JPH02303558A - Method for charging fine particle in gas - Google Patents

Method for charging fine particle in gas

Info

Publication number
JPH02303558A
JPH02303558A JP1120564A JP12056489A JPH02303558A JP H02303558 A JPH02303558 A JP H02303558A JP 1120564 A JP1120564 A JP 1120564A JP 12056489 A JP12056489 A JP 12056489A JP H02303558 A JPH02303558 A JP H02303558A
Authority
JP
Japan
Prior art keywords
fine particles
particles
charging
charged
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120564A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Kazuhiko Sakamoto
和彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1120564A priority Critical patent/JPH02303558A/en
Publication of JPH02303558A publication Critical patent/JPH02303558A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow measurement with high accuracy even if the sizes of particles are fine and to allow the execution of sepn., classification or surface reforming and control with high efficiency by charging the fine particles after previously growing the fine particles to large grain sizes. CONSTITUTION:The fine particles in gas 1 are charged by the photoelectrons generated when a photoelectron releasing material 3 (e.g. Fe, Cu, Al) is irradiated with the UV rays from a UV lamp 2 and/or radiations in the electric field formed between the photoelectron releasing material 3 and electrodes 4. A condensable material (e.g. alcohol) is condensed on the fine particles to largely grow the grains sizes of the fine particles in a grain size growing section 6 and thereafter, the fine particles are charged at this time. As a result, the measurement with the high accuracy is executed even when the sizes of particles are fine. The sepn., classification or surface reforming and control are thus executed with the high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体中の微粒子の荷電方法に係り、特に気体
中の微粒子を予め粒径を大きく成長させてから荷電する
微粒子の荷電方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for charging fine particles in a gas, and particularly relates to a method for charging fine particles in a gas by growing the fine particles in the gas to a large size in advance and then charging the fine particles. .

そして、微粒子を荷電して利用する分野としては、 a)荷電微粒子により、空気中あるいは排ガス中等の気
体中の微粒子の測定を行う分野。
Fields in which charged particles are used include: a) Fields in which charged particles are used to measure particles in the air or gases such as exhaust gas.

b)荷電微粒子を捕集、除去して清浄化気体を得る分野
b) A field in which purified gas is obtained by collecting and removing charged particles.

C)微粒子の分離、分級や表面改質、制御を行う分野、
等がある。
C) Field of separation, classification, surface modification, and control of fine particles;
etc.

〔従来の技術〕[Conventional technology]

従来の技術を測定の分野で説明する。 The conventional technology will be explained in the field of measurement.

従来、例えば空気中に浮遊状態で存在している微粒子の
濃度等の測定方法としては、(1)  光散乱法、例え
ば光散乱カウンタ、フォトメータ、光透過法或いは暗視
野顕微鏡を利用する方法。
Conventionally, methods for measuring the concentration of fine particles suspended in the air include (1) a light scattering method, such as a method using a light scattering counter, a photometer, a light transmission method, or a dark field microscope;

(2)重量法等がある。(2) There is a gravimetric method, etc.

これら従来法の欠点としては、 (1)光散乱法においては■061−以下の如き極微細
粒子の濃度は測定不能である。■多粒径の粒子について
瞬時に濃度を測定する場合その精度が不十分である。■
粒子が大きい場合検出部に至るまでの間に粒子の損失が
生じ精度が不十分になる 等の欠点があり、 (2)重量法においては、■極微細粒子の濃度は測定不
能である。■多粒径の粒子についての瞬時の濃度の測定
精度が不十分である等の欠点があった。
The drawbacks of these conventional methods are: (1) In the light scattering method, the concentration of ultrafine particles such as (1) 061- or less cannot be measured. ■The accuracy is insufficient when measuring the concentration of particles with multiple particle sizes instantly. ■
If the particles are large, there are drawbacks such as loss of particles during the journey to the detection unit, resulting in insufficient accuracy; (2) In the gravimetric method, ■The concentration of ultrafine particles cannot be measured. (2) There were drawbacks such as insufficient accuracy in measuring the instantaneous concentration of particles with multiple particle sizes.

これらの欠点に対し、本発明者は、前記従来の方法と原
理を異にし、光電子放出材に紫外線及び/又は放射線を
照射し、発生する光電子によりガス中に浮遊している微
粒子に荷電を付与し、この荷電量を計測するか、あるい
は荷電微粒子を印加電圧を変化させることにより分級し
、該分級された荷電微粒子を検出することにより空気中
の微粒子を測定する方法を提案した(特願昭61−85
997号、特願昭63−197189号)。
To address these drawbacks, the present inventors differed from the conventional method in principle by irradiating the photoelectron emitting material with ultraviolet rays and/or radiation, and using the generated photoelectrons to charge the fine particles suspended in the gas. We then proposed a method for measuring fine particles in the air by measuring the amount of charge or by classifying charged fine particles by changing the applied voltage and detecting the classified charged fine particles. 61-85
No. 997, Japanese Patent Application No. 197189/1989).

該方法により微粒子は、効率良く荷電されるが、微粒子
サイズ(粒径)が微細になるに従い荷電効率が低下し、
測定器の精度が下がる課題があった。すなわち、測定は
、微粒子を荷電し、該荷電を利用して行うので、微粒子
への荷電効率が低下すると、その分測定精度が下がるこ
とにある。
Although the fine particles are efficiently charged by this method, the charging efficiency decreases as the fine particle size (particle diameter) becomes finer.
There was an issue with the accuracy of the measuring device decreasing. That is, since measurement is performed by charging the particles and utilizing the charge, if the charging efficiency of the particles decreases, the measurement accuracy decreases accordingly.

この荷電効率低下の原因は、例えば光電子による荷電の
場合で説明すると粒子の粒径が微細になるに従って光電
子と微細な粒子との衝突確率や、光電子の微細な粒子上
への拡散による付着確率が低下することが考えられる。
The reason for this decrease in charging efficiency is explained in the case of charging by photoelectrons, for example.As the particle size becomes finer, the probability of collision between photoelectrons and fine particles and the probability of attachment due to diffusion of photoelectrons onto fine particles increase. It is possible that this will decrease.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように、従来技術においては、微粒子サイズが微
細になるに従い荷電効果が低下し、測定器では精度が下
がるという課題があった。
As described above, in the prior art, there was a problem that as the particle size became finer, the charging effect decreased, and the accuracy of the measuring instrument decreased.

そこで、本発明は、上記の課題を解決し、微粒子サイズ
の微細なものでも、高精度で測定でき、また、高効率で
分離・分級あるいは表面改質、制御できる方法を提供す
ることを目的とする。
Therefore, the purpose of the present invention is to solve the above-mentioned problems and provide a method that can measure even minute particles with high precision, as well as separation, classification, surface modification, and control with high efficiency. do.

〔課題を解決するだめの手段〕[Failure to solve the problem]

前記目的を達成するために、本発明では、光電子放出材
に紫外線及び/又は放射線を照射することにより発生す
る光電子による気体中の微粒子の荷電方法において、予
め微粒子の粒径を大きく成長させてから荷電することを
特徴としたものである。
In order to achieve the above object, in the present invention, in a method of charging fine particles in a gas with photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation, the fine particles are grown in size in advance and then It is characterized by being electrically charged.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明において、微粒子粒径の成長方法としては、微細
な微粒子の粒径を大きくできる方法であれば何れでもよ
く、周知の方法を適宜用いることができる。
In the present invention, as the method for growing the particle size, any method that can increase the particle size of fine particles may be used, and any known method can be used as appropriate.

該方法として、通常微細な微粒子上に凝縮性物質を凝縮
させる方法が効果的かつ簡便であることから用いられる
As this method, a method of condensing a condensable substance on fine particles is usually used because it is effective and simple.

凝縮性物質は、微細な微粒子上に凝縮し粒径を大きくさ
せるものであれば何れでも良く、一般にはアルコールが
効果的かつ簡便であることから用いられる。
Any condensable substance may be used as long as it condenses on fine particles and increases the particle size, and alcohol is generally used because it is effective and simple.

次に、光電子放出材について説明する。Next, the photoelectron emitting material will be explained.

光電子放出面の材質は、紫外線照射により光電子を放出
するものであれば何れでも良く、光電的な仕事関数の小
さいもの程好ましい。効果や経済性の面から、Ba、 
5rSCa、 Y 、 Gd、 La。
The material of the photoelectron emitting surface may be any material as long as it emits photoelectrons upon irradiation with ultraviolet rays, and the smaller the photoelectric work function, the more preferable it is. From the viewpoint of effectiveness and economy, Ba,
5rSCa, Y, Gd, La.

(:eS Nd1 Ths  Pr、Be、ZrS R
e、NIS Zn、Cu、  Ag。
(:eS Nd1 Ths Pr, Be, ZrS R
e, NIS Zn, Cu, Ag.

PtS CdS PbS Al、C1Mg、Au、In
S Bi、Nb、Si。
PtS CdS PbS Al, C1Mg, Au, In
S Bi, Nb, Si.

Ti5TaSSn、 Pのいずれか又はこれらの化合物
又は合金が好ましく、これらは単独で又は二種以上を複
合して用いられる。複合材としては、アマルガムの如く
物理的な複合材も用いうる。
Any one of Ti5TaSSn and P or a compound or alloy thereof is preferred, and these may be used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can also be used.

化合物としては酸化物、はう化物、炭化物があり、酸化
物にはBad、 SrO,Cab、 Y2O5,Gd2
L。
Compounds include oxides, ferrides, and carbides, and oxides include Bad, SrO, Cab, Y2O5, and Gd2.
L.

NdxOs、 Th0z、 ZrL、 Fe2es、 
ZnO,Cub、 AgzO。
NdxOs, Th0z, ZrL, Fe2es,
ZnO, Cub, AgzO.

PtO,PbO,Al2O3,MgO,InzOs、 
Bin、 NbO,BeOなどがあり、またほう化物に
はYL、 GdBg、 LaBg。
PtO, PbO, Al2O3, MgO, InzOs,
There are Bin, NbO, BeO, etc., and borides include YL, GdBg, LaBg.

Prys、 2rLなどがあり、さらに炭化物としては
lrC,Tag:、 TiC,NbCなどがある。
Examples include Prys, 2rL, and carbides such as lrC, Tag:, TiC, and NbC.

また、合金としては黄銅、青銅、リン青銅、AgとMg
との合金 (Mgが2〜20wt%)  、CuとBe
との合金(Beが1〜10 wt%)及びBaとA1と
の合金を用いることができ、上記式gとMgとの合金、
CuとBeとの合金及びBaとAIとの合金が好ましい
In addition, alloys include brass, bronze, phosphor bronze, Ag and Mg.
(2-20wt% Mg), Cu and Be
(Be is 1 to 10 wt%) and an alloy of Ba and A1 can be used, and an alloy of the above formula g and Mg,
An alloy of Cu and Be and an alloy of Ba and AI are preferred.

酸化物は金属表面のみを空気中で加熱したり、或いは薬
品で酸化することによっても得ることができる。
Oxides can also be obtained by heating only the metal surface in air or by oxidizing it with chemicals.

さらに他の方法としては使用前に加熱し、表面に酸化層
を形成して長期にわたって安定な酸化層を得ることもで
きる。この例としてはMgとAgとの合金を水蒸気中で
300〜400℃の温度の条件下でその表面に酸化薄膜
を形成させることができる。この酸化薄膜は長期間にわ
たって安定なものである。
Still another method is to heat the material before use to form an oxidized layer on the surface to obtain a stable oxidized layer over a long period of time. As an example of this, an oxide thin film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 300 to 400°C. This thin oxide film is stable over a long period of time.

これらの材料の使用形状は、板状、プリーツ状、格子状
、網状等、があり表面を適宜凹凸状とし使用することが
出来る。又、適宜の形状の材料にメッキや他材料の付着
を施して使用することが出来る。この例として、Cu−
Zn材料にAuメッキあるいは粒子状の^Uを固定し使
用することが出来る。
These materials can be used in various shapes, such as plate, pleat, lattice, and net shapes, and can be used with their surfaces appropriately roughened. Further, it is possible to use a material having an appropriate shape by plating or attaching other materials. As an example of this, Cu-
It is possible to use Au plating or fixing particulate ^U on Zn material.

次に、紫外線及び/又は放射線の照射について述べれば
、紫外線の光源は、光電子放出材料が紫外線照射により
光電子を放出するものであれば良く、水銀灯、水素放電
管、キセノン放電管、ライマン放電管などを適宜利用出
来る。
Next, regarding the irradiation of ultraviolet rays and/or radiation, the light source for ultraviolet rays may be any material that emits photoelectrons when irradiated with ultraviolet rays, such as a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be used as appropriate.

放射線を用いる場合の線源も同様に、照射により光電子
を放出するものであれば良く、α線、β線、T線などが
用いられ、照射手段としてコバルト60、セシウム13
7、ストロンチウム90などの放射性同位元素、又は原
子炉内で生成する放射性廃棄物及びこれに適当な処理加
工した放射性物質など適宜利用出来る。
Similarly, when using radiation, the radiation source may be one that emits photoelectrons upon irradiation, and α-rays, β-rays, T-rays, etc. are used, and cobalt-60, cesium-13, etc. are used as the irradiation means.
7. Radioactive isotopes such as strontium-90, radioactive waste generated in nuclear reactors, and radioactive substances processed appropriately can be used as appropriate.

これらの材料、紫外線あるいは放射線の種類の使用は、
測定器形状、適用分野、精度、経済性等で適宜状めるこ
とが出来る。
The use of these materials, ultraviolet light or types of radiation,
Appropriate decisions can be made based on the shape of the measuring instrument, field of application, accuracy, economic efficiency, etc.

また、光電子放出材への紫外線及び/又は放射線の照射
は電場において行うと、光電子放出材からの光電子発生
が効果的に起こり有効である0           
            (電場の形成方法としては、
測定器の形状、構造成いは期待する効果(精度)等によ
り適宜選択することが出来る。
Furthermore, when the photoelectron emitting material is irradiated with ultraviolet rays and/or radiation in an electric field, photoelectron generation from the photoelectron emitting material occurs effectively and is effective.
(As for the method of forming the electric field,
The shape and structure of the measuring device can be appropriately selected depending on the expected effect (accuracy), etc.

電場の電圧は、0.02〜15kV、好ましくは0.0
2〜5kVであって、該電圧は気体中の成分、濃度、装
置の形状、使用する電極或いは金属の材質・構造成いは
期待する効果により異なる。
The voltage of the electric field is 0.02 to 15 kV, preferably 0.0
The voltage ranges from 2 to 5 kV, and the voltage varies depending on the components in the gas, the concentration, the shape of the device, the material and structure of the electrodes or metals used, and the desired effect.

電極材料とその構造は通常の荷電装置において使用され
ているもので良く、例えば電極材料としてタングステン
線あるいは棒が用いられる。
The electrode material and its structure may be those used in ordinary charging devices; for example, a tungsten wire or rod is used as the electrode material.

上記ではいずれも微粒子の荷電法として、光電子による
方法を説明したが、該方法に限定されるものでなく周知
の方法が適宜使用できる。
In the above, a method using photoelectrons has been described as a method for charging fine particles, but the method is not limited to this method, and any known method can be used as appropriate.

該荷電法の例として、光電子による方法の他にコロナ放
電を利用する方法や放射性物質を利用する方法がある。
Examples of the charging method include methods using photoelectrons, methods using corona discharge, and methods using radioactive substances.

この内、光電子による方法は、荷電効率が高いことやオ
ゾン発生がないこと、荷電分布がシャープなことから好
適に用いられる。
Among these methods, the method using photoelectrons is preferably used because it has high charging efficiency, does not generate ozone, and has a sharp charge distribution.

]実施例〕 以下、本発明を実施例により具体的に説明するが、本発
明はこれらの実施例に限定されるものではない。
[Example] The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 本発明による燃焼排ガス中の微粒子の測定を第1図に従
って具体的に説明する。
Example 1 Measurement of particulates in combustion exhaust gas according to the present invention will be specifically explained with reference to FIG.

第1図は、微粒子の検出部にエレクトロメータを用いた
概略図である。予め分級器(図示されていない)により
0.1OS以上の大きい粒子が除去された微細な微粒子
を含む空気1が空気導入口から導入され、該空気中に含
まれる微細な微粒子は、先ず粒径成長部^1にて粒径が
大きくされ、次いで荷電部B、において、紫外線照射源
2からの紫外線照射を受けた光電子放出面3から放出さ
れる光電子により荷電される。
FIG. 1 is a schematic diagram in which an electrometer is used as a particulate detection section. Air 1 containing fine particles from which large particles of 0.1 OS or more have been removed in advance by a classifier (not shown) is introduced from the air inlet, and the fine particles contained in the air are first separated by particle size. The grain size is increased in the growth section ^1, and then in the charging section B, the particles are charged by photoelectrons emitted from the photoelectron emitting surface 3 that has been irradiated with ultraviolet rays from the ultraviolet irradiation source 2.

粒径成長部A1を説明する。The grain size growth part A1 will be explained.

粒径成長部A+は、微細な微粒子の粒径を大きく成長さ
せる部分である。
The particle size growth part A+ is a part where the particle size of fine particles is increased.

核部A、における方法は、微細な微粒子の粒径を大きく
出来る方法であれば何れでも良く、周知の方法を適宜用
いることが出来る。
The method for forming the core part A may be any method as long as it can increase the particle size of the fine particles, and any known method can be used as appropriate.

本例では、アルコールの入った容器に0,1−以下の微
粒子を含む空気が導入され、微粒子上にアルコールが凝
縮するようにしている。(微粒子はみかけの粒径が大き
い粒子となる。)荷電部B1を説明する。
In this example, air containing 0.1- or less fine particles is introduced into a container containing alcohol, so that the alcohol condenses on the fine particles. (Fine particles are particles with a large apparent particle size.) The charging section B1 will be explained.

荷電部B、は、主に、紫外線ランプ2と光電子放出材3
及び電極4より構成されている。荷電部B1では、光電
子放出材3と電極4の間に電場が形成されており、紫外
線ランプ2の照射を受けた電子放出材3から、光電子が
効果的に発生している。空気導入口から導入された空気
1中の微細な微粒子は、粒径成長部A、で粒径成長され
るので該光電子の作用で効率良く荷電される。
The charging section B mainly includes an ultraviolet lamp 2 and a photoelectron emitting material 3.
and an electrode 4. In the charging section B1, an electric field is formed between the photoelectron emitting material 3 and the electrode 4, and photoelectrons are effectively generated from the electron emitting material 3 irradiated with the ultraviolet lamp 2. Fine particles in the air 1 introduced from the air inlet are grown in size in the particle size growth section A, and are efficiently charged by the action of the photoelectrons.

荷電部B、で荷電された微粒子は、後流のエレクトロメ
ータ5よりなる検出部C8にて荷電量が計測され微粒子
濃度が測定される。
The amount of charge of the particles charged in the charging section B is measured by a detection section C8 comprising an electrometer 5 located downstream, and the concentration of the particles is measured.

本例では、燃焼排ガス中の粒径が0゜IFm以上の微粒
子を予め分級器により除去しているので、該測定では0
.IP以下の微細な微粒子の濃度が連続的に得られる。
In this example, fine particles with a particle size of 0°IFm or more in the combustion exhaust gas are removed in advance by a classifier, so the measurement results are 0.
.. A concentration of fine particles below IP can be continuously obtained.

該分級器により分級される微粒子径の範囲を適宜変える
ことにより、適宜の粒径範囲の微粒子濃度が測定できる
By appropriately changing the range of particle sizes classified by the classifier, the concentration of particles in an appropriate particle size range can be measured.

咳分級器は、試料ガス中の微粒子を適宜の粒径範囲に分
級出来るものであれば何れで良い。
Any cough classifier may be used as long as it can classify fine particles in the sample gas into a suitable particle size range.

該分級器の例として、拡散式分級器が比較的高性能であ
り、かつ簡便であることから用いられる。拡散式分級器
は、0.005〜0,3−程度の粒径の微粒子が適宜の
粒径範囲で分級出来る。
As an example of the classifier, a diffusion classifier is used because it has relatively high performance and is simple. The diffusion classifier can classify fine particles having a particle size of about 0.005 to 0.3- to an appropriate particle size range.

分級器は、上述の他にサイクロン式、インパクタ式、メ
ンブランフィルタ式があり、適宜使用できる。
In addition to the above-mentioned classifiers, there are cyclone type, impactor type, and membrane filter type classifiers, which can be used as appropriate.

実施例2 半導体工業における空気の清浄化(クリーンルーム)を
図面に基いて説明する。
Example 2 Air purification (clean room) in the semiconductor industry will be explained based on drawings.

第2図はクリーンルームにふけるクリーンベンチ併用方
式、即ち、作業領域内の一部だけを高清浄度にした方式
の概略図を示すものである。
FIG. 2 shows a schematic diagram of a clean bench combined method used in a clean room, that is, a method in which only a part of the working area is kept at a high level of cleanliness.

第3図は、紫外線照射による光電子放出部の実施例を示
す概略図である。
FIG. 3 is a schematic diagram showing an embodiment of a photoelectron emission section using ultraviolet irradiation.

第2図においてクリーンルーム11内には、配管12か
ら導入される外気の粗粒子をプレフィルタ13でろ過し
た後、クリーンルーム11の空気取出し口14から取り
出された循環空気と共にファン15を介して空気調和装
置16にて温度及び湿度を調節した後、)IBP^フィ
ルター17により微粒子を除去した空気が循環供給され
ており、清浄度(クラスNo、 000程度に保持され
ている。
In FIG. 2, inside the clean room 11, coarse particles of the outside air introduced from the piping 12 are filtered by a pre-filter 13, and then the circulating air taken out from the air outlet 14 of the clean room 11 is air-conditioned via the fan 15. After adjusting the temperature and humidity in the device 16, the air from which particulates have been removed by the IBP^ filter 17 is circulated and supplied, maintaining the cleanliness level (class No. 000).

一方、クリーンルーム11内のファン及び電圧供給部材
8、H8PAフィルタ一部、粒径成長部及び光電子放出
材上への紫外線照射部9、荷電微粒子捕集フィルター1
0を設けたクリーンベンチ18内の作業台20上は、高
清浄度(クラス10)の無菌雰囲気に保持される。
On the other hand, in the clean room 11, there is a fan and voltage supply member 8, a part of the H8PA filter, a part 9 for irradiating ultraviolet rays onto the particle size growth part and the photoelectron emission material, and a charged particulate collection filter 1.
The workbench 20 in the clean bench 18 provided with a vacuum cleaner is maintained in a sterile atmosphere of high cleanliness (class 10).

即ち、クリーンベンチ18においては、クリーンルーム
11内の清浄度(クラス) 10,000程度の空気が
ファン8のファンにより吸収され、第3図に詳細に示さ
れるように88P^フイルター21により微粒子の大半
をおおまかに捕集、除去する。
That is, in the clean bench 18, air with a cleanliness (class) of about 10,000 in the clean room 11 is absorbed by the fan 8, and most of the fine particles are removed by the 88P filter 21, as shown in detail in FIG. roughly collected and removed.

HBP^フィルター21は、微粒子の内、粒径が0.0
3〜0.3−程度の微細な微粒子の捕集が困難であり、
該微粒子は流出する。流出した該微粒子は後方の粒径成
長部6で、粒径成長が行われ、次いで光電子により該微
粒子に荷電が付与され、荷電微粒子は荷電微粒子捕集フ
ィルター10により捕集、除去され、高清浄度な空気2
3が得られる。
The HBP^ filter 21 has a particle size of 0.0 among fine particles.
It is difficult to collect fine particles of about 3 to 0.3
The fine particles flow out. The outflowed fine particles undergo particle size growth in the rear particle size growth section 6, and then are charged with photoelectrons, and the charged fine particles are collected and removed by the charged fine particle collection filter 10, resulting in highly clean particles. degree of air 2
3 is obtained.

紫外線照射部22は、電極4、光電子放出材3、紫外線
ランプ2からなり、電極4と光電子放出材3との間にフ
ァン及び電圧供給部8から電圧を負荷し、又光電子放出
材3に紫外線の照射を行い、電極4と光電子放出材3の
間に粒径成長した微粒子を通すことにより、微粒子が効
率良く荷電される。該荷電微粒子は、荷電微粒子捕集フ
ィルター10で効率良く捕集される。
The ultraviolet irradiation section 22 consists of an electrode 4, a photoelectron emission material 3, and an ultraviolet lamp 2, and a voltage is applied between the electrode 4 and the photoelectron emission material 3 from a fan and a voltage supply section 8, and the ultraviolet rays are applied to the photoelectron emission material 3. By irradiating the photoelectron and passing the fine particles whose particle size has grown between the electrode 4 and the photoelectron emitting material 3, the fine particles are efficiently charged. The charged fine particles are efficiently collected by the charged fine particle collection filter 10.

上記夫々の構成、作用については実施例1で述べた通り
である。
The configuration and operation of each of the above components are as described in the first embodiment.

本例では、HOP^フィルターを使用しているが、フィ
ルターの使用は何ら限定されるものではなくフィルター
が無い場合でも同様に実施出来ることは言うまでもない
In this example, a HOP^ filter is used, but the use of the filter is not limited in any way, and it goes without saying that it can be implemented in the same way even without a filter.

実施例3 粒子発生器から発生させた粒子を、0.51/minで
第1図に示した粒径成長部及び荷電部に導入し、荷電効
率を調べ、粒径成長部を通過させない場合と比較した。
Example 3 Particles generated from a particle generator were introduced into the particle size growth section and charging section shown in Figure 1 at 0.51/min, and the charging efficiency was investigated. compared.

荷電条件は次のとおりである。The charging conditions are as follows.

粒子発生器;粒子:ポリスチレンラテックス粒径: 3
.IPIll 、 0.1.cm 、 0.05 ty
m荷電部;光電子放出材:黄銅に金メッキしたもの 紫外線ランプ:水銀ランプ 電場電圧: 500 V 粒径成長部;アルコールによる凝縮法 その結果を第1表に示す。
Particle generator; Particle: Polystyrene latex Particle size: 3
.. IPIll, 0.1. cm, 0.05ty
Charged part: Photoelectron emitting material: Brass plated with gold Ultraviolet lamp: Mercury lamp Electric field voltage: 500 V Grain size growth part: Condensation method using alcohol The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次のような効果を奏する。 According to the present invention, the following effects are achieved.

1、 測定を行う分野では、 ■ 測定精度が向上した。1. In the field of measurement, ■ Measurement accuracy has improved.

■ 特に従来測定が困難であった<0.1−の様な超微
粒子の測定に有効である。
(2) It is particularly effective in measuring ultrafine particles of <0.1-, which have been difficult to measure in the past.

■ 微粒子の粒径成長の前に、分級器等で予め微粒子を
粒径側に分離することにより、粒径側の微粒子濃度が精
度良く測定出来る。
(2) By separating the fine particles into particle sizes using a classifier or the like before the particle size growth of the particles, the concentration of fine particles on the particle size side can be measured with high accuracy.

■ 成長微粒子を荷電後、分級することで粒径側の微粒
子濃度が精度良く測定出来る。
■ By classifying the grown fine particles after charging them, the concentration of fine particles on the particle size side can be measured with high accuracy.

2、(荷電微粒子を捕集し)清浄気体を得る分野では、 ■ 微粒子、特に〈0.1−の様な超微粒子の捕集効率
が高まり、高清浄な気体が得られた。
2. In the field of obtaining clean gas (by collecting charged fine particles): (1) The efficiency of collecting fine particles, especially ultrafine particles such as <0.1-> has been increased, and highly clean gas has been obtained.

■ 従来の清浄気体を得る方法として、HBPAあるい
はULPAフィルターによる方法では、0.03〜0.
3門の微粒子の捕集効率が低かったが、本発明の方法と
、該フィルターによる方法を併用することにより、微粒
子が幅広い粒径範囲にわたり捕集でき、超高クリーンな
気体が得られた。
■ Conventional methods for obtaining clean gas using HBPA or ULPA filters have a concentration of 0.03 to 0.
Although the collection efficiency of the three types of particles was low, by using the method of the present invention in combination with the method using the filter, it was possible to collect particles over a wide range of particle sizes, and an ultra-clean gas was obtained.

3、 微粒子の分離、分級や表面改質、制御を行う分野
では、荷電効率が高まるので、分離、分級や表面改質、
制御が容易となった。
3. In the field of separation, classification, surface modification, and control of fine particles, charging efficiency is increased, so separation, classification, surface modification, and control are performed.
Control has become easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である微粒子の測定装置の概
略図、第2図は、作業領域内の一部を高清浄度にした方
式の概略図、第3図は本発明による紫外線照射を用いた
光電子放出部を示す概略図である。 At・・・粒径成長部、B1・・・荷電部、C1・・・
検出部、1・・・空気、2・・・紫外線ランプ、3・・
・光電子放出材、4・・・電極、5・・・エレクトロメ
ーター、6・・・粒径成長部、8・・・ファン及び電圧
供給部材、9・・・粒径成長部及び紫外線照射部、10
・・・荷電微粒子捕集フィルター 特許出願人  株式会社 荏原製作所 代  理  人     吉   嶺       桂
同        松   1)      大第 1
 図 第2図
Fig. 1 is a schematic diagram of a particulate measuring device according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a system in which a part of the working area is made highly clean, and Fig. 3 is a schematic diagram of a system in which a part of the working area is made highly clean. FIG. 2 is a schematic diagram showing a photoelectron emission section using irradiation. At... Grain size growth part, B1... Charged part, C1...
Detection unit, 1...Air, 2...Ultraviolet lamp, 3...
- Photoelectron emission material, 4... Electrode, 5... Electrometer, 6... Particle size growth section, 8... Fan and voltage supply member, 9... Particle size growth section and ultraviolet irradiation section, 10
...Charged particle collection filter patent applicant: Ebara Corporation Representative: Yoshimine Katsurado Matsu 1) Daidai 1
Figure 2

Claims (1)

【特許請求の範囲】 1、光電子放出材に紫外線及び/又は放射線を照射する
ことにより発生する光電子による気体中の微粒子の荷電
方法において、予め微粒子の粒径を大きく成長させてか
ら荷電することを特徴とする気体中の微粒子の荷電方法
。 2、微粒子の荷電を、電場において行う請求項1記載の
気体中の微粒子の荷電方法。 3、微粒子の粒径の成長を、微粒子上に凝縮性物質を凝
縮させて行う請求項1又は2記載の気体中の微粒子の荷
電方法。 4、凝縮性物質がアルコールである請求項3記載の気体
中の微粒子の荷電方法。 5、前記光電子放出材が、光電的な仕事関数の小さい物
質より成る、請求項1、2又は3記載の気体中の微粒子
の荷電方法。 6、前記光電子放出材が、Ba、Sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、Si、Ta、Ti、
Sn、P及びその化合物から選ばれた一種の材料より成
る、請求項1、2、3又は5記載の気体中の微粒子の荷
電方法。 7、前記光電子放出材が、Ba、Sr、Ca、Y、Gd
、La、Ce、Nd、Th、Pr、Be、Zr、Fe、
Ni、Zn、Cu、Ag、Pt、Cd、Pb、Al、C
、Mg、Au、In、Bi、Nb、Si、Ta、Ti、
Sn、P及びその化合物から選ばれた二種以上の合金又
は混合物又は複合材より成る、請求項1、2、3、5又
は6記載の気体中の微粒子の荷電方法。
[Scope of Claims] 1. In a method of charging fine particles in a gas by photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation, the particle size of the fine particles is grown in advance and then charged. Characteristic method of charging fine particles in gas. 2. The method for charging fine particles in a gas according to claim 1, wherein the fine particles are charged in an electric field. 3. The method for charging fine particles in a gas according to claim 1 or 2, wherein the growth of the particle size of the fine particles is carried out by condensing a condensable substance onto the fine particles. 4. The method for charging fine particles in a gas according to claim 3, wherein the condensable substance is alcohol. 5. The method for charging fine particles in a gas according to claim 1, 2 or 3, wherein the photoelectron emitting material is made of a substance with a small photoelectric work function. 6. The photoelectron emitting material is Ba, Sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, Si, Ta, Ti,
6. The method for charging fine particles in a gas according to claim 1, 2, 3, or 5, which is made of one kind of material selected from Sn, P, and compounds thereof. 7. The photoelectron emitting material is Ba, Sr, Ca, Y, Gd
, La, Ce, Nd, Th, Pr, Be, Zr, Fe,
Ni, Zn, Cu, Ag, Pt, Cd, Pb, Al, C
, Mg, Au, In, Bi, Nb, Si, Ta, Ti,
7. The method for charging fine particles in a gas according to claim 1, 2, 3, 5, or 6, comprising an alloy, a mixture, or a composite material of two or more selected from Sn, P, and compounds thereof.
JP1120564A 1989-05-16 1989-05-16 Method for charging fine particle in gas Pending JPH02303558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120564A JPH02303558A (en) 1989-05-16 1989-05-16 Method for charging fine particle in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120564A JPH02303558A (en) 1989-05-16 1989-05-16 Method for charging fine particle in gas

Publications (1)

Publication Number Publication Date
JPH02303558A true JPH02303558A (en) 1990-12-17

Family

ID=14789430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120564A Pending JPH02303558A (en) 1989-05-16 1989-05-16 Method for charging fine particle in gas

Country Status (1)

Country Link
JP (1) JPH02303558A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142554A (en) * 1979-04-12 1980-11-07 Betz Int Free base aminooalcohols as reinforcing agent of efficiency of electric precipitator
JPS58193717A (en) * 1982-05-07 1983-11-11 Masahiko Izumi Method for removing fine dust or the like
JPS62242838A (en) * 1986-04-16 1987-10-23 Ebara Res Co Ltd Method and instrument for measuring concentration of pulverized particle suspending in gas
JPS6354958A (en) * 1986-08-26 1988-03-09 Ebara Res Co Ltd Method and apparatus for cleaning gas flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142554A (en) * 1979-04-12 1980-11-07 Betz Int Free base aminooalcohols as reinforcing agent of efficiency of electric precipitator
JPS58193717A (en) * 1982-05-07 1983-11-11 Masahiko Izumi Method for removing fine dust or the like
JPS62242838A (en) * 1986-04-16 1987-10-23 Ebara Res Co Ltd Method and instrument for measuring concentration of pulverized particle suspending in gas
JPS6354958A (en) * 1986-08-26 1988-03-09 Ebara Res Co Ltd Method and apparatus for cleaning gas flow

Similar Documents

Publication Publication Date Title
EP0445787B1 (en) Photoelectron emitting member and uses thereof
JPH08211B2 (en) Method and device for cleaning closed space
US5060805A (en) Photoelectron emitting member
JP2989031B2 (en) Method and apparatus for removing hydrocarbon
JP2877487B2 (en) Photoemission material
JPH02303558A (en) Method for charging fine particle in gas
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP2877449B2 (en) Photoemission material
JPH02303557A (en) Method for charging fine particle in gas by photoelectron
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JP3696038B2 (en) Particulate matter collection device and collection method
JPH0625731B2 (en) Method and apparatus for measuring the concentration of fine particles suspended in gas
JP2001252344A (en) Photoelectron releasing material and negative ion generator
JP3046085B2 (en) Photoemission device and method of charging fine particles using the same
JPH0793098B2 (en) Method for charging fine particles using photo-emissive material
JP2001252344A5 (en)
JPH05107178A (en) Method and device for charging fine particle
JP3105445B2 (en) Vacuum space provided with method and apparatus for cleaning vacuum space
JPH028638A (en) Method and apparatus for cleaning gas
JP3184080B2 (en) How to clean enclosed space
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JPH0247536A (en) Measuring method of suspended particulate in gas and apparatus therefor
JPH06154650A (en) Method and device for charging fine particles in space by photoelectron
JP3672077B2 (en) Method and apparatus for generating negative ions
JP3661835B2 (en) Method and apparatus for generating negative ions