JPH0342057A - Method and device for classifying fine particle - Google Patents
Method and device for classifying fine particleInfo
- Publication number
- JPH0342057A JPH0342057A JP17719889A JP17719889A JPH0342057A JP H0342057 A JPH0342057 A JP H0342057A JP 17719889 A JP17719889 A JP 17719889A JP 17719889 A JP17719889 A JP 17719889A JP H0342057 A JPH0342057 A JP H0342057A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- classification method
- emitting material
- photoelectron emitting
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims description 20
- 239000000463 material Substances 0.000 claims abstract description 37
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 230000005684 electric field Effects 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910000906 Bronze Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000010974 bronze Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims 3
- 229910052709 silver Inorganic materials 0.000 claims 3
- 229910052715 tantalum Inorganic materials 0.000 claims 2
- 229910052718 tin Inorganic materials 0.000 claims 2
- 229910052719 titanium Inorganic materials 0.000 claims 2
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229910052712 strontium Inorganic materials 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 34
- 238000007599 discharging Methods 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 13
- 239000011148 porous material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000011882 ultra-fine particle Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- CIOAGBVUUVVLOB-NJFSPNSNSA-N Strontium-90 Chemical compound [90Sr] CIOAGBVUUVVLOB-NJFSPNSNSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MXCPYJZDGPQDRA-UHFFFAOYSA-N dialuminum;2-acetyloxybenzoic acid;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].CC(=O)OC1=CC=CC=C1C(O)=O MXCPYJZDGPQDRA-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electrostatic Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、微粒子の分級方法に係り、特に光電子により
荷電された微粒子の分級方法及びその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for classifying fine particles, and more particularly to a method and apparatus for classifying fine particles charged by photoelectrons.
そして、微粒子を分級して利用する分野としては、
(1) 単分散微粒子の発生器
(2)新素材の製造における原料等の分離、精製装置
(3)電子工業、薬品工業、食品工業、農林産業、医療
、精密機械工業等における粒子状物質の分離、分級ある
いは精製(ハイセパレーション)装置、等がある。Fields in which fine particles are classified and used include (1) generators of monodisperse fine particles, (2) equipment for separation and purification of raw materials in the production of new materials, and (3) electronic industry, pharmaceutical industry, food industry, agriculture and forestry. There are devices for separating, classifying, or purifying (high separation) particulate matter in industry, medicine, precision machinery industry, etc.
従来からの微粒子の分級を、代表的な分級装置である数
μm以下の微粒子の乾式分級装置について述べる。該微
粒子の分級は、主として遠心分離装置あるいは慣性分級
装置を用いて行われている。The conventional classification of fine particles will be described using a dry classification apparatus for fine particles of several micrometers or less, which is a typical classification apparatus. Classification of the fine particles is mainly performed using a centrifugal separator or an inertial classifier.
これらの装置による分級は、いずれも遠心力や慣性力等
の物理的作用によっているため次の欠点があった。Classification by these devices all rely on physical effects such as centrifugal force and inertial force, and therefore have the following drawbacks.
(1)分級出来る粒径が大きく、微細な微粒子例えば<
0.1μmの超微粒子の分級は、困難である。通常、0
.2〜0,5μm以上の微粒子が対象となるのみである
。(1) The particle size that can be classified is large, and fine particles such as <
Classification of ultrafine particles of 0.1 μm is difficult. Usually 0
.. Only fine particles of 2 to 0.5 μm or more are targeted.
伐) 分級精度が悪く、均一な微粒子(単分散微粒子)
が入手困難である。(cutting) Poor classification accuracy, uniform particles (monodisperse particles)
is difficult to obtain.
上記のように、従来技術においては、超微粒子の分級が
できないとか、分級精度の点で問題があった。As mentioned above, the conventional techniques have problems in that they cannot classify ultrafine particles and in terms of classification accuracy.
そこで、本発明は、0.1μm以下の微粒子も精度良く
分級できる微粒子の分級方法とその装置を提供すること
を目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for classifying fine particles that can accurately classify fine particles of 0.1 μm or less.
上記目的を達成するために、本発明では、分級方法とし
て、光電子放出材に紫外線及び/又は放射線を照射する
ことにより発生する光電子により微粒子に荷電を付与し
、分級することとしたものであり、また、分級装置とし
て、ガス導入口及びガス排出口を有し、ガス導入口から
ガス排出口に至るガス流路中に、少なくとも光電子放出
材に紫外線及び/又は放射線照射を行い微粒子に荷電さ
せる微粒子荷電部と、該微粒子荷電部の下流側に荷電微
粒子を分級する荷電微粒子分級部とを設けたものである
。In order to achieve the above object, in the present invention, as a classification method, fine particles are classified by being charged with photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation, In addition, the classification device has a gas inlet and a gas outlet, and in the gas flow path from the gas inlet to the gas outlet, at least the photoelectron emitting material is irradiated with ultraviolet rays and/or radiation to charge the fine particles. A charging section and a charged particle classification section for classifying charged particles are provided on the downstream side of the particle charging section.
次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.
光電子放出面5の材質は、紫外線照射により光電子を放
出するものであれば何れでも良く、光電的な仕事関数の
小さいもの程好ましい。効果や経済性の面から、Ba、
sr、 Ca、 Y、 Gd、 La。The material of the photoelectron emitting surface 5 may be any material as long as it emits photoelectrons when irradiated with ultraviolet rays, and a material with a smaller photoelectric work function is preferable. From the viewpoint of effectiveness and economy, Ba,
sr, Ca, Y, Gd, La.
Ce、 Nd、 Th、 Pr、 Be、
Zr、 Fe、 Ni、 Zn、 Cu、
八g。Ce, Nd, Th, Pr, Be,
Zr, Fe, Ni, Zn, Cu,
Eight grams.
Pt、 Cd、 Pb、 Al、 C,Mg、Au、
In、 Bi、 Nb、 Si。Pt, Cd, Pb, Al, C, Mg, Au,
In, Bi, Nb, Si.
Ti、 7a、 31. pのいずれか又はこれらの化
合物又は合金が好ましく、これらは単独で又は二種以上
を複合して用いられる。複合材としては、アマルガムの
如く物理的な複合材も用いうる。Ti, 7a, 31. P or a compound or alloy thereof is preferred, and these may be used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can also be used.
化合物としては酸化物、はう化物、炭化物があり、酸化
物にはRan、 Sr口、 Cab、 Y2O3,Gd
20t。Compounds include oxides, ferrides, and carbides, and oxides include Ran, Sr, Cab, Y2O3, and Gd.
20t.
NdzOa、 Th02. ZrL、 PezO
a、 ZnO,Cub、 ^g20゜Pt(1,P
b(1,八1203. MgO,In2[1a、
Ba口、 NbO,Be[lなどがあり、またほう化
物にはYL、 GdBG。NdzOa, Th02. ZrL, PezO
a, ZnO, Cub, ^g20゜Pt(1,P
b(1,81203.MgO,In2[1a,
There are Ba, NbO, Be[l, etc., and borides include YL and GdBG.
LaBa、 Pryg、 2rB、などがあり、さらに
炭化物としてはZrC,TaC,TiC,NbCなどが
ある。Examples include LaBa, Pryg, 2rB, and carbides such as ZrC, TaC, TiC, and NbC.
また、合金としては黄銅、青銅、リン青銅、八gとMg
との合金(Mgが2〜20111t%) 、CuとBe
との合金(Beが1〜10wt%)及び8aとAIとの
合金を用いることができ、上記AgとMgとの合金、C
uとBeとの合金及びBaとAIとの合金が好ましい。In addition, alloys include brass, bronze, phosphor bronze, 8g and Mg.
(Mg 2-20111t%), Cu and Be
(Be is 1 to 10 wt%) and an alloy of 8a and AI can be used.
An alloy of u and Be and an alloy of Ba and AI are preferred.
酸化物は金属表面のみを空気中で加熱したり、或いは薬
品で酸化することによっても得ることができる。Oxides can also be obtained by heating only the metal surface in air or by oxidizing it with chemicals.
さらに他の方法としては使用前に加熱し、表面に酸化層
を形成して長期にわたって安定な酸化層を得ることもで
きる。この例としてはMgと八gとの合金を水蒸気中で
300〜400℃の温度の条件下でその表面に酸化薄膜
を形成させることができ、この酸化薄膜は長期間にわた
って安定なものである。Still another method is to heat the material before use to form an oxidized layer on the surface to obtain a stable oxidized layer over a long period of time. As an example of this, an oxide thin film can be formed on the surface of an alloy of Mg and 8g in water vapor at a temperature of 300 to 400°C, and this oxide thin film is stable for a long period of time.
これらの材料の使用形状は、板状、プリーツ状、格子状
、網状等、があり表面を適宜凹凸状とし使用することが
出来る。又、適宜の形状の材料にメツキや他材料の付着
を施して使用することが出来る。この例として、Cu−
Zn材料にへuメツキあるいは粒子状の八〇を固定し使
用することが出来る。These materials can be used in various shapes, such as plate, pleat, lattice, and net shapes, and can be used with their surfaces appropriately roughened. Further, it is possible to use the material in an appropriate shape by applying plating or attaching other materials. As an example of this, Cu-
It is possible to use a Zn material by fixing U-plating or particulate 80.
又、本発明者がすでに提案したような多重構造の光電子
放出材も好適に使用出来る。Further, a photoelectron emitting material having a multilayer structure as already proposed by the present inventor can also be suitably used.
次に、紫外線及び/又は放射線の照射について述べれば
、紫外線の光源は、光電子放出材料が紫外線照射により
光電子を放出するものであれば良く、水銀灯、水素放電
管、キセノン放電管、ライマン放電管などを適宜利用出
来る。Next, regarding the irradiation of ultraviolet rays and/or radiation, the light source for ultraviolet rays may be any material that emits photoelectrons when irradiated with ultraviolet rays, such as a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be used as appropriate.
放射線を用いる場合の線源も同様に、照射により光電子
を放出するものであれば良く、α線、β線、T線などが
用いられ、照射手段としてコバルト60、セシウム13
7、ストロンチウム90などの放射性同位元素、又は原
子炉内で生成する放射性廃棄物及びこれに適当な処理加
工した放射性物質など適宜利用出来る。Similarly, when using radiation, the radiation source may be one that emits photoelectrons upon irradiation, and α-rays, β-rays, T-rays, etc. are used, and cobalt-60, cesium-13, etc. are used as the irradiation means.
7. Radioactive isotopes such as strontium-90, radioactive waste generated in nuclear reactors, and radioactive substances processed appropriately can be used as appropriate.
これらの材料、紫外線あるいは放射線の種類の使用は、
測定器形状、適用分野、精度、経済性等で適宜決めるこ
とが出来る。The use of these materials, ultraviolet light or types of radiation,
It can be determined appropriately depending on the shape of the measuring instrument, field of application, accuracy, economic efficiency, etc.
また、光電子放出材への紫外線及び/又は放射線の照射
は電場において行うと、光電子放出材からの光電子発生
が効果的に起こる。Furthermore, when the photoelectron emitting material is irradiated with ultraviolet rays and/or radiation in an electric field, photoelectron generation from the photoelectron emitting material occurs effectively.
電場の形成方法としては、装置の形状、構造成いは期待
する効果(精度)等に適宜選択することが出来る。The method for forming the electric field can be selected as appropriate depending on the shape and structure of the device, the expected effect (accuracy), etc.
電場の強さは、共存水分濃度や光電子放出材の種類等で
適宜決めることが出来る。微粒子の分級では、乾燥空気
(気流)を用いることが出来、この場合は電場の強さは
弱くて良い。The strength of the electric field can be appropriately determined depending on the coexisting moisture concentration, the type of photoelectron emitting material, etc. Dry air (airflow) can be used to classify fine particles, and in this case, the strength of the electric field may be weak.
電場の電圧は、0.01〜15kV、好ましくは0、0
1〜5kVであって、該電圧は上述の水分濃度、光電子
放出材の種類の他に装置の形状、使用する電極或いは金
属等の材質・構造成いは期待する効果により異なる。The voltage of the electric field is 0.01 to 15 kV, preferably 0,0
The voltage ranges from 1 to 5 kV, and the voltage varies depending on the above-mentioned water concentration, the type of photoelectron emitting material, the shape of the device, the material and structure of the electrodes or metals used, and the desired effect.
紫外線及び/又は放射線照射にる微粒子の荷電における
電場の強さは、本発明者の別の発明である。The strength of the electric field in charging microparticles upon irradiation with ultraviolet light and/or radiation is another invention of the present inventors.
電極材料とその構造は通常の荷電装置において使用され
ているもので良く、例えば電極材料としてタングステン
線あるいは棒が用いられる。The electrode material and its structure may be those used in ordinary charging devices; for example, a tungsten wire or rod is used as the electrode material.
荷電微粒子は、電極あるいは電場を適宜設置することで
分級出来る。該電圧はlV〜15kVであり、装置の形
状・構造、使用する電極あるいは金属の材質・構造、効
果等により適宜決めることが出来る。Charged particles can be classified by appropriately installing electrodes or electric fields. The voltage ranges from 1V to 15kV and can be appropriately determined depending on the shape and structure of the device, the material and structure of the electrodes or metals used, and the effects.
また、どの粒径の微粒子がどのような電極(電場)で捕
集されるか、どのような細孔で除去されるか、あるいは
、どこの位置の部分に捕捉されるかあるいは集まるかは
、装置の形状、構造、条件即ちガスの流速、電場の強さ
、電場の勾配の程度、気流の流れ方向、すなわち、上向
流か下向流か横向流かななめの方向かなどによって異な
るので、予め予備試験等で粒径のわかっている粒子を用
いて調べておくとか、又は捕捉された微粒子を顕微鏡観
察等により決めることが出来る。In addition, what particle size fine particles are collected by what kind of electrode (electric field), what kind of pores are used to remove them, or where they are captured or collected are determined by It varies depending on the shape, structure, and conditions of the device, such as the gas flow rate, the strength of the electric field, the degree of the electric field gradient, and the direction of the air flow, that is, whether it is an upward flow, a downward flow, a horizontal flow, or a diagonal direction. This can be determined by conducting a preliminary test or the like using particles of known particle size, or by observing the captured particles using a microscope.
以下に、本発明の実施例を図面により説明するが、本発
明はこれに限定されない。Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.
第1図は、本発明の分級装置の概略断面図である。第1
図は紫外線を用いた分級装置である。FIG. 1 is a schematic cross-sectional view of the classification device of the present invention. 1st
The figure shows a classification device that uses ultraviolet light.
第1図において、A1はガス導入口1から導入された気
流中微粒子に荷電の付与を行う微粒子荷電部、B、は、
該荷電微粒子の分級を行う荷電微粒子分級部を示す。In FIG. 1, A1 is a particulate charging unit that charges the particulates in the airflow introduced from the gas inlet 1, and B is
A charged fine particle classification section that classifies the charged fine particles is shown.
微粒子は、予め混合・調整器2にて攪拌混合されている
。微粒子は、混合・調整器2に空気3を導入することに
より、導入空気に同伴され、予めインパクタ(図示され
ていない)等により1μm以上の大きい粒子が除去され
、微粒子荷電部A1に導入される。The fine particles are stirred and mixed in advance in a mixer/regulator 2. Fine particles are entrained in the introduced air by introducing air 3 into the mixer/regulator 2, and large particles of 1 μm or more are removed in advance by an impactor (not shown) or the like, and then introduced into the particle charging section A1. .
該導入空気中に含まれる微粒子は、荷電部A1において
、紫外線照射源4からの紫外線照射を受けた光電子放出
面5から放出される光電子により荷電される。ここでは
、微粒子が効率良く荷電され、適当な荷電条件の選択に
より微粒子に主に1価の電荷を付与させる。The fine particles contained in the introduced air are charged in the charging section A1 by photoelectrons emitted from the photoelectron emitting surface 5 that has been irradiated with ultraviolet rays from the ultraviolet irradiation source 4. Here, the fine particles are efficiently charged, and by selecting appropriate charging conditions, the fine particles are mainly given a monovalent charge.
微粒子荷電部A、は、主に、紫外線発生源4と光電子放
出材5、電極6より構成されている。The particulate charging section A is mainly composed of an ultraviolet radiation source 4, a photoelectron emitting material 5, and an electrode 6.
本例では、光電子放出材5と電極6の間に電場が形成さ
れている。In this example, an electric field is formed between the photoelectron emitting material 5 and the electrode 6.
荷電微粒子は、荷電微粒子分級部B1において分級され
、一定の粒径に揃った微粒子がガス排出口?より得られ
る。The charged fine particles are classified in the charged fine particle classification section B1, and the fine particles having a constant particle size are sent to the gas outlet. More can be obtained.
該分級部B、では、微粒子荷電部A+で微粒子が効率良
く、主に1価に荷電されるので、電極や電場等を適宜設
けることにより粒径の揃った微粒子が効果的に得られる
。In the classification section B, the particles are efficiently charged mainly monovalently in the particle charging section A+, so that by appropriately providing electrodes, electric fields, etc., particles of uniform particle size can be effectively obtained.
本例の荷電微粒子分級部B、は、主に不用な微細な微粒
子の捕捉除去を行う捕集電極8、不用な比較的大きな微
粒子の除去を行う細孔(弱い電場がかかっており、一定
の流速でガス吸引を行うことで不用な微粒子が除去され
る)9、一定の粒径に揃った微粒子の取出口IOにより
構成されている。The charged particle classification section B of this example consists of a collection electrode 8 that mainly captures and removes unnecessary fine particles, and a pore (where a weak electric field is applied and a constant Unnecessary particulates are removed by suctioning gas at a flow rate) 9. Consists of an outlet IO for taking out particulates with a constant particle size.
微粒子荷電部A、で荷電された幅広い粒径分布を有する
微粒子群は、先ず不用な微細な微粒子が捕集電極8で除
去され、次いで不用な比較的大きな微粒子は一定流速で
ガス吸引されている細孔9で除去され、一定の粒径に揃
った微粒子が取出口lOに集まり、ガス排出ロアより取
り出される。From the particulate group having a wide particle size distribution charged in the particulate charging section A, unnecessary fine particulates are first removed by a collection electrode 8, and then unnecessary relatively large particulates are gas-sucked at a constant flow rate. Fine particles removed through the pores 9 and having a uniform particle size gather at the outlet lO and are taken out from the gas exhaust lower.
第1図に示す例においては、気流の流れ方向は上から下
方向であるが、装置の形状、構造成いは使用目的等に応
じ、下から上方向へ、或いは横方向やななめ方向の流れ
とすることも出来る。In the example shown in Figure 1, the airflow direction is from top to bottom, but depending on the shape, structure, and intended use of the device, the airflow may flow from bottom to top, or in a lateral or diagonal direction. It is also possible to do this.
本例の荷電微粒子の分級は、不用な微細な微粒子を電極
で除去し、又不用な比較的大きな微粒子を細孔で除去を
行い残る微粒子を取出口で得ている場合であるが、本例
に何ら限定されるものでなく適宜の方法により目的の微
粒子(粒径の揃った微粒子)を取り出すことが出来る。In the classification of charged particles in this example, unnecessary fine particles are removed with an electrode, unnecessary relatively large particles are removed with pores, and the remaining particles are obtained at the outlet. The target fine particles (fine particles with uniform particle size) can be taken out by any suitable method without being limited to the above.
例えば、試料ガス流路中に電場を設けた複数の試料(微
粒子)取出口を設置し、電場の強さや試料(微粒子)取
出口の位置の対応により、目的の(粒径の〉微粒子を得
ることができる。For example, by installing multiple sample (fine particle) outlets with an electric field in the sample gas flow path, and by matching the electric field strength and the position of the sample (fine particle) outlets, the desired particle size can be obtained. be able to.
本例では、微粒子の荷電を電場で行っているが、電場が
ない場合も実施できる。In this example, the particles are charged using an electric field, but it can also be carried out without an electric field.
本発明によれば、次の効果を奏する。 According to the present invention, the following effects are achieved.
1、 紫外線及び/又は放射線を光電子放出材に照射す
ることにより得られる光電子により微粒子を荷電するこ
とにより、
■ 目的とする粒径の微粒子を適当な条件のもとで効率
良く1価に荷電することが出来る。1. By charging microparticles with photoelectrons obtained by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation, ■ Efficiently charging microparticles with a desired particle size to a monovalent charge under appropriate conditions. I can do it.
■ ■の荷電微粒子は、捕集電極や電場等を適宜設置す
ることにより精度良く (粒径が均一に〉分級出来る。■ Charged fine particles in ■ can be classified with high accuracy (uniform particle size) by appropriately installing collection electrodes, electric fields, etc.
2.0.01〜0.1μm程度あるいは、これ以下の粒
径の超微粒子も容易に荷電されるので、精度良く分級出
来る。Ultrafine particles with a particle size of about 2.0.01 to 0.1 μm or less can be easily charged, so they can be classified with high accuracy.
3、 本発明の装置は構造が簡単であって、操作、保守
が容易であるので経済的で、かつ、実用的な分級装置を
提供できる。3. The device of the present invention has a simple structure and is easy to operate and maintain, so it can provide an economical and practical classification device.
第1図は、本発明の分級装置の一実施例を示す概略断面
図である。
A1・・・微粒子荷電部、B1・・・荷電微粒子分級部
l・・・ガス導入口、2・・・混合・調整器、3・・・
空気、4・・・紫外線照射源、5・・・光電子放出面、
6
・・・電極、
・・・ガス排出口、
8・・・捕集電極、
9・・・細孔、
・・・微粒子取出口FIG. 1 is a schematic sectional view showing an embodiment of the classification device of the present invention. A1...Particle charging unit, B1...Charged particle classification unit l...Gas inlet, 2...Mixer/regulator, 3...
Air, 4... Ultraviolet irradiation source, 5... Photoelectron emission surface,
6...electrode,...gas outlet, 8...collecting electrode, 9...pore,...fine particle outlet
Claims (1)
ことにより発生する光電子により微粒子に荷電を付与し
、分級することを特徴とする微粒子の分級方法。 2、電場において光電子放出材に紫外線及び/又は放射
線の照射を行う請求項1記載の分級方法。 3、前記光電子放出材が、光電的な仕事関数の小さい物
質より成る、請求項1又は2記載の分級方法。 4、前記光電子放出材が、Ba、sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、Si、Ta、Ti、
Sn、P及びその化合物から選ばれた一種の材料より成
る、請求項3記載の分級方法。 5、前記光電子放出材が、Ba、Sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、Si、Ta、Ti、
Sn、P及びその化合物から選ばれた二種以上の合金又
は複合材より成る、請求項3記載の分級方法。 6、前記光電子放出材が、AgとMg、CuとBe又は
BaとAlからなる合金から選ばれた一種の材料より成
る、請求項3記載の分級方法。 7、前記光電子放出材が、黄銅、青銅、りん青銅から選
ばれた材料の1つより成る、請求項3記載の分級方法。 8、前記光電子放出材が網状である、請求項1記載の分
級方法。 9、前記電場の電圧が、0.01〜15kV、好ましく
は0.01〜5kVである請求項2記載の分級方法。 10、荷電微粒子の分級を、電場により行う請求項1記
載の分級方法。 11、前記電場の電圧が、1V〜15kVである請求項
10記載の分級方法。 12、ガス導入口及びガス排出口を有し、ガス導入口か
らガス排出口に至るガス流路中に、少くとも光電子放出
材に紫外線及び/又は放射線照射を行い微粒子に荷電さ
せる微粒子荷電部と、該微粒子荷電部の下流側に荷電微
粒子を分級する荷電微粒子分級部とを設けてなる微粒子
の分級装置。 13、微粒子荷電部及び/又は荷電微粒子分級部に電場
を付与する手段を有してなる請求項12記載の分級装置
。[Claims] 1. A method for classifying fine particles, which comprises classifying fine particles by charging them with photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation. 2. The classification method according to claim 1, wherein the photoelectron emitting material is irradiated with ultraviolet rays and/or radiation in an electric field. 3. The classification method according to claim 1 or 2, wherein the photoelectron emitting material is made of a substance with a small photoelectric work function. 4. The photoelectron emitting material is Ba, sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, Si, Ta, Ti,
The classification method according to claim 3, wherein the classification method is made of one kind of material selected from Sn, P, and compounds thereof. 5. The photoelectron emitting material is Ba, Sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, Si, Ta, Ti,
The classification method according to claim 3, comprising an alloy or composite material of two or more selected from Sn, P, and compounds thereof. 6. The classification method according to claim 3, wherein the photoelectron emitting material is made of one kind of material selected from an alloy consisting of Ag and Mg, Cu and Be, or Ba and Al. 7. The classification method according to claim 3, wherein the photoelectron emitting material is made of one material selected from brass, bronze, and phosphor bronze. 8. The classification method according to claim 1, wherein the photoelectron emitting material has a net shape. 9. The classification method according to claim 2, wherein the voltage of the electric field is 0.01 to 15 kV, preferably 0.01 to 5 kV. 10. The classification method according to claim 1, wherein the charged fine particles are classified using an electric field. 11. The classification method according to claim 10, wherein the voltage of the electric field is 1V to 15kV. 12. A particulate charging unit having a gas inlet and a gas outlet, and in the gas flow path from the gas inlet to the gas outlet, at least irradiating the photoelectron emitting material with ultraviolet rays and/or radiation to charge the particulates. A particulate classification device comprising: a charged particulate classifier for classifying charged particulates on the downstream side of the particulate charging part. 13. The classification device according to claim 12, comprising means for applying an electric field to the particulate charging section and/or the charged particulate classifying part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17719889A JPH0342057A (en) | 1989-07-11 | 1989-07-11 | Method and device for classifying fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17719889A JPH0342057A (en) | 1989-07-11 | 1989-07-11 | Method and device for classifying fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0342057A true JPH0342057A (en) | 1991-02-22 |
Family
ID=16026896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17719889A Pending JPH0342057A (en) | 1989-07-11 | 1989-07-11 | Method and device for classifying fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0342057A (en) |
-
1989
- 1989-07-11 JP JP17719889A patent/JPH0342057A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3405439B2 (en) | How to clean solid surfaces | |
EP0445787B1 (en) | Photoelectron emitting member and uses thereof | |
US10799883B2 (en) | Method for the selective purification of aerosols | |
JPH08211B2 (en) | Method and device for cleaning closed space | |
US10675639B2 (en) | Device for collecting particles contained in an aerosol, comprising electrometres to determine nanoparticle concentration and particle size | |
US5060805A (en) | Photoelectron emitting member | |
JPH0342057A (en) | Method and device for classifying fine particle | |
JP2877487B2 (en) | Photoemission material | |
Fordham et al. | Direct measurement of the composition of soil components which retain added arsenate | |
JPH0625731B2 (en) | Method and apparatus for measuring the concentration of fine particles suspended in gas | |
WO2006098397A1 (en) | Electrostatic concentration collector for ultrafine particle and submicron particle remover for use therein | |
JP2877449B2 (en) | Photoemission material | |
JPH032558A (en) | Method and instrument for measuring fine particle in liquid | |
JPH04171062A (en) | Photoelectron emitting material and method for charging minute partials using the same | |
JPH02303557A (en) | Method for charging fine particle in gas by photoelectron | |
JPH02303558A (en) | Method for charging fine particle in gas | |
JPH0247536A (en) | Measuring method of suspended particulate in gas and apparatus therefor | |
Mouti | Synthesis and characterization of spark discharge generated aerosol nanoparticles, focusing in their deposition on various substrates | |
JPH028638A (en) | Method and apparatus for cleaning gas | |
JP3046085B2 (en) | Photoemission device and method of charging fine particles using the same | |
JPH04190860A (en) | Method and apparatus for charging fine particle | |
JPH06154650A (en) | Method and device for charging fine particles in space by photoelectron | |
JPH0568910A (en) | Apparatus and method for charging and collecting fine particles | |
JP2001259474A (en) | Device and method for capturing granular material | |
JP2000176310A (en) | Gas cleaning method and apparatus |