JPH0315619A - Failure diagnosing device for secondary air induction system for internal combustion engine - Google Patents
Failure diagnosing device for secondary air induction system for internal combustion engineInfo
- Publication number
- JPH0315619A JPH0315619A JP1148863A JP14886389A JPH0315619A JP H0315619 A JPH0315619 A JP H0315619A JP 1148863 A JP1148863 A JP 1148863A JP 14886389 A JP14886389 A JP 14886389A JP H0315619 A JPH0315619 A JP H0315619A
- Authority
- JP
- Japan
- Prior art keywords
- secondary air
- temperature
- induction
- catalyzer
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 6
- 230000006698 induction Effects 0.000 title abstract 11
- 230000005856 abnormality Effects 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 239000003054 catalyst Substances 0.000 claims description 34
- 238000003745 diagnosis Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 230000001939 inductive effect Effects 0.000 abstract 2
- 239000000446 fuel Substances 0.000 description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 20
- 239000001301 oxygen Substances 0.000 description 20
- 229910052760 oxygen Inorganic materials 0.000 description 20
- 239000007789 gas Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 235000014676 Phragmites communis Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/14—Systems for adding secondary air into exhaust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野)
本発明は内燃機関の二次空気導入装置が正常に機能して
いるかどうかを判定する故障診断装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a failure diagnosis device for determining whether a secondary air introduction device for an internal combustion engine is functioning normally.
(従来の技術〉
排気通路に排気中に含まれるCo,HCcr)#Ii化
とNoの還元とを同時に行う三元触媒を装着した内燃機
関では、混合気を触媒での排気浄化効率が最良となるよ
うな理論空燃比に維持するために、三元触媒の上流に設
置した酸素センサの出力に基づいて機関に供給される燃
料供給量をフィードバック制御している。(Conventional technology) In an internal combustion engine equipped with a three-way catalyst that simultaneously converts Co and HCcr contained in the exhaust gas into Ii and reduces No, the air-fuel mixture is converted into a catalyst with the best exhaust purification efficiency. In order to maintain the stoichiometric air-fuel ratio, the amount of fuel supplied to the engine is feedback-controlled based on the output of an oxygen sensor installed upstream of the three-way catalyst.
ところが、機関の運転条件によっては高出力性能を確保
する等のために、一時的に理論空燃比よりも濃い混合気
を供給することがあり、この場合には当然のことながら
三元触媒での排気浄1ヒ効率は低下してしまう。However, depending on engine operating conditions, a mixture richer than the stoichiometric air-fuel ratio may be temporarily supplied in order to ensure high output performance, and in this case, naturally, the three-way catalyst Exhaust purification efficiency will be reduced.
そこで酸素センサの上流の排気通路に二次空気を樽入す
る装置を設け、濃混合気を供給したときや、排気中のH
C,CHが増加するような運転時に、排気中に二次空気
を導入して三元触媒での反応を促進し、排気浄化効率を
高めるようにしたものがある。また、この場合、二次空
気を導入しながら酸素センサの出力に央づいて燃料供給
量をフィードバック制御することにより、機関に供給さ
れる混合気を理論空燃比よりも濃い値に制呻することも
可能になっている(特開昭61−247811号公報等
参照)。Therefore, we installed a device that injects secondary air into the exhaust passage upstream of the oxygen sensor.
Some systems are designed to increase exhaust purification efficiency by introducing secondary air into the exhaust gas to promote the reaction in the three-way catalyst during operation where C and CH levels increase. Additionally, in this case, by feedback controlling the fuel supply amount based on the output of the oxygen sensor while introducing secondary air, the air-fuel mixture supplied to the engine can be controlled to a value richer than the stoichiometric air-fuel ratio. (See Japanese Patent Laid-Open No. 61-247811, etc.).
ところか普通このような二次空気導入装置にあっては、
二次空気の導入が正しく行なわれているかどうかの自己
診断機能は持ち合わせていないため、二次空気導入装置
の異常等により排気浄化効率が悪化するような事態が発
生しても、これを判別するこができない。However, in a secondary air introduction device like this,
Since it does not have a self-diagnosis function to check whether the secondary air is being introduced correctly, even if a situation occurs where the exhaust purification efficiency deteriorates due to an abnormality in the secondary air introduction device, it can be determined. I can't row.
〈発明が解決しようとする課題〉
そこで本出願人により、特定の運転時等に二次空気を導
入したときと、導入を遮断したときでの酸素センサの出
力を比較し、較差が所定値よりも小さいときは異常が発
生していると判定するようにした装置が提案された。<Problem to be solved by the invention> Therefore, the applicant compared the output of the oxygen sensor when secondary air was introduced and when the introduction was shut off during a specific operation, etc., and determined that the difference was less than a predetermined value. A device has been proposed that determines that an abnormality has occurred when the value is small.
通常の酸素センサは排気中に酸素が存在するか否かで出
力が変化し、したがって混合気の理論空燃比を境にして
出力か急激に立ち上がる。The output of a normal oxygen sensor changes depending on whether or not there is oxygen in the exhaust gas, and therefore the output rises rapidly when the stoichiometric air-fuel ratio of the air-fuel mixture is reached.
排気中に二次空気を導入すれば酸素濃度が高まり、導入
を中止すれば酸素濃度は低下し、このため二次空気導入
時と停止時の酸素センサ出力を比較することにより、二
次空気の導入が正常に行なわれているかとうかの判定が
できるのである。If secondary air is introduced into the exhaust, the oxygen concentration will increase, and if the introduction is stopped, the oxygen concentration will decrease. Therefore, by comparing the oxygen sensor output when the secondary air is introduced and when it is stopped, the oxygen concentration of the secondary air can be determined. This allows you to determine whether the installation has been carried out normally.
ところがこの故障判別装置では、二次空気の導入が全く
行なわれない、あるいは大幅に減少したときなどは確実
に異常を判定できるが、二次空気導入通路の目詰まり等
により、正規の流量よりも例えば20%程度導入流量が
低下したときなどに、これを判定することは非常に難し
い。However, although this failure determination device can reliably determine an abnormality when the secondary air is not introduced at all or when it is significantly reduced, it is possible that the flow rate is lower than the normal flow rate due to clogging of the secondary air introduction passage. For example, it is very difficult to judge when the introduced flow rate has decreased by about 20%.
二次空気を導入する前の排気の空燃比にもよるが、導入
時に供給量が20%低下しても、埋論空燃比よりも希薄
になれば酸素センサの出力は大きく変化するため、正常
であると判定されるし、極端な場合60〜70?≦とい
うように大幅に低下しても、導入により空燃比が希薄に
なりさえすれば正常と判定されてしまうのである。It depends on the air-fuel ratio of the exhaust before introducing secondary air, but even if the supply amount decreases by 20% at the time of introduction, the output of the oxygen sensor will change significantly if it becomes leaner than the buried air-fuel ratio, so it is normal. It is determined that it is 60-70 in extreme cases. Even if the air-fuel ratio decreases significantly, such as ≦, it will be determined to be normal as long as the air-fuel ratio becomes lean due to introduction.
排気中に二次空気を樽入しながら酸素センサの出力に基
ついて燃料供給量をフィードバック制御し、濃混合気を
供給する場合には、二次空気の導入量が変化することに
よりフィードバック制御される混合気の空燃比が大幅に
変動するため、機関の出力性能や燃費の悪化が避けられ
ない。The amount of fuel supplied is feedback-controlled based on the output of the oxygen sensor while introducing secondary air into the exhaust gas. When supplying a rich mixture, feedback control is performed by changing the amount of secondary air introduced. As the air-fuel ratio of the air-fuel mixture changes significantly, deterioration in engine output performance and fuel efficiency is unavoidable.
また、当然のことながら二次空気の導入量が適正範囲か
らたとえわずかであっても変化すれば、それだけ触媒で
の排気浄化効率も低下するおそれがある。Furthermore, as a matter of course, if the amount of introduced secondary air changes even slightly from the appropriate range, there is a risk that the exhaust gas purification efficiency of the catalyst will decrease accordingly.
本発明は、二次空気導入量のわずかな変動時にも異常を
判定することが可能な故障診断装置を提供することを目
的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a failure diagnosis device capable of determining an abnormality even when the amount of secondary air introduced is slightly changed.
(課題を解決するための手段〉
そこて本発明は、第l図に示すように、排気通路2に触
媒装置3を設けると共に、触媒装置3の上流排気通路2
に二次空気を選択的に導入する装置1とを備えた内燃機
関において、前記触媒装置3の温度を検出する手段4と
、二次空気の導入時と非導入時の検出触媒温度に基づい
て前記二次空気導入装置1の異常を判定する故障判別手
段5とを備えた。(Means for Solving the Problems) Therefore, the present invention provides a catalyst device 3 in the exhaust passage 2, as shown in FIG.
An internal combustion engine comprising a device 1 for selectively introducing secondary air into the engine, a means 4 for detecting the temperature of the catalyst device 3, and a means 4 for detecting the temperature of the catalyst device 3, based on the detected catalyst temperature when the secondary air is introduced and when the secondary air is not introduced. and a failure determination means 5 for determining an abnormality in the secondary air introduction device 1.
(作用)
触媒では二次空気の導入により反応温度が高まり、この
温度上昇は二次空気導入量に比例する。(Function) In the catalyst, the reaction temperature increases by introducing secondary air, and this temperature increase is proportional to the amount of secondary air introduced.
したがって二次空気を導入していないときの温度と、導
入時の温度差を比較してみると、尋入量が多くなるほど
温度差は大きくなる。Therefore, when comparing the temperature when secondary air is not introduced and the temperature difference when it is introduced, the temperature difference becomes larger as the amount of air intake increases.
基準となる温度範囲を設定して、これと温度差とを比較
することで、基準値よりも大きければ、二次空気の導入
量は所定値よりも多く、正常であると判断され、これに
対して基準値よりも小さければ、二次空気の導入量が許
容範囲よりも少なく、一次空気樽入通路の目詰まり等に
よる異常が発生していると判断される。By setting a reference temperature range and comparing this with the temperature difference, if it is larger than the reference value, the amount of secondary air introduced is determined to be greater than the predetermined value and normal, and the On the other hand, if it is smaller than the reference value, it is determined that the amount of secondary air introduced is less than the allowable range and that an abnormality such as clogging of the primary air barrel entry passage has occurred.
(実胤例)
以下、本兆明の実施例を図面に基づいて説明する.
第2図は本発明の実施例を示す構成図で、10はエンジ
ン、11は吸気通路、12は排気通路である。(Actual Seed Example) Hereinafter, an example of the present Chomei will be explained based on the drawings. FIG. 2 is a configuration diagram showing an embodiment of the present invention, in which 10 is an engine, 11 is an intake passage, and 12 is an exhaust passage.
吸気通路11にはエンジンアイドリング時等に絞り弁1
3をバイパスして吸気をミタ<エアレギュレータ14等
が配設され、これらの下流側に機関回転に同期して燃料
を噴射供給する燃料噴射弁15が配置されている。A throttle valve 1 is installed in the intake passage 11 during engine idling.
An air regulator 14 and the like are disposed to bypass the engine 3 and limit intake air, and a fuel injection valve 15 is disposed downstream of these for injecting and supplying fuel in synchronization with engine rotation.
排気通路12には排気中の酸素濃度を検出する酸素セン
サ16と、その下流側に排気中のCoHCを酸化すると
共にNOを還元する三元触媒17が設置される。そして
三元触媒17には後述するように、二次空気導入装置の
故障を判断する情報を取り出すため、三元触媒17の入
口と触媒床の温度を検出する温度センサ4lと42が設
けられる.なお、18はマフラである。An oxygen sensor 16 that detects the oxygen concentration in the exhaust gas is installed in the exhaust passage 12, and a three-way catalyst 17 that oxidizes CoHC in the exhaust gas and reduces NO is installed downstream thereof. As will be described later, the three-way catalyst 17 is provided with temperature sensors 4l and 42 for detecting the temperature of the inlet of the three-way catalyst 17 and the catalyst bed in order to extract information for determining failure of the secondary air introduction device. Note that 18 is a muffler.
前記酸素センサ16の上流には二次空気導入通路19が
開口している。二次空気導入通路19は、上流側が吸気
通路11のエアクリーナ20に接続され、途中に排気通
路12内の排気圧力脈動に応動して開くリードバルブ2
1と、導入通路19を開閉するダイヤフラム型の制御弁
22が介装される.
制御弁22は、負圧室23が電磁弁(三方電磁弁)24
を介して絞り弁13の下流の吸気通路llに接続され、
負圧室23にエンジンの吸入負圧が導入されると弁体2
5が導入通路19を開く一方、吸入負圧が遮断され負圧
室23が大気に解放されると弁体25か導入通路■9を
閉じる。A secondary air introduction passage 19 is opened upstream of the oxygen sensor 16 . The secondary air introduction passage 19 is connected to the air cleaner 20 of the intake passage 11 on the upstream side, and has a reed valve 2 in the middle that opens in response to exhaust pressure pulsations in the exhaust passage 12.
1 and a diaphragm-type control valve 22 that opens and closes the introduction passage 19. The control valve 22 has a negative pressure chamber 23 and a solenoid valve (three-way solenoid valve) 24.
connected to the intake passage ll downstream of the throttle valve 13 via
When engine suction negative pressure is introduced into the negative pressure chamber 23, the valve body 2
5 opens the introduction passage 19, while when the suction negative pressure is cut off and the negative pressure chamber 23 is released to the atmosphere, the valve body 25 closes the introduction passage 9.
制御弁22に対する作動負圧の供給を制御する電磁弁2
4は、制御回路26からのON.OFF信号により開閉
され、開時に制御弁22の負圧室23に吸入負圧を導入
し、閉時に負圧室23を大気に解放する。Solenoid valve 2 that controls the supply of operating negative pressure to the control valve 22
4 is ON.4 from the control circuit 26. It is opened and closed by an OFF signal, and when opened, introduces suction negative pressure into the negative pressure chamber 23 of the control valve 22, and when closed, releases the negative pressure chamber 23 to the atmosphere.
27はエンジン■0の吸入空気量を検出するエアフロー
センサ、28は絞り弁開度センサ、29は冷却水温を検
出する水温センサ、30はエンジン10の回転数を検出
するクランク角センサ、31は車速センサでこれらの各
検出信号は酸素センサl6の検出信号とともに制御回路
26に送られる2
制御回路26は各検出信号に基ついて部分負荷時等の所
定の運転時に、前記電磁弁24にON信号(開信号〉を
送り、制御弁22を開いて二次空気樽入通路l9から二
次空気を排気通路■2に4人するように制御する一方、
低負荷や高負荷時等には電磁弁24にOFF信号(閉信
号)を送り、制御弁22を閉じるように制御する。27 is an air flow sensor that detects the intake air amount of the engine 0, 28 is a throttle valve opening sensor, 29 is a water temperature sensor that detects the cooling water temperature, 30 is a crank angle sensor that detects the rotation speed of the engine 10, and 31 is the vehicle speed. These detection signals from the sensor are sent to the control circuit 26 together with the detection signal from the oxygen sensor l6.2 The control circuit 26 sends an ON signal ( Open signal〉 is sent, the control valve 22 is opened, and the secondary air is controlled to flow from the secondary air barrel entry passage 19 to the exhaust passage 2, while
When the load is low or high, an OFF signal (close signal) is sent to the solenoid valve 24 to control the control valve 22 to close.
また、制御回路26は各検出信号に基づいて燃料噴射弁
15の燃料噴射量を制御すると共に、酸素センサ16の
検出信号に応じて、供給混合気が運転条件に対応した所
定の空燃比となるようにフイードバッグ制御する.
一方、前記電磁弁24および制御弁22等の故障を診断
するためのスイッチ32が設けられ、このスイッチ32
がONされると、制御回路26は前記電磁弁24を所定
時間づつ開閉しながら、このときの前記触媒の温度セン
サ41と42の検出信号に基づいて、二次空気樽入時と
導入停止時の触媒温度の変化値から二次空気の導入装置
に異常が生じているかどうかを判断するようになってい
る.
二次空気を導入することにより触媒反応が促進され、触
媒温度が上昇するが、この温度上昇は樽入される二次空
気量にほぼ比例する。したがって二次空気を導入しない
ときと、導入したときとの温度変化を比較することによ
り、二次空気の樽入量が必要な設定範囲よりも多いか少
ないか、すなわち、正常に二次空気が導入されているか
否かを判断することができるのである。Further, the control circuit 26 controls the fuel injection amount of the fuel injection valve 15 based on each detection signal, and also adjusts the supplied air-fuel mixture to a predetermined air-fuel ratio corresponding to the operating conditions according to the detection signal of the oxygen sensor 16. Control the feedback bag as follows. On the other hand, a switch 32 is provided for diagnosing failures in the electromagnetic valve 24, control valve 22, etc.
When turned on, the control circuit 26 opens and closes the solenoid valve 24 for a predetermined period of time, and determines when the secondary air barrel enters and when the introduction is stopped based on the detection signals of the catalyst temperature sensors 41 and 42 at this time. It is determined whether there is an abnormality in the secondary air introduction device based on the change in catalyst temperature. By introducing secondary air, the catalytic reaction is promoted and the catalyst temperature increases, and this temperature increase is approximately proportional to the amount of secondary air introduced into the barrel. Therefore, by comparing the temperature change when secondary air is not introduced and when it is introduced, it is possible to determine whether the amount of secondary air in the barrel is greater or less than the required setting range. This allows you to determine whether it has been installed or not.
第3図に、触媒床の温度変化に基づいて二次空気導入装
置の故障判断を行うための制御回路26における制御動
作の一例を示す。FIG. 3 shows an example of the control operation in the control circuit 26 for determining failure of the secondary air introduction device based on temperature changes in the catalyst bed.
故障判断のために、まずスイッチ32をONL、電磁弁
24のOFFの運転条件時くステップ102)を選択し
、スイッチ32がONの状態になっていることを検知す
る(ステップ103)。本制御において、この場合には
、酸素センサの検出信号による、空燃化フィードハック
制御は停止される(図示せず)。このときに電磁弁24
に所定時間だけON信号を送って二次空気を導入し(ス
テップ104)、次いで電磁弁24にOFF信号を所定
時間送ってこの間の導入を停止する〈ステップ106〉
.
そして、このON信号出力時とOFF信号出力時の触媒
床の温度を、温度センサ42によってそれぞれ測定しく
ステノプ104〜l07)、これら二次空気導入時の出
力(Ton)と、遮断時の出力(Toff)の差を求め
る(ステップ108)。In order to determine the failure, first, step 102) is selected under the operating conditions that the switch 32 is ON and the solenoid valve 24 is OFF, and it is detected that the switch 32 is in the ON state (Step 103). In this case, in this case, the air-fuel feedhack control based on the detection signal of the oxygen sensor is stopped (not shown). At this time, the solenoid valve 24
An ON signal is sent to the solenoid valve 24 for a predetermined time to introduce secondary air (step 104), and an OFF signal is then sent to the solenoid valve 24 for a predetermined time to stop the introduction during this time (step 106).
.. Then, the temperature of the catalyst bed when the ON signal is output and when the OFF signal is output is measured by the temperature sensor 42 respectively. Toff) is determined (step 108).
ステップ109でこの温度差(T on − T of
f )を所定値と比較し、所定値よりも温度差が小さ
けれは電磁弁24、制御弁22あるいは二次空気導入通
路19等に異常か生じたと判定すると共に、第2図の故
障表示ランプ33を点灯する〈ステップ110)。In step 109, this temperature difference (T on - T of
f) with a predetermined value, and if the temperature difference is smaller than the predetermined value, it is determined that an abnormality has occurred in the solenoid valve 24, control valve 22, secondary air introduction passage 19, etc., and the failure indicator lamp 33 in FIG. is turned on (step 110).
なお、温度差か所定値よりも大きいときは、正常に二次
空気が導入されていると判断される.なお、この故障診
断は、手動によりスイッチ32をONすることで行われ
るが、この場合スイッチ32とは別に制御回路26によ
り所定の運転時に適時自動的に行なうようにしても良い
.次に全体的な作用を含めてさらに詳しく説明する。Note that if the temperature difference is greater than a predetermined value, it is determined that secondary air is being introduced normally. Note that this fault diagnosis is performed by manually turning on the switch 32, but in this case, it may be automatically performed at appropriate times during a predetermined operation using the control circuit 26 in addition to the switch 32. Next, a more detailed explanation including the overall effect will be given.
電磁弁24や制御弁22が正常に作動しているときには
、運転条件に応じて制御回路26から電磁弁24に送ら
れる信号により、二次空気導入通路19から排気通路1
2への二次空気の導入が適切に制御される.
このため、濃混合気を供給したり、CO,HCが増加す
る運転時には、二次空気の導入により三元触媒l7での
反応が促進され、良好な排気組成が確保される。When the solenoid valve 24 and the control valve 22 are operating normally, a signal sent from the control circuit 26 to the solenoid valve 24 depending on the operating conditions causes the secondary air introduction passage 19 to be closed to the exhaust passage 1.
The introduction of secondary air into 2 is appropriately controlled. Therefore, during operation when a rich mixture is supplied or CO and HC increase, the reaction at the three-way catalyst 17 is promoted by the introduction of secondary air, and a good exhaust gas composition is ensured.
そして、電磁弁24や制御弁22等の二次空気導入装置
が正常に作動しているかどうかは、スイッチ32のON
により制御回路26から電磁弁24に所定時間ON信号
とOFF信号が送られ、この二次空気導入時と非導入時
の温度センサ42の出力の差から判定される.
温度センサ42の出力差が所定値よりも大きいときには
電磁弁24、制御弁22、リードバルブ21等は正常に
作動していると判定されるが、出力の差が所定直よりも
小さいときには、制御弁22が作動せず二次空気の導入
側に切換らないかまたは二次空気導入通路19の目詰ま
り等が発生し、一次空気の樽入が行なわれないまたは設
定値よりも少ないと判断され、故障表示ランプ33が点
灯される。Whether the secondary air introduction devices such as the solenoid valve 24 and the control valve 22 are operating normally can be determined by turning on the switch 32.
An ON signal and an OFF signal are sent from the control circuit 26 to the solenoid valve 24 for a predetermined period of time, and the determination is made from the difference in the output of the temperature sensor 42 when secondary air is introduced and when it is not introduced. When the output difference of the temperature sensor 42 is larger than a predetermined value, it is determined that the solenoid valve 24, control valve 22, reed valve 21, etc. are operating normally, but when the output difference is smaller than a predetermined value, the control valve 24, control valve 22, reed valve 21, etc. Either the valve 22 does not operate and does not switch to the secondary air introduction side, or the secondary air introduction passage 19 is clogged, and the primary air is not fed into the barrel or it is determined that the amount is less than the set value. , the failure indicator lamp 33 is lit.
前にも述べたように、触媒における温度変1ヒは二次空
気の導入量にほぼ比例し、わずかな導入量の変動に対し
ても触媒温度が上下する.したがって、二次空気の導入
量が正規の状態(100%)よりも例えば2 Q %だ
け減少したようなときでも、その分だけ非導入時に比較
しての温度差か少なくなるため、二次空気が全く導入さ
れないときばかりでなく、通路目詰まり等に起因しての
導入量のわずかな減少でも、適切に判断することが可能
となるのである.
このようにして、二次空気導入系にわずがでも異常か発
生したときは、故障表示ランプ33の点灯によりこれを
知ることができ、したがって排気組成が悪化したまま運
転を続けたり、あるいは、二次空気を樽入しながら酸素
センサ16の出力に基づいて空燃比をフィードバック制
御しているときの、実質的な燃料供給量(空燃比)の目
標値からのずれを防ぐことができる。As mentioned before, the temperature change in the catalyst is approximately proportional to the amount of secondary air introduced, and even a small change in the amount of introduced air causes the catalyst temperature to rise or fall. Therefore, even if the amount of secondary air introduced is reduced by, for example, 2Q% from the normal state (100%), the temperature difference will be smaller by that amount compared to when no introduction is made, so the amount of secondary air This makes it possible to make appropriate judgments not only when no gas is introduced at all, but also when there is a slight decrease in the amount introduced due to passage clogging, etc. In this way, if even the slightest abnormality occurs in the secondary air introduction system, this can be known by the illumination of the failure indicator lamp 33, and the operation can therefore be continued with the exhaust composition deteriorated, or When the air-fuel ratio is feedback-controlled based on the output of the oxygen sensor 16 while introducing secondary air into the barrel, deviation of the actual fuel supply amount (air-fuel ratio) from the target value can be prevented.
第4図の実施例は、三元触媒17の触媒床温度に加えて
入口温度を判定要素とすることにより、故障判定精度に
対する判断時の排気温度や外気温度の影響を少なくした
ものである。The embodiment shown in FIG. 4 uses the inlet temperature in addition to the catalyst bed temperature of the three-way catalyst 17 as a determining factor, thereby reducing the influence of exhaust gas temperature and outside air temperature on failure determination accuracy at the time of determination.
この実施例では、ステップ105゜と107゜で二次空
気樽入時と非導入時の触媒入口温度TlonとTlof
fを検出し、それぞれそのときの触媒温度TLlonと
TBoffとの差を求め、さらにこれらの温度差を所定
値と比較するようにしてあり(ステン7108′、1
0 9’)、そして温度差か所定値よりも小さいときは
、前記と同様にして故障であると判断される。In this example, in steps 105° and 107°, the catalyst inlet temperatures Tlon and Tlof are measured when the secondary air barrel is introduced and when it is not introduced.
f is detected, the difference between the catalyst temperatures TLlon and TBoff at that time is determined, and these temperature differences are compared with a predetermined value (Sten 7108', 1
0 9'), and when the temperature difference is smaller than a predetermined value, it is determined that there is a failure in the same manner as above.
同一量の二次空気が三元触媒17に流入しても、その運
転時の排気温度によって反応後の温度に差がでるし、ま
た、導入される二次空気の温度く外気温度に近似)によ
っても温度差ができる.一般的には反応前の排気温度や
二次空気温度が低ければ反応後の温度上昇も低くなるが
、このように予め二次空気導入時と非導入時の入口温度
を検出してこれを差し引いておけば、これらの影響を除
去することができ、より一層精度よく二次空気の導入量
を判定することができるのである。Even if the same amount of secondary air flows into the three-way catalyst 17, the temperature after the reaction will differ depending on the exhaust temperature during operation, and the temperature of the introduced secondary air is similar to the outside temperature) Temperature differences can also be caused by Generally, if the exhaust temperature and secondary air temperature before the reaction are low, the temperature rise after the reaction will be low, but in this way, the inlet temperature is detected in advance when secondary air is introduced and when it is not introduced, and this is subtracted. By doing so, these effects can be removed and the amount of secondary air introduced can be determined with even greater precision.
(発明の効果)
以上のように本発明によれは、二次空気の導入量にほぼ
比例して温度変化する触媒の温度を検出しながら二次空
気の導入量を判断するため、二次空気導入装置の故障時
はもとより通路の目詰まり等による導入量の減少時など
でも、正確に異常を判定することができ、触媒装置にお
ける排気浄化効率の悪化を未然に防止すること等が可能
となる。(Effects of the Invention) As described above, according to the present invention, the amount of secondary air introduced is determined while detecting the temperature of the catalyst, which changes in temperature almost in proportion to the amount of introduced secondary air. Abnormalities can be accurately determined not only when the introduction device fails, but also when the amount introduced decreases due to clogging of the passage, etc., making it possible to prevent deterioration of exhaust purification efficiency in the catalyst device. .
第1図は本発明のクレーム対応図、第2図は本発明の実
施例を示す構成図、第3図、第4図は同じくそのそれぞ
れ異る実施例の制御動作を示すフローチャートである。
12・・・排気通路、16・・・酸素センサ、19・・
二次空気導入通路、22・・・開閉弁、24・・・電磁
弁、26・・・制御回路、32・・・スイッチ、33・
・・故障表示ランプ、41.42温度センサ.
エンシンFIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are flowcharts showing control operations of the different embodiments. 12...Exhaust passage, 16...Oxygen sensor, 19...
Secondary air introduction passage, 22... Opening/closing valve, 24... Solenoid valve, 26... Control circuit, 32... Switch, 33...
・・Failure indicator lamp, 41.42 temperature sensor. Enshin
Claims (1)
気通路に二次空気を選択的に導入する装置とを備えた内
燃機関において、前記触媒装置の温度を検出する手段と
、二次空気の導入時と非導入時の検出触媒温度に基づい
て前記二次空気導入装置の異常を判定する故障判別手段
とを備えたことを特徴とする内燃機関二次空気導入系の
故障診断装置。An internal combustion engine equipped with a catalyst device in an exhaust passage and a device for selectively introducing secondary air into the exhaust passage upstream of the catalyst device, comprising means for detecting the temperature of the catalyst device and introducing secondary air. 1. A failure diagnosis device for a secondary air introduction system of an internal combustion engine, comprising a failure determining means for determining an abnormality of the secondary air introduction device based on the detected catalyst temperature when the air is introduced and when the secondary air introduction device is not introduced.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148863A JPH0315619A (en) | 1989-06-12 | 1989-06-12 | Failure diagnosing device for secondary air induction system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1148863A JPH0315619A (en) | 1989-06-12 | 1989-06-12 | Failure diagnosing device for secondary air induction system for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0315619A true JPH0315619A (en) | 1991-01-24 |
Family
ID=15462422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1148863A Pending JPH0315619A (en) | 1989-06-12 | 1989-06-12 | Failure diagnosing device for secondary air induction system for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0315619A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020340A2 (en) * | 1992-04-03 | 1993-10-14 | Robert Bosch Gmbh | Methods and device for assessing the operatability of a catalytic converter |
ES2062922A2 (en) * | 1992-10-30 | 1994-12-16 | Olmo Antonio Lujan | Automobile exhaust catalytic converter test procedure and its apparatus |
WO2001049989A1 (en) * | 1999-12-31 | 2001-07-12 | Robert Bosch Gmbh | Method for operating an internal combustion engine, especially of a motor vehicle |
WO2006024950A1 (en) * | 2004-08-30 | 2006-03-09 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for internal combustion engine provided with secondary air supply |
DE102022112605A1 (en) | 2022-05-19 | 2023-11-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for determining a malfunction of a line for guiding a carrier mass flow |
-
1989
- 1989-06-12 JP JP1148863A patent/JPH0315619A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993020340A2 (en) * | 1992-04-03 | 1993-10-14 | Robert Bosch Gmbh | Methods and device for assessing the operatability of a catalytic converter |
WO1993020340A3 (en) * | 1992-04-03 | 1994-01-06 | Bosch Gmbh Robert | Methods and device for assessing the operatability of a catalytic converter |
US5675967A (en) * | 1992-04-03 | 1997-10-14 | Robert Bosch Gmbh | Method and arrangement for evaluating the operability of a catalytic converter |
ES2062922A2 (en) * | 1992-10-30 | 1994-12-16 | Olmo Antonio Lujan | Automobile exhaust catalytic converter test procedure and its apparatus |
WO2001049989A1 (en) * | 1999-12-31 | 2001-07-12 | Robert Bosch Gmbh | Method for operating an internal combustion engine, especially of a motor vehicle |
WO2006024950A1 (en) * | 2004-08-30 | 2006-03-09 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for internal combustion engine provided with secondary air supply |
US7637097B2 (en) | 2004-08-30 | 2009-12-29 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for internal combustion engine provided with secondary air supply |
DE102022112605A1 (en) | 2022-05-19 | 2023-11-23 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for determining a malfunction of a line for guiding a carrier mass flow |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8341937B2 (en) | Diagnostic apparatus for an exhaust gas purification system of an internal combustion engine, an exhaust gas purification system and a diagnostic method thereof | |
JP2926917B2 (en) | Vehicle abnormality diagnosis device | |
JP2819836B2 (en) | Self-diagnosis device for internal combustion engine | |
US6918245B2 (en) | Secondary air feeding apparatus and method of detecting abnormality in the apparatus | |
US7421333B2 (en) | Monitoring system for internal combustion engine | |
US20030115854A1 (en) | Exhaust gas purifier for internal combustion engines | |
US5767395A (en) | Function diagnosis apparatus for evaporative emission control system | |
JPS6030450Y2 (en) | Exhaust pipe of engine with cylinder number control | |
US5337725A (en) | Self-diagnostic apparatus for exhaust gas recirculating apparatus | |
US5325663A (en) | Diagnostic system for a secondary air supplier in an engine | |
CN100554656C (en) | Exhaust gas purification system for internal combustion engine diagnostic device, emission control system and diagnostic method | |
JPH08246856A (en) | Secondary air supply device for internal combustion engine | |
JPH0315619A (en) | Failure diagnosing device for secondary air induction system for internal combustion engine | |
JP4122825B2 (en) | Secondary air supply system | |
JP3038865B2 (en) | Exhaust gas recirculation device failure diagnosis device | |
JP2505522B2 (en) | Secondary air introduction device for internal combustion engine | |
JPH09324683A (en) | Trouble diagnosis device of nox concentration estimation device and exhaust gas recirculation device for internal combustion engine | |
JPS63143362A (en) | Anomaly detecting device for introduction of secondary air | |
JPH03115767A (en) | Failure diagnosis device for exhaust gas recirculation device for engine | |
JPH0868362A (en) | Trouble diagnostic device for exhaust gas reflux device for internal combustion engine | |
KR100337525B1 (en) | Secondary air valve error diagnosis system for secondary air inlet device | |
JP2504021B2 (en) | Fuel supply control method for internal combustion engine equipped with mechanical supercharger | |
JPH07189831A (en) | Diagnosing device for fuel evaporative gas suppressing device | |
JPH0942027A (en) | Secondary air supplier of internal combustion engine | |
JPS6390642A (en) | Trouble diagnostic device for air-fuel ratio control device |