Select the collection amount map fx,
The collected amount W corresponding to the same map is the current collected amount W
Measure as.

以上の(),()の順序で行なわれる捕集量
測定の結果得られた捕集量Wを用い、この後、
EGRカツト域離脱以後のEGR量の補正を行なう。
この場合、噴射ポンプのレバー開度θとエンジン
回転速度Neに基づくリフト量hのマツプ(第3
図に一例を示した)より得られるリフト量h相当
の補正値αxを選択し、この補正値αxによりパテ
イキユレート捕集量の変動によるEGR量のずれ
を修正すべく補正済リフト量h×αxを算出し、
同値にEGRバルブを保持することになる。
Using the collected amount W obtained as a result of the collected amount measurement performed in the order of () and () above, after this,
Corrects the EGR amount after leaving the EGR cut area.
In this case, a map of the lift amount h (third
Select the correction value αx corresponding to the lift amount h obtained from Calculate,
Will hold the EGR valve at the same value.

更に、捕集量Wは図示しないフイルタ5のパテ
イキユレートを焼却する再燃焼装置の作動時期の
測定にも使用できる。
Furthermore, the collected amount W can also be used to measure the timing of activation of a reburning device for incinerating the particulate matter of the filter 5 (not shown).

上述の処において、前段()の行程では
EGRカツト域にあるか否かの判断を行なつてい
たが、これに代え、次の行程を行なつてもよい。
即ち捕集量の測定に入つた際、まず、 () EGRバルブ8を閉弁状態にセツトし強
制的にEGRカツトを行なう。
In the above, in the first step ()
Although a judgment was made as to whether or not it was in the EGR cut region, instead of this, the following process may be performed.
That is, when starting to measure the collected amount, first, () the EGR valve 8 is set to the closed state and EGR cut is forcibly performed.

() ()の処理により強制EGRカツト域
にある間に、マイコンは上述と同様に、第2図
のf1に示すようなマツプ上の該当点を求め、
その位置より更に圧損値Aの該当点を求める。
即ち、圧力センサ12の出力に基づく圧損値A
より、これと等しい値を持つfxマツプを選ぶ。
そして、fxマツプよりパテイキユレートの捕集
量Wを測定する。このように強制EGRカツト
域で捕集量を測定した後、この捕集量に基づく
補正値αxを用い、強制EGRカツト域離脱後の
EGR量の補正を行なうことができる。
() While in the forced EGR cut area due to the processing in (), the microcomputer finds the corresponding point on the map as shown at f1 in Figure 2 in the same way as described above.
From that position, the corresponding point of the pressure loss value A is further determined.
That is, the pressure loss value A based on the output of the pressure sensor 12
, select an fx map with a value equal to this.
Then, the amount W of particulate collected is measured from the fx map. After measuring the collected amount in the forced EGR cut area in this way, the correction value αx based on this collected amount is used to calculate the amount after leaving the forced EGR cut area.
EGR amount can be corrected.

次に、上述の各前段()行程ではEGRバル
ブ8が設定状態としての閉弁位置に保持され
EGRカツトを行なつていたが、これに代え、設
定状態を第4図に示すような2次元マツプにより
定まる状態に保持してもよい。即ち、 () 噴射ポンプのレバー開度θ−エンジン回
転速度Neにより定まるリフト量h1にEGRバル
ブ8をセツトする。この場合、マイコンは、ま
ず、エンジン回転センサ17およびレバー開度
センサ16よりの出力信号に基づきEGRバル
ブ8をリフト量h1に制御する。
Next, in each of the preceding stages () mentioned above, the EGR valve 8 is held in the closed position as the set state.
Although the EGR cut was performed, instead of this, the setting state may be maintained in a state determined by a two-dimensional map as shown in FIG. That is, () The EGR valve 8 is set to the lift amount h1 determined by the lever opening degree θ of the injection pump - the engine rotational speed Ne. In this case, the microcomputer first controls the EGR valve 8 to the lift amount h1 based on the output signals from the engine rotation sensor 17 and the lever opening sensor 16.

() ()の処理により、EGRバルブ8が
設定(θ−Neに基づく)状態に保持されてい
る間に、マイコンは上述と同様に、第5図に示
すようなg1マツプ上の該当点をレバー開度θ
とエンジン回転速度より求め、更に、その該当
点の3次元方向に向け増える圧損値A1と圧力
センサ12からの出力に基づく圧損値とが等し
くなるgxマツプを求めパテイキユレート捕集
量Wを測定する。この場合上述の2例と異なり
常時捕集量測定を行なえる。
() While the EGR valve 8 is maintained in the set state (based on θ-Ne) through the processing in (), the microcomputer calculates the corresponding point on the g1 map as shown in Figure 5 in the same way as described above. Lever opening degree θ
Further, a gx map is determined in which the pressure loss value A1 increasing in the three-dimensional direction at the corresponding point is equal to the pressure loss value based on the output from the pressure sensor 12, and the particulate collection amount W is determined. In this case, unlike the above two examples, the collected amount can be measured at all times.

このように、設定された基準EGR域で捕集
量Wを測定した後、コントローラはこの設定状
態を解除する。この後測定した捕集量に基づく
補正値βxを用い、レバー開度θ−エンジン回
転速度Neに基づくEGRバルブのリフト量hを
補正し、この補正値h(βx)にEGRバルブを保
持することができる。
After measuring the collection amount W in the set reference EGR range in this way, the controller cancels this setting state. After that, using the correction value βx based on the measured collection amount, correct the lift amount h of the EGR valve based on the lever opening degree θ−engine rotation speed Ne, and maintain the EGR valve at this correction value h(βx). I can do it.

なお、上述の処において、フイルタの排圧を
1つの圧力センサ12で検出していたが、基準
となる値を大気圧とし、これを別の圧力センサ
で測定して圧損値を算出してもよい。
In addition, in the above, the exhaust pressure of the filter was detected by one pressure sensor 12, but it is also possible to calculate the pressure loss value by setting the reference value to atmospheric pressure and measuring this with another pressure sensor. good.

上述のように、本発明方法では再循環路の流路
断面積がEGRカツト状態に保持されている間に、
パテイキユレートの捕集量を測定するため、
EGR装置側の切換え変動を無くして定常状態を
確保した上で捕集量の測定を行え、測定値に
EGR装置に起因する不適当な圧力変動が入るこ
とがなく、測定値は正確なものとなる。しかも、
この測定値を用い、測定時限を離脱した以後の
EGRバルブのリフト量補正を正確に行なうこと
ができる。更に、この測定値を用いフイルタ1の
再燃焼時期をも正確に測定できる。
As mentioned above, in the method of the present invention, while the cross-sectional area of the recirculation path is maintained in the EGR cut state,
To measure the amount of patyculate collected,
The captured amount can be measured after ensuring a steady state by eliminating switching fluctuations on the EGR device side, and the measured value
Measurements will be accurate without unwanted pressure fluctuations caused by the EGR device. Moreover,
Using this measurement value, after leaving the measurement time limit
EGR valve lift amount correction can be performed accurately. Furthermore, the reburning timing of the filter 1 can also be accurately measured using this measured value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用できるデイーゼルエ
ンジンの概略構成図、第2図および第5図は各々
異なる同上エンジンに用いているマイコン11に
入力されているレバー開度θとエンジン回転速度
Neおよび捕集量の3次元圧損マツプ、第3図お
よび第4図は各々異なる同上マイコン11に入力
されているレバー開度θとエンジン回転速度Ne
により定まるリフト量hマツプをそれぞれ示して
いる。 1……デイーゼルエンジン、5……フイルタ、
7……EGR装置、8……EGRバルブ、801…
…弁体、11……マイコン、12……圧力セン
サ、14……噴射ポンプ、16……レバー開度セ
ンサ、17……エンジン回転センサ、I……給気
路、E……排気路、A……圧損、W……捕集量、
h……リフト量。
Figure 1 is a schematic configuration diagram of a diesel engine to which the method of the present invention can be applied, and Figures 2 and 5 are the lever opening degree θ and engine rotational speed input to the microcomputer 11 used in different engines.
Three-dimensional pressure drop maps of Ne and collected amount, Figures 3 and 4 show the lever opening degree θ and engine rotational speed Ne input to different microcontrollers 11, respectively.
The lift amount h maps determined by the following are shown respectively. 1... Diesel engine, 5... Filter,
7...EGR device, 8...EGR valve, 801...
... Valve body, 11 ... Microcomputer, 12 ... Pressure sensor, 14 ... Injection pump, 16 ... Lever opening sensor, 17 ... Engine rotation sensor, I ... Air supply path, E ... Exhaust path, A ...Pressure drop, W...Collection amount,
h...Lift amount.

Claims (1)

【特許請求の範囲】 1 デイーゼルエンジンの排気路と給気路を結ぶ
再循環路の排ガスの再循環量を制御する再循環量
制御手段と、前記排気路のフイルタによるデイー
ゼルパテイキユレートの捕集量の変化による排気
路圧力変化量を検出する排気路圧力変化量検出手
段と、前記デイーゼルエンジンのエンジン回転速
度情報を出力するエンジン回転センサと、前記デ
イーゼルエンジンの燃料噴射ポンプのレバー開度
情報を出力するレバー開度センサと、前記エンジ
ン回転速度、前記レバー開度及び前記排気路圧力
変化量に基づき前記捕集量の測定をする捕集量測
定手段とを用い、 前記再循環路の流路断面積がカツト状態に保た
れた上で一の単一捕集量においてエンジン回転速
度及び燃料噴射ポンプのレバー開度が種々に変更
された場合に排気路圧力変化量がどうであるかを
あらかじめ実測して一の単一捕集量マツプを作成
し、同様に順次作成された各々異なる単一捕集量
毎の単一捕集量マツプを集合して捕集量設定マツ
プを作成し、その後、前記再循環量制御手段によ
り前記再循環路の流路断面積をカツト状態に制御
し、続いて前記排気路圧力変化量検出手段により
現在の排気路圧力変化量を検出し、更に、前記捕
集量測定手段により現在の回転速度及びレバー開
度を検出し、次いで、前記捕集量設定マツプ中か
ら現在の検出状況に合致する単一捕集量マツプを
マイコンを用いて選択し、この単一捕集量マツプ
に対応する単一捕集量を現在の捕集量として把握
することを特徴とするデイーゼルパテイキユレー
ト捕集量測定方法。
[Scope of Claims] 1. A recirculation amount control means for controlling the amount of recirculation of exhaust gas in a recirculation path connecting an exhaust path and an air supply path of a diesel engine, and collection of diesel particulate by a filter in the exhaust path. an exhaust passage pressure change amount detection means for detecting an amount of exhaust passage pressure change due to a change in exhaust passage pressure; an engine rotation sensor that outputs engine rotation speed information of the diesel engine; and an engine rotation sensor that outputs information on a lever opening of a fuel injection pump of the diesel engine. using a lever opening degree sensor that outputs an output, and a trapped amount measuring means that measures the trapped amount based on the engine rotation speed, the lever opening degree, and the amount of change in exhaust passage pressure; It was estimated in advance how the exhaust passage pressure would change when the engine rotational speed and fuel injection pump lever opening were varied in a single collection amount while the cross-sectional area was kept in a cut state. A single collection amount map is created by actual measurement, and a collection amount setting map is created by collecting the single collection amount maps for each different single collection amount that were similarly created sequentially. , the cross-sectional area of the recirculation passage is controlled to a cut state by the recirculation amount control means, the current exhaust passage pressure change amount is detected by the exhaust passage pressure change amount detection means, and the The current rotational speed and lever opening degree are detected by the collection amount measuring means, and then a single collection amount map that matches the current detection situation is selected from the collection amount setting map using a microcomputer, and this single collection amount map is selected from the collection amount setting map. A method for measuring the amount of diesel particulate collected, characterized in that a single collected amount corresponding to a single collected amount map is determined as the current collected amount.
JP58155794A 1983-08-26 1983-08-26 Measurement of particulate trap level for diesel engine Granted JPS6047936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155794A JPS6047936A (en) 1983-08-26 1983-08-26 Measurement of particulate trap level for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155794A JPS6047936A (en) 1983-08-26 1983-08-26 Measurement of particulate trap level for diesel engine

Publications (2)

Publication Number Publication Date
JPS6047936A JPS6047936A (en) 1985-03-15
JPH0554057B2 true JPH0554057B2 (en) 1993-08-11

Family

ID=15613575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155794A Granted JPS6047936A (en) 1983-08-26 1983-08-26 Measurement of particulate trap level for diesel engine

Country Status (1)

Country Link
JP (1) JPS6047936A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611816A (en) * 1984-06-15 1986-01-07 Toyota Motor Corp Particulate purifying apparatus for diesel engine
DE3942298A1 (en) * 1989-12-21 1991-06-27 Bosch Gmbh Robert DEVICE FOR DETERMINING THE SPEED AND ANOTHER OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE BY MEANS OF A SENSOR
DE10301035A1 (en) * 2003-01-13 2004-07-22 Hjs Fahrzeugtechnik Gmbh & Co. Method for regulating the control of a heating device for regenerating a particle filter that is switched on in the exhaust line of an internal combustion engine
DE10325183B4 (en) * 2003-06-04 2013-01-31 Robert Bosch Gmbh Method and device for carrying out a method for determining the loading state of a arranged in an exhaust region of an internal combustion engine component
JP4868908B2 (en) * 2006-03-28 2012-02-01 三菱ふそうトラック・バス株式会社 Control device for engine with selective reduction type NOx catalyst

Also Published As

Publication number Publication date
JPS6047936A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
US4433666A (en) Exhaust gas recirculation system for diesel engine
US5698780A (en) Method and apparatus for detecting a malfunction in an intake pressure sensor of an engine
EP1024272B1 (en) Control method for turbocharged diesel engines having exhaust gas recirculation
US4756155A (en) Exhaust particle removing system for an internal combustion engine
US6298299B1 (en) Control apparatus for internal combustion engine and estimation apparatus for estimating pressure in intake and discharge system of internal combustion engine
EP0081648B1 (en) Fail-safe system for automotive engine control system for fail-safe operation as crank angle sensor fails operation thereof and fail-safe method therefor, and detection of fault in crank angle sensor
US20030101723A1 (en) Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger
GB2148391A (en) Supercharging pressure control system for an internal combustion engine with a turbocharger
JP2964210B2 (en) Diagnostic device for in-cylinder pressure sensor
GB1568289A (en) Fuel feed system for an externally ignited internal combustion engine
JPS6047937A (en) Particulate trap level measuring apparatus for diesel engine
US5379587A (en) Apparatus for judging deterioration of catalyst of internal combustion engine
JPH08284764A (en) Failure diagnosis device for exhaust gas recirculation system
JPH0554057B2 (en)
JPS6229631B2 (en)
EP0240311A2 (en) Fuel-injection control system for an internal combustion engine
EP1536121B1 (en) Catalyst control apparatus for internal combustion engine and method for performing catalyst control
JPS62153523A (en) Supercharged pressure control device for engine with turbocharger
JP2582972B2 (en) Exhaust recirculation system for diesel engine
US5467593A (en) Method of electronic fuel injection feedback control
JPS632004B2 (en)
JPS62291414A (en) Exhaust emission control device for diesel engine
JPS6181568A (en) Method of controlling exhaust gas recirculation of internal-combustion engine
JPH0315619A (en) Failure diagnosing device for secondary air induction system for internal combustion engine
JPH06323200A (en) Exhaust gas recirculation control device for diesel engine