JPH0342476A - Control device for hydraulic elevator - Google Patents

Control device for hydraulic elevator

Info

Publication number
JPH0342476A
JPH0342476A JP1173096A JP17309689A JPH0342476A JP H0342476 A JPH0342476 A JP H0342476A JP 1173096 A JP1173096 A JP 1173096A JP 17309689 A JP17309689 A JP 17309689A JP H0342476 A JPH0342476 A JP H0342476A
Authority
JP
Japan
Prior art keywords
deceleration
abnormality
delay time
command
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1173096A
Other languages
Japanese (ja)
Other versions
JPH0798625B2 (en
Inventor
Kazuaki Tomita
和明 富田
Tomoichiro Yamamoto
山本 友一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1173096A priority Critical patent/JPH0798625B2/en
Publication of JPH0342476A publication Critical patent/JPH0342476A/en
Publication of JPH0798625B2 publication Critical patent/JPH0798625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a cage from being stopped past a door zone by nullifying deceleration start point control, and immediately outputting a deceleration command when an abnormality detecting circuit or a landing state detecting means detects an abnormality. CONSTITUTION:A deceleration delay time calculating circuit 23 calculates the delay time based on the data such as the cage speed, load and oil temperature. When an abnormality detecting circuit 22 or a landing state detecting means 30 detects an abnormality, an operation control circuit 24 nullifies the deceleration start point control based on the signal of the deceleration delay time calculating circuit 23 and immediately outputs a deceleration command. When the deceleration command is sent from the operation control circuit 24, a cutoff command is sent to a lifting high-speed solenoid valve control circuit 25, the feed quantity of oil to a cylinder is decreased, and a cage is decelerated. When the cage reaches a stop position point, a lifting low-speed solenoid valve control circuit 26 is cut off, and the cage is stopped. The cage is prevented from being stopped past a door zone.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、油圧エレベータの制御装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a hydraulic elevator.

[従来の技術] 一般に、油圧エレベータでは、油の温度が変わると粘度
が変化し、油温が低下すると、油の粘度は高くなる。こ
れは流量制御弁の性能に影響を及ぼし、流量制御弁に動
作指令を与えても、流量制御に要する時間が長くなる。
[Prior Art] Generally, in a hydraulic elevator, when the temperature of oil changes, the viscosity of the oil changes, and when the oil temperature decreases, the viscosity of the oil increases. This affects the performance of the flow control valve, and even if an operation command is given to the flow control valve, the time required for flow control becomes longer.

その結果、減速度は小になり、減速に必要な距離は長く
なる。一方、油温が上昇すると、油の粘度は低くなり、
流量制御に要する時間は短くなり、減速度は大になって
減速距離は短くなる。
As a result, the deceleration becomes smaller and the distance required for deceleration becomes longer. On the other hand, as the oil temperature increases, the viscosity of the oil decreases,
The time required for flow rate control becomes shorter, the deceleration becomes greater, and the deceleration distance becomes shorter.

また、かごの負荷圧力も流量制御弁の性能に影響を与え
、例&ば上昇時においては負荷が大きい程、流量制御弁
の入出力間の差圧が大きくなり、減速距離は短くなる。
The load pressure of the car also affects the performance of the flow control valve; for example, when the car is rising, the greater the load, the greater the differential pressure between the input and output of the flow control valve, and the shorter the deceleration distance.

したがって、減速指令を与える減速カムの位置を、減速
距離の短い方で設定すると、油温の低下時に正規着床点
を越えて停止する虞れがあるため、通常、減速カムの位
置は油温の平均値を想定して固定的に設定される。この
ため、油温が高く、減速度が大きくなると、*ffi制
御弁の動作位置からかごが停止位置に到達するまでに低
速走行する時間が長くなってしまい、油圧エレベータの
運転効率が低下し、エネルギ損失が大きくなり、不経済
なものとなる。また、油温か低く、減速度が小になると
、減速距離が長(なってしまい、行き過ぎ勝手で停止し
、その都度、再床合わせが必要となる。
Therefore, if the position of the deceleration cam that gives the deceleration command is set at the shortest deceleration distance, there is a risk of stopping beyond the normal landing point when the oil temperature drops. Fixedly set assuming the average value of Therefore, when the oil temperature is high and the deceleration is large, the time required for the car to travel at low speed from the operating position of the *ffi control valve to the stop position becomes longer, reducing the operating efficiency of the hydraulic elevator. Energy loss increases and becomes uneconomical. Also, if the oil temperature is low and the deceleration is small, the deceleration distance will be long, causing the engine to overshoot and stop, necessitating re-alignment each time.

そこで、例えば特開昭57−199770号公報に示さ
れているように、油温やかごの負荷に合わせて減速の開
始を制御する(以下減速開始点制御という)ようにして
適切な減速特性を得られるようにしたものが提案されて
いる。
Therefore, as shown in JP-A-57-199770, for example, the start of deceleration is controlled according to the oil temperature and the car load (hereinafter referred to as deceleration start point control) to obtain appropriate deceleration characteristics. What is proposed is that it can be obtained.

[発明が解決しようとする課題] しかしながら、油温やかごの負荷に合わせて減速開始点
制御を行うようにしたものにあっては、異常等で減速遅
延時間が過大出力された場合、減速開始が遅れ、減速終
了前に停止指令となり、停止距離が伸びて行き過ぎ勝手
で停止したり、最悪の場合はドアゾーンを抜けて停止し
、乗客がかご内に閉じ込められることがあった。
[Problems to be Solved by the Invention] However, in a device that performs deceleration start point control according to oil temperature and car load, if an excessive deceleration delay time is output due to an abnormality etc., deceleration cannot be started. The system was delayed, and the stop command was issued before the deceleration was completed, resulting in the stopping distance being extended, resulting in the train stopping inadvertently, or in the worst case scenario, passing through the door zone and stopping, trapping passengers inside the car.

このように、減速遅延時間が過大出力されるのは、例え
ば圧力センサの断線や半断線により検出した負荷圧が実
負荷圧より小さい場合や、かご速度検出装置の滑りなど
で検出値が実かご速度より低い値となった場合や、演算
回路等の電気回路の故障の場合や、ノイズ等の単発の誤
動作の場合に発生するが、これにより直ちに運転不能と
するのは問題である。
In this way, excessive deceleration delay time is output when, for example, the detected load pressure is lower than the actual load pressure due to a disconnection or half-break in the pressure sensor, or when the detected value is lower than the actual load pressure due to slippage of the car speed detection device, etc. This occurs when the value is lower than the speed, when there is a failure in an electric circuit such as an arithmetic circuit, or when there is a single malfunction such as noise, but it is a problem that it immediately becomes impossible to operate due to this.

本発明は叙上の点に鑑み、減速開始点制御中は、異常等
で減速遅延時間が過大出力されても、かごがドアゾーン
を抜けて停止するのを防止し得るとともに、誤ってドア
ゾーンを抜けて停止することがあっても所定回数までは
再床合わせを可能として乗客がかご内に閉じ込められる
のを防止することのできる油圧エレベータの制御装置を
得ることを目的とする。
In view of the above points, the present invention prevents the car from passing through the door zone and stopping during deceleration start point control even if an excessive deceleration delay time is output due to an abnormality etc., and prevents the car from accidentally leaving the door zone. To provide a control device for a hydraulic elevator that can prevent passengers from being trapped in a car by making it possible to re-align the floors up to a predetermined number of times even if the elevator stops due to a car.

[課題を解決するための手段] 本発明に係る油圧エレベータの制御装置は、かご速度、
負荷圧力、油温等を検出する複数の検出器からの検出信
号に基づいて異常の有無を検出する異常検出回路と、上
記複数の検出器からの検出信号に基づいて、減速準備指
令が入力した後、減速開始までの遅延時間を算出する減
速遅延時間演算回路と、かごの着床状態を検出してその
制御の異常の有無を検出する着床状態検出手段と、定常
的には上記減速遅延時間演算回路にて算出された減速遅
延時間後に減速指令を出力し、上記異常検出回路または
着床状態検出手段からの異常検出信号が入力すると、直
ちに減速指令を出力する減速指令手段とを備えたもので
ある。
[Means for Solving the Problems] A control device for a hydraulic elevator according to the present invention has the following features:
An abnormality detection circuit detects the presence or absence of an abnormality based on detection signals from multiple detectors that detect load pressure, oil temperature, etc., and a deceleration preparation command is input based on the detection signals from the multiple detectors. After that, there is a deceleration delay time calculation circuit that calculates the delay time until the start of deceleration, a landing state detection means that detects the landing state of the car and detects whether there is an abnormality in the control, and a deceleration delay time calculation circuit that calculates the delay time until the start of deceleration. deceleration command means for outputting a deceleration command after a deceleration delay time calculated by the time calculation circuit, and immediately outputting a deceleration command when an abnormality detection signal from the abnormality detection circuit or landing state detection means is input. It is something.

[作 用] 本発明においては、異常検出回路または着床状態検出手
段が異常を検出すると、減速指令手段が減速遅延時間演
算回路の信号に基づく減速開始点制御を無効にして直ち
に減速指令を出力し、かごがドアゾーンを抜けて停止す
るのを防止する。これによって、異常等で減速遅延時間
が過大出力されても、油圧エレベータが運転停止状態に
置かれるのを未然に回避することができる。
[Function] In the present invention, when the abnormality detection circuit or the landing state detection means detects an abnormality, the deceleration command means invalidates the deceleration start point control based on the signal of the deceleration delay time calculation circuit and immediately outputs the deceleration command. This prevents the car from passing through the door zone and stopping. As a result, even if the deceleration delay time is excessively output due to an abnormality or the like, it is possible to prevent the hydraulic elevator from being stopped.

[実施例] 以下、図示実施例により本発明を説明する。第1図は本
発明の一実施例に係る油圧エレベータのシステム構成図
で、図において、(1)は昇降路、(2〉は昇降路(1
)の底部に立設され油(3)が充填されたシリンダ、(
4〉はシリンダ(2)に挿入されたプランジャ、(5)
はプランジャ(4)の頭部に結合されたかご、(5a)
ばかご床、(6)はかご(5〉側に設けられた減速位置
検出スイッチ、(7)は昇降路(1)側に設けられ減速
位置検出スイッチ(6)の作動レバーと係合するカム、
(8)ばかご速度検出装置であって、プーリ、ロープ、
及びパルス発生器から構成されている。
[Examples] The present invention will be explained below with reference to illustrated examples. FIG. 1 is a system configuration diagram of a hydraulic elevator according to an embodiment of the present invention. In the figure, (1) is a hoistway, (2> is a hoistway (1)
) is a cylinder filled with oil (3), which is installed at the bottom of (
4> is the plunger inserted into the cylinder (2), (5)
is a cage connected to the head of the plunger (4), (5a)
Car floor, (6) is a deceleration position detection switch provided on the car (5> side), and (7) is a cam that is provided on the hoistway (1) side and engages with the operating lever of the deceleration position detection switch (6). ,
(8) A basket speed detection device, which includes a pulley, rope,
and a pulse generator.

しかして、(9)はシリンダ(2)に接続された管路、
(lO〉は管路(9〉に接続され動作すると管路(9)
へ圧油を送出する上昇用電磁弁、(工1)は管路(9)
からの圧油を排出する下降用電磁弁、(12〉は上昇用
電磁弁(10)に接続された油圧ポンプ、(13)は油
圧ポンプ(12)を駆動する油圧ポンプ用電動機、(1
4)は下降用電磁弁(11)および油圧ポンプ(12)
に接続された油タンク、(15)はシリンダ(2)内の
負荷圧力を検出する圧力センサであって、かご内の負荷
に応じて変化する。なお、(L6〉は油タンク(14)
内に設置されて油(3)の温度を検出する油温センサで
ある。
Therefore, (9) is a pipe connected to cylinder (2),
(lO> is connected to pipe (9>) and when operated, pipe (9)
The rising solenoid valve that sends pressure oil to the pipe (9) (engineering 1)
(12) is a hydraulic pump connected to the ascending solenoid valve (10); (13) is a hydraulic pump electric motor that drives the hydraulic pump (12);
4) is the lowering solenoid valve (11) and hydraulic pump (12)
The oil tank (15) connected to the cylinder (2) is a pressure sensor that detects the load pressure inside the cylinder (2), which changes depending on the load inside the car. In addition, (L6> is the oil tank (14)
This is an oil temperature sensor installed inside the engine to detect the temperature of the oil (3).

第2図は本実施例における制御回路のブロック構成図で
あり、図中、(8a)はかご速度検出装置(8)からの
パルス信号、(15a)は圧力センサ〈15)からの圧
力信号、(18a)は油温センサ(1B)からの油温信
号、(18)はパルス信号(8a)に基づいて走行距離
および停止階までの残距離等を演算する移動距離演算回
路、(19)はパルス信号(8a)をかご速度に変換す
るかご速度検出器、(20)は圧力信号(15a)を所
定値に変換する負荷検出器、(21)は油温信号(18
a)を取り込んで所定値に変換する油温検出器(例えば
A/D変換器より成る) 、(22>は各検出器、回路
の異常を検出する異常検出回路、(23)はかご速度、
負荷、油温等のデータに基づいて遅延時間を算出する減
速遅延時間演算回路であって、例えばマイクロコンピュ
ータ等から構成される。
FIG. 2 is a block configuration diagram of the control circuit in this embodiment, in which (8a) is a pulse signal from the car speed detection device (8), (15a) is a pressure signal from the pressure sensor (15), (18a) is the oil temperature signal from the oil temperature sensor (1B), (18) is a travel distance calculation circuit that calculates the travel distance and remaining distance to the stop floor, etc. based on the pulse signal (8a), and (19) is A car speed detector that converts a pulse signal (8a) into a car speed, (20) a load detector that converts a pressure signal (15a) into a predetermined value, and (21) an oil temperature signal (18).
(22) is an abnormality detection circuit that detects abnormalities in each detector and circuit; (23) is a car speed;
This is a deceleration delay time calculation circuit that calculates delay time based on data such as load and oil temperature, and is composed of, for example, a microcomputer.

また、り24)は通常の呼びに応答してかご(5)の運
転を制御する公知の運転制御回路で、例えばマイクロコ
ンピュータ等から構成される。(25)は上昇用電磁弁
(10)に指令を与えて高速運転をさせる上昇用高速電
磁弁制御回路、(26)は同じく上昇用電磁弁(10)
に指令を与えて低速運転をさせる上昇用低速電磁弁制御
回路、(27)は下降用電磁弁(11)に指令を与えて
高速運転をさせる下降用高速電磁弁制御回路、(28〉
は同じく下降用電磁弁(11)に指令を与えて低速運転
をさせる下降用低速電磁弁制御回路、(29)は電動機
(13)の回転を制御する電動機制御回路、(30)は
かご(5)の着床状態を検出してその制御の異常の有無
を検出する着床状態検出手段である。
Further, 24) is a known operation control circuit that controls the operation of the car (5) in response to a normal call, and is composed of, for example, a microcomputer. (25) is a high-speed ascending solenoid valve control circuit that gives a command to the ascending solenoid valve (10) to operate at high speed, and (26) is also the ascending solenoid valve (10).
(27) is a low speed solenoid valve control circuit for lowering which gives a command to the lowering solenoid valve (11) to operate at a low speed; (27) is a high speed solenoid valve control circuit for lowering which gives a command to the lowering solenoid valve (11) to operate at high speed;
Similarly, the lowering solenoid valve control circuit gives a command to the lowering solenoid valve (11) to operate at low speed, (29) is the motor control circuit that controls the rotation of the electric motor (13), and (30) is the car (5). ) is a landing state detection means that detects the landing state of the vehicle and detects whether or not there is an abnormality in its control.

第3図は本実施例における制御回路の動作を示すメイン
ルーチンの処理フローチャートであり、処理Aにて減速
遅延時間の演算処理を、処理Bにて減速開始点制御を、
処理Cにて異常の検出を行う。
FIG. 3 is a processing flowchart of the main routine showing the operation of the control circuit in this embodiment, in which processing A calculates the deceleration delay time, processing B performs deceleration start point control,
In process C, an abnormality is detected.

次に、第1図、第2図、及び第3図中の各処理部である
サブルーチンを示す第4図乃至第6図の処理フローチャ
ートに基づき本実施例装置の動作について説明する。呼
び登録回路(図示せず)で上方階の呼びが登録されると
、電動機制御回路(29)が動作し、電動機(t8)を
回転させて、油圧ポンプ(12)を駆動する。また、上
昇用高速電磁弁制御回路(25)及び上昇用低速電磁弁
制御回路(2B)が動作し、上昇用電磁弁(10)を制
御する。これにより、油タンク(14)内の油は、上昇
用電磁弁(10)から管路(9)を通じてシリンダ(2
)に送、出され、かご(5)が上昇する。この時、異常
検出回路(22)により、かご(5〉の走行についての
安全が確認されていることは言うまでもない。
Next, the operation of the apparatus of this embodiment will be explained based on the processing flowcharts of FIGS. 4 to 6 showing subroutines of each processing unit in FIGS. 1, 2, and 3. When a call for an upper floor is registered in a call registration circuit (not shown), the electric motor control circuit (29) operates to rotate the electric motor (t8) and drive the hydraulic pump (12). Further, the high-speed ascending solenoid valve control circuit (25) and the low-speed ascending solenoid valve control circuit (2B) operate to control the ascending solenoid valve (10). As a result, the oil in the oil tank (14) is transferred from the ascending solenoid valve (10) to the cylinder (2) through the pipe (9).
) and the car (5) rises. Needless to say, at this time, the safety of the running of the car (5>) is confirmed by the abnormality detection circuit (22).

かご(5)が停止すべき階に接近すると、減速位置検出
スイッチ(8)の作動レバーがカム(7)に係合して減
速位置検出スイッチ(6)が動作し、減速準備指令(6
a)が発せられる。
When the car (5) approaches the floor where it should stop, the operating lever of the deceleration position detection switch (8) engages the cam (7), the deceleration position detection switch (6) operates, and the deceleration preparation command (6) is activated.
a) is emitted.

この時、減速遅延時間演算回路(23)では、第4図に
示す如く、走行方向、高速運転、低速運転等の運転状況
を読み(Step31)、速度検出装置(8)からのパ
ルス信号、すなわちかご速度検出器(19)からの速度
信号(8a)より速度を検出しく5tep32)、負荷
検出器(20)からの圧力信号(15a)より圧力を検
出しく5tep83)、油温検出器(21)からの油温
信号(−16a )より油温を検出しく5tep34)
、異常検出回路(22〉にてこれら速度、圧力、油温に
異常が無いことが確認され(Step35)、更にフラ
グ< I J YO)が「0」であることが確認されれ
ば(Step3B)、検出されたかご速度、負荷圧力、
油温を基に、減速遅延時間の演算を行う(Si20)3
7)oしかし、5tep35にて異常有と判断されれば
、フラグ(IJYO)を「1」にしく5tep3B)、
更に5tep36にてフラグ(IJYO)が「0」でな
いことを確認した後、遅延時間を零に設定して(Ste
p39)、減速開始点制御を無効とする。
At this time, the deceleration delay time calculation circuit (23) reads the driving direction, high speed driving, low speed driving, etc. as shown in FIG. 4 (Step 31), and reads the pulse signal from the speed detecting device (8), Detect the speed from the speed signal (8a) from the car speed detector (19) (step 32), detect the pressure from the pressure signal (15a) from the load detector (20) (step 83), oil temperature detector (21) Detect the oil temperature from the oil temperature signal (-16a) from 5tep34)
If the abnormality detection circuit (22) confirms that there is no abnormality in speed, pressure, and oil temperature (Step 35), and further confirms that the flag < I J YO) is "0" (Step 3B) , detected car speed, load pressure,
Calculate deceleration delay time based on oil temperature (Si20) 3
7) o However, if it is determined that there is an abnormality in 5step 35, set the flag (IJYO) to "1" and 5step 3B),
Furthermore, after confirming that the flag (IJYO) is not "0" at step 36, the delay time is set to zero (Step 36).
p39), disables deceleration start point control.

減速開始点制御は運転制御回路(24)にて第5図に示
すように行われる。まず、減速位置検出スイッチ(8)
の信号を取り込み(Step41)、減速準備指令(6
a〉が出たか否かを判断しく5tep42)、無ければ
フラグ(FLAG)をゼロクリアする(Step43)
。出力されていればフラグ(FLAG)が「1」にセッ
トされているか否かを判断しく5tep44)、「1」
にセットされていなければ、すなわち最初に減速位置検
出スイッチ(6)の信号を検出した時は、前周期でフラ
グ(FLAG)はゼロクリアされているので、カウンタ
(TIME)に、上述の5tep37で算出された減速
遅延時間をセットするとともに、フラグ(FLAG)を
「1」にセットする(Step45)。ここでフラグ(
FLAG)を「1」にセットした後は、続けて減速位置
検出スイッチ(6)の信号を検出しても、カウンタ(T
IME)の値は変化することはない。
The deceleration start point control is performed by the operation control circuit (24) as shown in FIG. First, deceleration position detection switch (8)
(Step 41) and issues a deceleration preparation command (Step 41).
Determine whether or not a> has appeared (Step 42); if not, clear the flag (FLAG) to zero (Step 43)
. If it is output, check whether the flag (FLAG) is set to "1" or not (5step 44), "1"
If it is not set to , that is, when the signal of the deceleration position detection switch (6) is detected for the first time, the flag (FLAG) was cleared to zero in the previous cycle, so the counter (TIME) is set to the value calculated in step 37 above. At the same time, the flag (FLAG) is set to "1" (Step 45). Here the flag (
After setting FLAG) to "1", even if the signal from the deceleration position detection switch (6) is detected, the counter (T
The value of IME) does not change.

次いで、フラグ(IJYO)が「1」にセットされてい
るか否か、つまり上述の5tep3Eiにて異常が検出
されているか否かを判断しく5tep4B)、異常が検
出されていれば、直ちに減速指令を出力しく5tep4
7)、かご(5)を減速させる。異常がなければ、カウ
ンタ(TIME)の値を判断しく5tep48)、零で
なければカウンタ(TIME)の値を減算しく5tep
49)、その後の周期で零になった時点で、5tep4
8から5tep47へ進み、減速指令を出力する。
Next, it is determined whether the flag (IJYO) is set to "1", that is, whether an abnormality is detected at step 3Ei described above (5step 4B), and if an abnormality is detected, a deceleration command is immediately issued. Output 5tep4
7), decelerate the car (5). If there is no abnormality, check the value of the counter (TIME) (5 steps 48), and if it is not zero, subtract the value of the counter (TIME) (5 steps)
49), when it becomes zero in the subsequent cycle, 5tep4
The process proceeds from step 8 to step 47, and a deceleration command is output.

遅延時間後、減速指令が運転制御回路(24)で発せら
れると、上昇用高速電磁弁制御回路(25)に遮断指令
が送られ、上昇用電磁弁(10)の動作により、シリン
ダ(2)への油(3)の送出量が減少し、かご(5)は
減速する。停止位置点に来ると、上昇用低速電磁弁制御
回路(26)も遮断され、かご(5)は停止する。
After the delay time, when a deceleration command is issued by the operation control circuit (24), a cutoff command is sent to the high-speed ascending solenoid valve control circuit (25), and the cylinder (2) is activated by the operation of the ascending solenoid valve (10). The amount of oil (3) sent to the car (5) decreases and the car (5) decelerates. When the car reaches the stop position, the lift low-speed solenoid valve control circuit (26) is also shut off, and the car (5) stops.

下降運転の場合は、上昇時と同様に下降用電磁弁(11
)が制御され、シリンダ(2〉内の油(3〉が管路(9
)及び下降用電磁弁(11)を通って油タンク(14)
へ排出される。これにより、かご(5)は減速、停止と
なる。
For descending operation, use the descending solenoid valve (11) in the same way as for ascending.
) is controlled, and the oil (3) in the cylinder (2) is connected to the pipe (9).
) and the oil tank (14) through the lowering solenoid valve (11).
is discharged to. As a result, the car (5) decelerates and stops.

次に、何らかの異常で減速遅延時間が過大出力された場
合について第6図に基づき説明する。
Next, a case where an excessive deceleration delay time is output due to some abnormality will be explained based on FIG. 6.

まず、減速開始点制御(第5図)の5tep47にて減
速指令が出力されたか否かを判断しく5tep50)、
出力されていればかご(5)が停止したか否かを判断し
く5tep51)、停止すると着床状態検出手段(3o
)にて停止位置がドアゾーン内か否かを判断する(St
ep52)。ドアゾーン内であれば正規停止位置か否か
を判断しく5tep53)、正規停止位置でなければ周
知の再床合わせ指令を発生させ(Step54)、ドア
ゾーン内でなければeontの数値を進める(Step
55)。
First, it is determined whether a deceleration command is output at step 47 of deceleration start point control (Fig. 5) (step 50),
If it is output, it is determined whether the car (5) has stopped or not (step 51), and if it has stopped, the landing state detection means (step 51) is output.
) to determine whether the stop position is within the door zone (St
ep52). If it is within the door zone, it is determined whether it is at the normal stop position (Step 53), if it is not at the normal stop position, a well-known re-floor alignment command is issued (Step 54), and if it is not within the door zone, the value of eont is advanced (Step 53).
55).

次いで、contの数値が所定値以内か否かを判断しく
5tep5B)、所定値以内であれば5tep54に進
み、再床合わせ指令を発生させ、再床合わせを可能とし
、所定値以上であれば減速開始点制御の異常と判断して
フラグIJYOを「1」にして(Step57)、以後
、減速開始点制御を無効とし、減速準備指令(6a)が
発せられたら第5図中の5tep44−45−48−4
7の順で処理させ、直ちに減速させるようにする。
Next, it is determined whether the value of cont is within a predetermined value (5step 5B), and if it is within the predetermined value, the process proceeds to 5step 54, a re-floor alignment command is generated to enable floor re-alignment, and if it is greater than the predetermined value, deceleration is performed. It is determined that there is an abnormality in the start point control, and the flag IJYO is set to "1" (Step 57). From then on, the deceleration start point control is disabled, and when the deceleration preparation command (6a) is issued, step 544-45- in FIG. 48-4
Process in the order of 7 and immediately decelerate.

その後、ドアゾーンを抜けるようなことがあれば、減速
開始点制御以外の異常と判断し、再起動不能とする。ま
た、ドアゾーン内へ進入したときのかご速度が高すぎて
明らかにドアゾーンを抜けると分かる場合は、ドアを開
かせないようにしてもよい。
After that, if the vehicle exits the door zone, it is determined that the abnormality is other than deceleration start point control, and restarting is disabled. Further, if the car speed when entering the door zone is so high that it is obvious that the car will pass through the door zone, the door may not be opened.

このように、本実施例では、異常検出回路(22)また
は着床状態検出手段(30)が異常を検出すると、運転
制御回路(24)が減速遅延時間演算回路(23)の信
号に基づく減速開始点制御を無効にして直ちに減速指令
を出力し、かご(5〉がドアゾーンを抜けて停止するの
を防止する。これによって、異常等で減速遅延時間が過
大出力されても、油圧エレベータが運転停止状態に置か
れるのを未然に回避することができ、再現する不具合に
対応して、複数回検出可能とすることが可能となり、乗
客がかご内に直ちに閉じ込められることがないようにす
ることができる。
As described above, in this embodiment, when the abnormality detection circuit (22) or the landing state detection means (30) detects an abnormality, the operation control circuit (24) performs deceleration based on the signal from the deceleration delay time calculation circuit (23). Start point control is disabled and a deceleration command is immediately output to prevent the car (5) from passing through the door zone and stopping.This allows the hydraulic elevator to continue operating even if an excessive deceleration delay time is output due to an abnormality. It is possible to prevent the car from being left in a stopped state, and it is possible to detect the problem multiple times in response to reoccurring failures, and it is possible to prevent passengers from becoming immediately trapped in the car. can.

[発明の効果] 以上述べたように、本発明によれば、異常検出回路また
は着床状態検出手段が異常を検出すると、減速指令手段
が減速遅延時間演算回路の信号に基づく減速開始点制御
を無効にして直ちに減速指令を出力するよう構成したの
で、何らかの異常で減速遅延時間が過大出力されても、
かごがドアゾーンを抜けて停止するのを防止でき、油圧
エレベータが運転停止状態に置かれるのを未然に回避す
ることが可能となって、油圧エレベータの運行に支障を
きたようなことがなく、乗客に不信をいだかすようなこ
ともないという効果がある。
[Effects of the Invention] As described above, according to the present invention, when the abnormality detection circuit or landing state detection means detects an abnormality, the deceleration command means performs deceleration start point control based on the signal of the deceleration delay time calculation circuit. Since the configuration is configured to output the deceleration command immediately after disabling it, even if an excessive deceleration delay time is output due to some abnormality,
It is possible to prevent the car from passing through the door zone and stopping, and it is possible to prevent the hydraulic elevator from being stopped, which prevents the operation of the hydraulic elevator from being disrupted and allows passengers to This has the effect of not causing any mistrust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る油圧エレベータの制御装置の一実
施例を示すシステム構成図、第2図はその制御回路のブ
ロック構成図、第3図はその動作を示すメインルーチン
の処理フローチャート、第4図乃至第6図はそれぞれ第
3図中の各処理部であるサブルーチンを示すもので、第
4図は減速遅延時間演算の処理フローチャート、第5図
は減速開始点制御の処理フローチャート、第6図は異常
検出の処理フローチャートである。 図において、(5)はかご、(6a)は減速準備指令、
(19)はかご速度検出器、(20)は負荷検出器、(
21)は油温検出器、(22)は異常検出回路、(23
)は減速遅延時間演算回路、(24)は運転制御回路(
減速指令手段) 、(30)は着床状態検出手段である
。 なお、各図中、同一符号は同一または相当部分を示す。
FIG. 1 is a system configuration diagram showing one embodiment of a hydraulic elevator control device according to the present invention, FIG. 2 is a block configuration diagram of its control circuit, FIG. 3 is a processing flowchart of a main routine showing its operation, and FIG. 4 to 6 respectively show the subroutines of each processing section in FIG. 3. FIG. 4 is a processing flowchart for deceleration delay time calculation, FIG. 5 is a processing flowchart for deceleration start point control, and FIG. The figure is a processing flowchart of abnormality detection. In the figure, (5) is the car, (6a) is the deceleration preparation command,
(19) is the car speed detector, (20) is the load detector, (
21) is the oil temperature detector, (22) is the abnormality detection circuit, (23)
) is the deceleration delay time calculation circuit, (24) is the operation control circuit (
Deceleration command means) and (30) are landing state detection means. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] かご速度、負荷圧力、油温等を検出する複数の検出器か
らの検出信号に基づいて異常の有無を検出する異常検出
回路と、上記複数の検出器からの検出信号に基づいて、
減速準備指令が入力した後、減速開始までの遅延時間を
算出する減速遅延時間演算回路と、かごの着床状態を検
出してその制御の異常の有無を検出する着床状態検出手
段と、定常的には上記減速遅延時間演算回路にて算出さ
れた減速遅延時間後に減速指令を出力し、上記異常検出
回路または着床状態検出手段からの異常検出信号が入力
すると、直ちに減速指令を出力する減速指令手段とを備
えることを特徴とする油圧エレベータの制御装置。
An abnormality detection circuit that detects the presence or absence of an abnormality based on detection signals from multiple detectors that detect car speed, load pressure, oil temperature, etc.;
a deceleration delay time calculation circuit that calculates the delay time until the start of deceleration after a deceleration preparation command is input; a landing state detection means that detects the landing state of the car and detects whether there is an abnormality in the control; Specifically, a deceleration command is output after the deceleration delay time calculated by the deceleration delay time calculation circuit, and the deceleration command is immediately output when an abnormality detection signal from the abnormality detection circuit or landing state detection means is input. A control device for a hydraulic elevator, comprising a command means.
JP1173096A 1989-07-06 1989-07-06 Hydraulic elevator controller Expired - Fee Related JPH0798625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173096A JPH0798625B2 (en) 1989-07-06 1989-07-06 Hydraulic elevator controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173096A JPH0798625B2 (en) 1989-07-06 1989-07-06 Hydraulic elevator controller

Publications (2)

Publication Number Publication Date
JPH0342476A true JPH0342476A (en) 1991-02-22
JPH0798625B2 JPH0798625B2 (en) 1995-10-25

Family

ID=15954117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173096A Expired - Fee Related JPH0798625B2 (en) 1989-07-06 1989-07-06 Hydraulic elevator controller

Country Status (1)

Country Link
JP (1) JPH0798625B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209476A (en) * 1984-04-02 1985-10-22 三菱電機株式会社 Controller for hydraulic elevator
JPS63282070A (en) * 1987-05-15 1988-11-18 株式会社日立製作所 Controller for hydraulic elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209476A (en) * 1984-04-02 1985-10-22 三菱電機株式会社 Controller for hydraulic elevator
JPS63282070A (en) * 1987-05-15 1988-11-18 株式会社日立製作所 Controller for hydraulic elevator

Also Published As

Publication number Publication date
JPH0798625B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JP5214239B2 (en) Elevator equipment
KR101218022B1 (en) Elevator apparatus and operating method thereof
KR20130135909A (en) Multi-car elevator and method for controlling same
JP5114972B2 (en) Elevator control device
EP2246285A1 (en) Elevator system
KR100928118B1 (en) Elevator counterweight
JP6351853B2 (en) Hydraulic elevator safety device and hydraulic elevator door opening abnormality detection method
KR101121343B1 (en) Elevator apparatus
JP2635257B2 (en) Elevator control device
JPH0342476A (en) Control device for hydraulic elevator
JP2614672B2 (en) Elevator tamper sway prevention device
EP2436635A1 (en) Elevator device
JP5541372B2 (en) Elevator terminal floor forced reduction device
JP2000128452A (en) Mischief alarm for elevator
JPH0742057B2 (en) Hydraulic elevator controller
JPH0336181A (en) Control device for hydraulic elevator
JPH0475983A (en) Elevator safety device
JPH0925069A (en) Control device of hydraulic elevator
JP7124982B1 (en) elevator equipment
JPH03182483A (en) Control device for elevator
JP2624811B2 (en) Control device for hydraulic elevator
JPH0336756B2 (en)
KR100275576B1 (en) Elevator control apparatus and its method.
JPH0768015B2 (en) Hydraulic elevator controller
JPH0289785A (en) Device for controlling fluid pressure elevator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees