JPH0342815A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH0342815A
JPH0342815A JP1178709A JP17870989A JPH0342815A JP H0342815 A JPH0342815 A JP H0342815A JP 1178709 A JP1178709 A JP 1178709A JP 17870989 A JP17870989 A JP 17870989A JP H0342815 A JPH0342815 A JP H0342815A
Authority
JP
Japan
Prior art keywords
exposure
wafer
temperature
peripheral exposure
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1178709A
Other languages
Japanese (ja)
Inventor
Ichiro Arimoto
一郎 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1178709A priority Critical patent/JPH0342815A/en
Publication of JPH0342815A publication Critical patent/JPH0342815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To achieve periphery exposure without generating dust by providing a heating treatment process for heating a wafer between a mask pattern exposure process and a periphery exposure process. CONSTITUTION:By performing PEB(Post Exposure Bake) 6 before a periphery exposure 5, heating treatment processes to be performed before periphery exposure are two processes of a prebake 3 and the PEB and the maximum temperature before periphery exposure is not the pre-bake temperature but the PEB temperature. Namely, the maximum temperature before periphery exposure was 100 deg.C (pre-bake temperature) before but is now 120 deg.C (PEB temperature), thus reducing the generation of expansion letgo on periphery exposure to 1/10 or less and improving the yield in the production process of a semiconductor integrated circuit. without changing the order of the periphery exposure and PEB in conventional process and a new heating treatment process may be provided between an exposure 4 and the periphery exposure 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路の製造方法に関し、特に半
導体集積回路の写真製版工程に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor integrated circuit, and particularly to a photolithography process for semiconductor integrated circuits.

〔従来の技術〕[Conventional technology]

第4図は半導体集積回路の写真製版工程におけるレジス
トパターン形成の従来の処理手順を示すフローチャート
である。ウェーハにポジ型フォトレジストを塗布する前
にベーキングを行い(ステップ1)、次にスピンコード
を用いウェーハにポジ型フォトレジストを塗布しくステ
ップ2)、その後、ポジ型フォトレジスト膜中の残留溶
剤の蒸発およびフォトレジスト膜とウェーハとの密着性
強化のためにプリベークを行う(ステップ3)。
FIG. 4 is a flowchart showing a conventional process procedure for forming a resist pattern in a photolithography process for semiconductor integrated circuits. Before applying positive photoresist to the wafer, baking is performed (step 1), then applying positive photoresist to the wafer using a spin cord (step 2), and then removing residual solvent in the positive photoresist film. Prebaking is performed for evaporation and for strengthening the adhesion between the photoresist film and the wafer (step 3).

次にマスク合わせをし、露光する(ステップ4)。Next, masks are aligned and exposed (step 4).

露光に際しては、例えば商品番号N5R1505G3A
のステッパーを用いる。このステッパーの特性を表1に
示す。ステップ4の露光後、周辺露光を行う(ステップ
5)。ここで周辺露光とは、ウェーハに塗布されたポジ
型フォトレジストのうちウェーハの周辺部分のものを現
像前に露光し感光させることにより現像液に溶けるよう
にすることである。周辺露光に際しては、例えば東京エ
レクトロン社製の周辺露光装置を用いる。この周辺露光
装置の特性を表1に示す。
For exposure, use product number N5R1505G3A, for example.
Use a stepper. Table 1 shows the characteristics of this stepper. After the exposure in step 4, peripheral exposure is performed (step 5). Here, the peripheral exposure refers to exposing the peripheral portion of the wafer of the positive photoresist coated on the wafer to light before development so that it can be dissolved in the developer. For peripheral exposure, for example, a peripheral exposure device manufactured by Tokyo Electron is used. Table 1 shows the characteristics of this peripheral exposure device.

表 1 次に、ポジ型フォトレジスト膜中の感光剤を熱拡散によ
りポジ型フォトレジスト中に均一に再分布させるための
ポストエクスポージャベーク(以下FEBと略す)を行
った後(ステップ6)現像し、所望の回路パターンのレ
ジストを得るとともにウェーハ周辺のポジ型フォトレジ
ストを除去する(ステップ7)。その後、ポジ型フォト
レジスト膜中又は表面に残留した現像液、リンス液を蒸
発除去し、ポジ型フォトレジスト膜の硬化、ウェーハと
の密着性強化を行うためにボストベークを行い(ステッ
プ8)、写真製版工程におけるレジストパターン形成は
終了する。
Table 1 Next, post-exposure baking (hereinafter abbreviated as FEB) is performed to uniformly redistribute the photosensitizer in the positive photoresist film into the positive photoresist by thermal diffusion (step 6), followed by development. Then, a resist with a desired circuit pattern is obtained, and the positive photoresist around the wafer is removed (step 7). After that, the developer and rinse solution remaining in or on the positive photoresist film are removed by evaporation, and a boost bake is performed to harden the positive photoresist film and strengthen its adhesion to the wafer (step 8). The resist pattern formation in the plate making process is completed.

以上が半導体集積回路の写真製版工程における従来のレ
ジストパターン形成の処理フローである。
The above is the conventional process flow for forming a resist pattern in a photolithography process for semiconductor integrated circuits.

この工程中周辺露光の役割について第5図および第6図
を用いて説明する。レジストパターン形成が終了すると
、ウェーハはウェーハカセットに収納される。第5図は
周辺露光を行わなかったときの現像(ステップ7)後の
ウェーハとウェーハカセットの位置関係を示す図、第6
図は周辺露光を行ったときの現像後のウェーハとウェー
ハカセットの位置関係を示す図である。周辺露光を行わ
なかった場合、第5図に示すように、基板10上のポジ
型フォトレジスト11とウェーハカセット12が接触し
ており、ポジ型フォトレジスト11が剥離し発塵するこ
とがある。一方、周辺露光を行った場合には第6図に示
すようにポジ型フォトレジスト11とウェーハカセット
12は接触しない。
The role of peripheral exposure during this process will be explained using FIGS. 5 and 6. When resist pattern formation is completed, the wafer is stored in a wafer cassette. Figure 5 is a diagram showing the positional relationship between the wafer and the wafer cassette after development (step 7) when peripheral exposure is not performed;
The figure shows the positional relationship between the developed wafer and the wafer cassette when peripheral exposure is performed. If peripheral exposure is not performed, as shown in FIG. 5, the positive photoresist 11 on the substrate 10 and the wafer cassette 12 are in contact with each other, and the positive photoresist 11 may peel off and generate dust. On the other hand, when peripheral exposure is performed, the positive photoresist 11 and the wafer cassette 12 do not come into contact as shown in FIG.

従って、ポジ型フォトレジスト11が剥離せず発塵する
ことはない。このように周辺露光を行うことにより発塵
の原因となるウェーハ周辺のポジ型フォトレジスト11
とウェーハカセット12との接触を防止することにより
、ウェーハ製造工程における歩留りを向上させることが
できる。
Therefore, the positive photoresist 11 does not peel off and no dust is generated. The positive photoresist 11 around the wafer, which causes dust by performing peripheral exposure in this way,
By preventing contact between the wafer cassette 12 and the wafer cassette 12, the yield in the wafer manufacturing process can be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

とろこで、基板1上に塗布したポジ型フォトレジスト1
1をg線(波長436 na)で露光すると、ポジ型フ
ォトレジスト11中に含まれる感光剤がg線により分解
され第7図に示すようにポジ型フォトレジスト11内に
窒素N2が発生する。発生する窒素N2の量は光の照射
量および感光剤の量に比例する。従って、光の照射量が
多いかあるいはポジ型フォトレジスト中に含まれる感光
剤の量が多いと単位時間当りに発生する窒素N2’lk
が多くなる。そして、ポジ型フォトレジスト11から空
気中に抜ける窒素N2の量よりも発生する量が多いと、
第8図に示すように窒素N2は基板1とポジ型フォトレ
ジスト11との界面に回り込む。
Positive photoresist 1 coated on substrate 1
1 is exposed to the G-line (wavelength: 436 na), the photosensitive agent contained in the positive-type photoresist 11 is decomposed by the G-line, and nitrogen N2 is generated in the positive-type photoresist 11 as shown in FIG. The amount of nitrogen N2 generated is proportional to the amount of light irradiation and the amount of photosensitizer. Therefore, if the amount of light irradiation is large or the amount of photosensitizer contained in a positive photoresist is large, nitrogen N2'lk is generated per unit time.
will increase. If the amount of nitrogen N2 generated is greater than the amount of nitrogen N2 that escapes into the air from the positive photoresist 11,
As shown in FIG. 8, nitrogen N2 enters the interface between the substrate 1 and the positive photoresist 11. As shown in FIG.

そして、第9図に示すように、ウェーハ10とフォトレ
ジスト11の密着性が低い部分のポジ型フォトレジスト
11が剥離してしまう。以下窒素N2の発生によりポジ
型フォトレジスト11が剥離することを発泡剥離という
Then, as shown in FIG. 9, the positive photoresist 11 peels off in areas where the adhesion between the wafer 10 and the photoresist 11 is low. Hereinafter, the peeling of the positive photoresist 11 due to the generation of nitrogen N2 will be referred to as foaming peeling.

第10図は1ウエーハ当りに生じる発泡剥離の発生箇所
の個数とウェーハの加熱温度との関係を示すグラフであ
る。このグラフから加熱温度が高い程発泡剥離が生じに
くいことがわかる。これは、■加熱によりポジ型フォト
レジスト11中に含まれる感光剤が熱分解し、ポジ型フ
ォトレジスト11中の感光剤の量が減ったこと、■加熱
によりポジ型フォトレジスト11と基板10との密着性
が向上し、ポジ型フォトレジスト11が剥離しにくくな
ったこと、の2点が原因と考えられる。
FIG. 10 is a graph showing the relationship between the number of locations where foam delamination occurs per wafer and the wafer heating temperature. From this graph, it can be seen that the higher the heating temperature, the less likely it is that foaming and peeling will occur. This is because: (1) the photosensitive agent contained in the positive photoresist 11 is thermally decomposed by heating, and the amount of photosensitive agent in the positive photoresist 11 is reduced; and (2) the positive photoresist 11 and the substrate 10 are separated by heating. This is thought to be due to two reasons: the adhesion of the photoresist 11 has improved, and the positive photoresist 11 has become difficult to peel off.

上記のことを前提に周辺露光時の問題点について第11
図を用いて説明する。第11図は基板10の周辺部(エ
ツジ部)の拡大図である。図に示すように、周辺部の方
が内部よりもポジ型フォトレジスト11の厚さが厚いの
がわかる。これは、前述のようにスピンコードを用いポ
ジ型フォトレジスト11を塗布したことによる。周辺部
の方がポジ型フォトレジスト11の厚さが厚いので、周
辺部の方が感光剤含有量も多い。また、周辺部はポジ型
フォトレジスト11が広がっていく終端部であるためポ
ジ型フォトレジスト11の塗布時のストレスが周辺部の
ポジ型フォトレジスト11内に残っている。これらのこ
とから、均一に露光を施しても基板10の周辺部では中
心部よりも発泡♂す離が起こりやすいと考えられる。
Based on the above, we will discuss the problems during peripheral exposure in Chapter 11.
This will be explained using figures. FIG. 11 is an enlarged view of the peripheral portion (edge portion) of the substrate 10. As shown in the figure, it can be seen that the positive photoresist 11 is thicker at the periphery than at the inside. This is due to the fact that the positive photoresist 11 was applied using a spin code as described above. Since the positive photoresist 11 is thicker in the peripheral area, the photosensitizer content is also greater in the peripheral area. Further, since the peripheral portion is the end portion where the positive photoresist 11 spreads, stress during coating of the positive photoresist 11 remains in the positive photoresist 11 in the peripheral portion. From these facts, it is considered that even if exposure is performed uniformly, foaming and separation are more likely to occur in the peripheral area of the substrate 10 than in the central area.

表  2 今、表2に示す条件に基づきレジストを塗布し、均一に
露光を行うと、基板10の周辺部1Onll1以内での
発泡剥離箇所は10〜20カ所、それ以外の頭載での発
泡剥離箇所はOカ所であった。このことは、上述した考
えと一致する。つまり、基板10の中心部より周辺部で
発泡剥離が生じゃすいことが実験により裏づけられたわ
けである。
Table 2 Now, when resist is applied and exposed uniformly based on the conditions shown in Table 2, there will be 10 to 20 areas where the foam will peel off within 1 onll1 of the periphery of the substrate 10, and there will be no foaming peeling off at other places on the head. There were O locations. This is consistent with the idea mentioned above. In other words, experiments have confirmed that foaming peels off more easily at the periphery than at the center of the substrate 10.

また、ステッパーおよび周辺露光装置の露光パワーと露
光領域は前述のように表1に示されている。この表より
周辺露光装置の方が、ステッパーより露光パワーが大き
く、露光領域が小さい。従って、単位面積当りに照射さ
れる光量は周辺露光の方が多いことになる。従って、な
おさら基板10の周辺領域で発泡剥離が生じやすいこと
になる。
Further, the exposure power and exposure area of the stepper and peripheral exposure device are shown in Table 1 as described above. This table shows that the peripheral exposure device has a higher exposure power and a smaller exposure area than the stepper. Therefore, the amount of light irradiated per unit area is greater in peripheral exposure. Therefore, foaming and peeling are even more likely to occur in the peripheral area of the substrate 10.

その結果、ステッパー等によるマスクパターンの転写工
程よりも、周辺露光(ステップ5)工程の方が発泡剥離
が生じやすいことになる。
As a result, foaming and peeling is more likely to occur in the peripheral exposure (step 5) process than in the mask pattern transfer process using a stepper or the like.

ところで、発泡剥離の発生を少なくするために、前述の
ように露光前にウェーハの加熱温度を高くすることが考
えられる。第4図のフローチャートにおいて露光前の加
熱工程はプリベークのみであるから、処理工程を増加さ
せることなく発泡剥離を減少させるにはプリベークの温
度を高くすればよいが、高くしすぎると感光剤の熱分解
等により後に行われる感光および現像の特性が変化する
By the way, in order to reduce the occurrence of foaming and peeling, it is conceivable to increase the heating temperature of the wafer before exposure as described above. In the flowchart in Figure 4, the only heating step before exposure is pre-bake, so in order to reduce foaming and peeling without increasing the number of processing steps, the pre-bake temperature can be increased, but if it is set too high, the heat of the photosensitizer will heat up. Due to decomposition, etc., the characteristics of subsequent exposure and development change.

従って、プリベークによるウェーハの加熱温度を十分に
高くして発泡剥離を防止することはできない。
Therefore, it is not possible to prevent foaming and peeling by raising the heating temperature of the wafer by prebaking to a sufficiently high temperature.

周辺露光は前述のように発塵を防止するためのものであ
るにもかかわらず、発泡剥離により発塵が生じては本来
の周辺露光の効果が相殺されてしまい、ウェーハ製造工
程の歩留りは向上しないという問題点があった。
Although peripheral exposure is intended to prevent dust generation as mentioned above, if dust is generated due to foam peeling, the original effect of peripheral exposure is canceled out, and the yield of the wafer manufacturing process is improved. The problem was that it didn't.

この発明は上記のような問題点を解決するためになされ
たもので、発塵せず周辺露光を行うことができる半導体
集積回路の製造方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit that can perform peripheral exposure without generating dust.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体集積回路の製造方法は、ウェーハ
上のレジストにマスクパターンを露光するマスクパター
ン露光工程と、ウェーハの周辺部のレジストを除去する
ためウェーへの周辺部のみに露光を施す周辺露光工程を
含む半導体集積回路の製造方法に適用される。この発明
に係る半導体集積回路の製造方法は、マスクパターン露
光工程と周辺露光工程との間にウェーハに加熱処理を施
す加熱処理工程を備えたことを特徴とする。
The method for manufacturing a semiconductor integrated circuit according to the present invention includes a mask pattern exposure step in which a mask pattern is exposed to a resist on a wafer, and a peripheral exposure step in which only the peripheral portion of the wafer is exposed to light in order to remove the resist in the peripheral portion of the wafer. It is applied to a method of manufacturing a semiconductor integrated circuit including a process. The method for manufacturing a semiconductor integrated circuit according to the present invention is characterized by comprising a heat treatment step of subjecting the wafer to heat treatment between the mask pattern exposure step and the peripheral exposure step.

〔作用〕[Effect]

この発明においては、マスクパターン露光工程と周辺露
光工程との間にウェーハに加熱処理を施す加熱処理工程
を備えているので、加熱処理工程の温度を比較的高くす
れば、周辺露光が施される前にレジスト中の感光剤が熱
分解され減少するとともに、ウェーハとレジストとの密
着性が向上する。
In this invention, a heat treatment step is provided in which the wafer is subjected to heat treatment between the mask pattern exposure step and the peripheral exposure step, so if the temperature of the heat treatment step is made relatively high, the peripheral exposure can be performed. First, the photosensitive agent in the resist is thermally decomposed and reduced, and the adhesion between the wafer and the resist is improved.

〔実施例〕〔Example〕

第1図はこの発明に係る半導体集積回路の製造方法の一
実施例である写真製版工程におけるレジストパターン形
成の処理手順を示すフローチャートである。この実施例
の処理手順において、第4図に示した従来の処理手順と
の相違点は、FEB(ステップ6)の後、周辺露光(ス
テップ5)を行うようにしたことである。その他の処理
手順は従来と同様である。FEBの詳細については、例
えば、r ”Reduction or photor
eslst standlng−wave errec
ts by post−exposure bake″
E、J、Walker、IEEE TRANSACTI
ONS ON ELECTRON DEVICES、V
OL。
FIG. 1 is a flowchart showing a process procedure for forming a resist pattern in a photolithography process which is an embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention. The processing procedure of this embodiment differs from the conventional processing procedure shown in FIG. 4 in that peripheral exposure (step 5) is performed after FEB (step 6). Other processing procedures are the same as before. For details on FEB, see e.g.
eslst standlng-wave errec
ts by post-exposure bake”
E., J. Walker, IEEE TRANSACTI.
ONS ON ELECTRON DEVICES,V
OL.

ED22.No7.JULY 1975Jに説明されて
いる。PEBの本来の機能は、露光後レジスト中に含ま
れる感光剤を熱拡散によりレジスト膜中に均一に再分布
させるものである。従って、熱拡散効果を高めるために
はFEB温度をできるだけ高くすればよい。
ED22. No.7. JULY 1975J. The original function of PEB is to uniformly redistribute the photosensitizer contained in the resist into the resist film after exposure by thermal diffusion. Therefore, in order to enhance the heat diffusion effect, the FEB temperature should be made as high as possible.

しかし、高くしすぎるとレジスト樹脂と感光剤が互いに
熱架橋してしまい、現像時、レジストの現像液への溶解
性が低下し、解像力が低くなってしまう。これらのこと
を考慮し、FEB温度の上限が決定される。
However, if it is too high, the resist resin and the photosensitive agent will thermally crosslink with each other, resulting in a decrease in the solubility of the resist in a developer during development, resulting in a decrease in resolution. Taking these things into consideration, the upper limit of the FEB temperature is determined.

一方、プリベークはレジストを溶かし込んでいる溶剤を
除去するためのものであり、レジスト塗布後、露光前に
行うベーキングである。前述したFEBにおいてレジス
ト中に残存している溶剤の量が多い程感光剤は拡散しや
すい。この観点からすると、プリベーク温度は溶剤をと
ばさないようできるだけ低い方がよい。しかし、低すぎ
ると溶剤の残存量があまりにも多くなり、寸法精度が悪
化する。これらのことを考慮してプリベーク温度の下限
が決定される。以上のことを考え合わせると、プリベー
ク温度は90〜100℃、PEBff1度は110〜1
20℃が最適と考えられる。
On the other hand, prebaking is for removing the solvent that has dissolved the resist, and is baking performed after applying the resist and before exposure. In the aforementioned FEB, the larger the amount of solvent remaining in the resist, the easier the photosensitizer will diffuse. From this point of view, the prebaking temperature should be as low as possible so as not to evaporate the solvent. However, if it is too low, the amount of solvent remaining will be too large, resulting in poor dimensional accuracy. The lower limit of the prebake temperature is determined taking these things into consideration. Considering the above, the prebake temperature is 90 to 100℃, and PEBff1 degree is 110 to 1℃.
20°C is considered optimal.

表3は真空吸着型のホットプレートを用いてプリベーク
、FEBを行う場合の処理条件の一例を示す。これらの
処理温度は上述の考えに基づき決定されたものである。
Table 3 shows an example of processing conditions when pre-baking and FEB are performed using a vacuum adsorption type hot plate. These processing temperatures were determined based on the above considerations.

表  3 第2図及び第3図は真空吸着型のホットプレートを用い
てFEB、プリベークを行う場合の処理手順を示すフロ
ーチャートである。第2図に示すFEBにおいては、ウ
ェーハを120℃に加熱(ステップ6a)後、25℃ま
で冷却する(ステップ6b)。一方、第3図に示すプリ
ベーク処理においては、ウェーハを100℃に加熱(ス
テップ3a)後、25℃まで冷却する(ステップ3b)
。従来のPEB工程、ブリベーク工程においても同様の
処理が行われる。
Table 3 FIGS. 2 and 3 are flowcharts showing processing procedures when performing FEB and pre-bake using a vacuum adsorption type hot plate. In the FEB shown in FIG. 2, the wafer is heated to 120°C (step 6a) and then cooled to 25°C (step 6b). On the other hand, in the pre-bake process shown in FIG. 3, the wafer is heated to 100°C (step 3a) and then cooled to 25°C (step 3b).
. Similar processing is performed in the conventional PEB process and pre-bake process.

周辺露光(ステップ5)の前にFEB (ステップ6)
を行うことにより、周辺゛露先前に行われる加熱処理工
程はプリベーク(ステップ3)とFEBの2工程であり
、周辺露光前の最高温度は、プリベーク温度でなく、F
EB温度になる。つまり、周辺露光前の最高温度が従来
においては100℃(プリベーク温度)であったのが1
20℃(FEB温度)になる。第10図を見ると、10
0℃のとき発泡剥離発生箇所は100ケ所以上であるの
に対し、120℃のときは10ケ所以下である。
FEB (Step 6) before peripheral exposure (Step 5)
By doing this, the heat treatment process performed before peripheral exposure is two steps: pre-bake (step 3) and FEB, and the maximum temperature before peripheral exposure is not the pre-bake temperature but FEB.
The temperature reaches EB. In other words, the maximum temperature before peripheral exposure was 100°C (pre-bake temperature) in the past, but it was 100°C (pre-bake temperature).
The temperature becomes 20°C (FEB temperature). Looking at Figure 10, 10
At 0°C, there are 100 or more locations where foaming peels off, while at 120°C, there are 10 or fewer locations.

これかられかるようにFEBを周辺露光前に行うことに
より周辺露光時の発泡剥離の発生が1/10以下になり
、半導体集積回路の製造工程の歩留りの向上が図れる。
By performing FEB before peripheral exposure, as will be explained, the occurrence of foaming and peeling during peripheral exposure can be reduced to 1/10 or less, and the yield of the semiconductor integrated circuit manufacturing process can be improved.

また、この実施例では、FEBと周辺露光の順序を入れ
換えることにより、周辺露光前にプリベーク温度より高
い温度でウェーハを加熱処理するようにしているので、
露光(ステップ4)と周辺露光(ステップ5)との間に
新たな熱処理工程を設ける必要がなく、写真製版工程に
おけるレジストパターン形成処理の時間やコストが増大
することがない。
Furthermore, in this example, by switching the order of FEB and peripheral exposure, the wafer is heat-treated at a temperature higher than the pre-bake temperature before peripheral exposure.
There is no need to provide a new heat treatment process between the exposure (step 4) and the peripheral exposure (step 5), and the time and cost of the resist pattern forming process in the photolithography process do not increase.

なお、周辺露光(ステップ5)前にFEB (ステップ
6)を行うことにより、周辺露光後に感光剤の熱拡散を
行う工程がなくなり、周辺露光の精度が落ちるが、周辺
露光は前述のようにウェーハ周辺の盛り上ったレジスト
を単に除去するものなので、多少精度が落ちても問題は
ない。
Note that by performing FEB (step 6) before peripheral exposure (step 5), the process of thermally diffusing the photosensitizer after peripheral exposure is eliminated, and the accuracy of peripheral exposure decreases; however, peripheral exposure Since the process simply removes the raised resist around the periphery, there is no problem even if the accuracy decreases a little.

なお、上記実施例では周辺露光(ステップ5)の前にF
EB (ステップ6)を行うことにより、周辺露光前に
加熱処理を行うようにしているが、周辺露光とFEBの
順序は従来のままで、露光(ステップ4)と周辺露光(
ステップ5)との間に新たな加熱処理工程を介在させて
もよい。
Note that in the above embodiment, F is used before peripheral exposure (step 5).
By performing EB (step 6), heat treatment is performed before peripheral exposure, but the order of peripheral exposure and FEB remains the same as before, and exposure (step 4) and peripheral exposure (
A new heat treatment step may be interposed between step 5).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、マスクパターン露光
工程と周辺露光工程との間にウェーハに加熱処理を施す
加熱処理工程を備えているので、加熱処理工程の温度を
比較的高くすれば、周辺露光が施される前にレジスト中
の感光剤が熱分解され減少するとともにウェーハとレジ
ストとの密着性が向上し、その結果、発泡ぶす離が生し
にくくなるという効果がある。
As described above, according to the present invention, since the heat treatment step of applying heat treatment to the wafer is provided between the mask pattern exposure step and the peripheral exposure step, if the temperature of the heat treatment step is made relatively high, Before peripheral exposure is performed, the photosensitive agent in the resist is thermally decomposed and reduced, and the adhesion between the wafer and the resist is improved, and as a result, there is an effect that foaming and delamination are less likely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体集積回路の製造方法の一
実施例を示すフローチャート、第2図はFEBの処理手
順を示すフローチャート、第3図はプリベークの処理手
順を示すフローチャート、第4図は従来の半導体集積回
路の製造方法のフローチャート、第5図は周辺露光を施
した場合のつニーバカセットと基板上のレジストの位置
関係を示す図、第6図は周辺露光を施さない場合のウェ
ーハカセットと基板上のレジストの位置関係を示す図、
第7図ないし第9図は発泡剥離の原理を示す図、第10
図はウェーハの加熱温度と発泡剥離との関係を示すグラ
フ、第11図はウェーハの周辺部の拡大図である。 図において、4はマスク合わせ・露光工程、5は周辺露
光工程、6はボストエクスポージャベーク工程である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a flowchart showing an embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, FIG. 2 is a flowchart showing the FEB processing procedure, FIG. 3 is a flowchart showing the pre-bake processing procedure, and FIG. A flowchart of a conventional semiconductor integrated circuit manufacturing method. Figure 5 is a diagram showing the positional relationship between the knee cassette and the resist on the substrate when peripheral exposure is performed. Figure 6 is a wafer cassette when peripheral exposure is not performed. A diagram showing the positional relationship between the resist and the resist on the substrate,
Figures 7 to 9 are diagrams showing the principle of foam release, and Figure 10 is a diagram showing the principle of foam peeling.
The figure is a graph showing the relationship between wafer heating temperature and foaming separation, and FIG. 11 is an enlarged view of the periphery of the wafer. In the figure, 4 is a mask alignment/exposure process, 5 is a peripheral exposure process, and 6 is a boss exposure baking process. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)ウェーハ上のレジストにマスクパターンを露光す
るマスクパターン露光工程と、ウェーハの周辺部のレジ
ストを除去するためウェーハの周辺部のみに露光を施す
周辺露光工程を含む半導体集積回路の製造方法において
、 前記マスクパターン露光工程と前記周辺露光工程との間
にウェーハに加熱処理を施す加熱処理工程を備えたこと
を特徴とする半導体集積回路の製造方法。
(1) A semiconductor integrated circuit manufacturing method including a mask pattern exposure step in which a mask pattern is exposed to a resist on a wafer, and a peripheral exposure step in which only the periphery of the wafer is exposed to light in order to remove the resist at the periphery of the wafer. . A method of manufacturing a semiconductor integrated circuit, comprising a heat treatment step of subjecting the wafer to heat treatment between the mask pattern exposure step and the peripheral exposure step.
JP1178709A 1989-07-10 1989-07-10 Manufacture of semiconductor integrated circuit Pending JPH0342815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1178709A JPH0342815A (en) 1989-07-10 1989-07-10 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1178709A JPH0342815A (en) 1989-07-10 1989-07-10 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0342815A true JPH0342815A (en) 1991-02-25

Family

ID=16053194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1178709A Pending JPH0342815A (en) 1989-07-10 1989-07-10 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0342815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069852A (en) * 2001-11-02 2009-04-02 Samsung Electronics Co Ltd Method for manufacturing reflection-transmission type liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069852A (en) * 2001-11-02 2009-04-02 Samsung Electronics Co Ltd Method for manufacturing reflection-transmission type liquid crystal display device

Similar Documents

Publication Publication Date Title
KR101781246B1 (en) Double patterning with inline chemical critical dimension slimming
US6740473B1 (en) Method for shrinking critical dimension of semiconductor devices
JPH0342815A (en) Manufacture of semiconductor integrated circuit
JP2001326153A (en) Method of forming resist pattern
JPH06110214A (en) Formation of resist pattern
US6858376B2 (en) Process for structuring a photoresist layer on a semiconductor substrate
KR100861293B1 (en) Method for fabricating photoresist pattern
JPH02177420A (en) Wafer periphery aligner
KR100451508B1 (en) A method for forming contact hole of semiconductor device
JPS58145125A (en) Formation of resist mask
JPH06338452A (en) Formation method of resist pattern
JP4322482B2 (en) Method for forming fine resist pattern and method for manufacturing semiconductor device
JPH0562894A (en) Forming method for fine pattern
JPH0229657A (en) Production of semiconductor device
JPS63215040A (en) Method of hardening resist
JPH0385544A (en) Resist pattern forming method
JPS58200534A (en) Forming method for pattern
JPS6276724A (en) Heat treating method for organic thin film
JPS6281714A (en) Pattern formation
JP2000089475A (en) Exposing, coating and developing device, and resist pattern forming method
JPS62113141A (en) Photolithographic method
JPH0338028A (en) Formation of photoresist film
JPS62284356A (en) Formation of resist pattern
JPS61102035A (en) Manufacture of semiconductor device
JPH01187927A (en) Forming method for pattern