JPS6354958A - Method and apparatus for cleaning gas flow - Google Patents

Method and apparatus for cleaning gas flow

Info

Publication number
JPS6354958A
JPS6354958A JP61198084A JP19808486A JPS6354958A JP S6354958 A JPS6354958 A JP S6354958A JP 61198084 A JP61198084 A JP 61198084A JP 19808486 A JP19808486 A JP 19808486A JP S6354958 A JPS6354958 A JP S6354958A
Authority
JP
Japan
Prior art keywords
water
charged
gas
gas flow
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198084A
Other languages
Japanese (ja)
Inventor
Toshiaki Fujii
敏昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP61198084A priority Critical patent/JPS6354958A/en
Publication of JPS6354958A publication Critical patent/JPS6354958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently charge electricity ad to obtain a highly clean gas flow by supplying water to a charged atmosphere charging fine particles in a gas flow. CONSTITUTION:The air sucked in by a fan part 8 is humidified by a water vapor supply part 25 after the filtration through a prefilter 23, and then is charged by a charging part consisting of a net-type photoelectron emitting member 21 and an ultraviolet wave lamp 22, and is changed to a clean air 60. The water in the gas is so supplied that the relative humidity in the gas is >=50%, and pure water or ultrapure water is used for the water to be supplied. As for the method for supplying water, a method using ultrasonic wave, a heated water vapor, a spraying method, etc. may be used. The humidified fine particles are efficiently charged by the photoelectrons emitted from the charging part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 ■ 電子工業、薬品工業、食品工業、農林産業、医療、
精密機械工業等におけるクリーンルーム、クリーンブー
ス、クリーントンネル、クリーンベンチ、安全をヤビネ
ット、無菌室、バスボックス、無菌エアカーテン、クリ
ーンチューブ等における空気、窒素、酸素等のガス流か
ら微粒子を除去する方法。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to: ■ electronic industry, pharmaceutical industry, food industry, agriculture and forestry industry, medical care,
A method for removing particulates from gas flows such as air, nitrogen, and oxygen in clean rooms, clean booths, clean tunnels, clean benches, safety nets, sterile rooms, bath boxes, sterile air curtains, clean tubes, etc. in the precision machinery industry.

■ 煙道排ガスや自動車排ガスの様な各種工業、■ 家
庭、事業所、病院等における空気の清浄方法。
■ Various industries such as flue gas and automobile exhaust gas, ■ Air purification methods in homes, offices, hospitals, etc.

並びに 前記■、■及び■記載の方法を笑施するための装置に関
するものである。
The present invention also relates to an apparatus for carrying out the methods described in (1), (2) and (2) above.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来の室内の空気清浄方法或いはその装置を大別すると
、 (1)  機械的濾過方式(例えばHIEP人フィルタ
(2)  静電的に微粒子の捕集全行なう高電圧による
荷電及び導電性フィルターによる濾過方式(例えばME
SAフィルター) があるが、これらの方式には夫々次のような欠点があっ
た。
Conventional indoor air purification methods and devices can be roughly divided into: (1) Mechanical filtration methods (for example, HIEP filters (2) Filtration using high-voltage charged and conductive filters that collect all particulates electrostatically method (e.g. ME
SA filter), but each of these methods had the following drawbacks.

即ち、機械的濾過方式においては、空気の清浄度(クラ
ス)をあげるためには目の細かいフィルターを使用する
必要があるが、この場合圧損が高く、マた目づまシによ
る圧損の増加も著るしく、フィルターの寿命も短かく、
フィルターの維持、管理或いは交換が面倒であるばかり
でなく、フィルターの交換を行う場合、その間作業金ス
トップする必要があり、復mまでには長時間t−要して
おシ、生産能率が悪いという欠点があつ九。
In other words, in the mechanical filtration method, it is necessary to use a fine-mesh filter in order to improve the air cleanliness (class), but in this case, the pressure drop is high, and the increase in pressure drop due to dirt is also significant. and the filter life is short.
Not only is it troublesome to maintain, manage, or replace the filter, but when replacing the filter, it is necessary to stop the work during that time, and it takes a long time to recover, resulting in poor production efficiency. There are nine drawbacks.

また、空気の清浄度を上げる為に換気回数(ファンによ
る空気循環回数)t−増加することも行われているが、
この場合動力費が高くつくという欠点があった。
In addition, in order to improve the cleanliness of the air, the number of ventilations (the number of times air is circulated by a fan) is increased by t.
In this case, the disadvantage was that the power cost was high.

また、従来のフィルターによる方法は微粒子の除去だけ
を目的としているので、工業用クリーンルーム用として
は使用できるが、フィルターには必ずと言ってよい程ピ
ンホールがあり、汚染空気の一部がリークするため、バ
イオロジカルクリーンルームでの使用には限界があった
また、静電的に微粒子の捕集全行う方式においては、予
備荷電部に例えば15〜70 kV  という高電圧を
必要とするため、装置が大型となり、また安全性、維持
管理の面で問題があった。
In addition, conventional filter methods are only intended to remove particulates, so they can be used in industrial clean rooms, but filters almost always have pinholes, which can cause some of the contaminated air to leak out. Therefore, there was a limit to its use in biological clean rooms.Furthermore, in systems that perform all particulate collection electrostatically, the pre-charging section requires a high voltage of, for example, 15 to 70 kV, making the equipment difficult to use. It was large and had problems in terms of safety and maintenance.

これらの問題点を解決するために本発明者は紫外線照射
による空気清浄化方式(特願昭59−216295号)
、及び、放射線照射による空気清浄化方式(特願昭60
−18725号、特願昭61−85996号)を提案し
たが、これらの方式は適用分野、用途によっては有効で
あるが、超微細な粒子を含む空気の浄化や特定の分野へ
の適用においては未だ十分とは言えない。
In order to solve these problems, the present inventor developed an air purification method using ultraviolet irradiation (Japanese Patent Application No. 59-216295).
, and air purification method using radiation irradiation (patent application 1986)
-18725, Japanese Patent Application No. 61-85996), these methods are effective depending on the field of application and use, but they are not suitable for purifying air containing ultra-fine particles or for application to specific fields. I still can't say it's enough.

〔発明の目的〕[Purpose of the invention]

本発明は、ガス流中の微粒子に荷電を行わせる場合、よ
り効率よく荷電を行う方法及びその装置、詳しくはガス
流中の微粒子の荷電を湿分(水分)の存在する雰囲気で
行うことによフ荷電を一層効果的に、かつ、確実に行う
方法及びその装置を提供することを目的とする。
The present invention provides a method and apparatus for charging fine particles in a gas stream more efficiently, and more specifically, a method for charging fine particles in a gas stream in an atmosphere containing moisture. It is an object of the present invention to provide a method and an apparatus for performing recharging more effectively and reliably.

〔発明の講成〕[Invention lecture]

本発明は、 1、 ガス流中の微粒子を荷電させた後荷電した微粒子
でガス流中より除去することによりガス流を清浄にする
方法において荷電雰囲気に水分を供給することを特徴と
するガス流の清浄方法及び 2 ガス流の吸入口から排出口までの流路上に少なくと
も水分供給部、微粒子への荷電部及び荷電粒子の捕集部
を設けてなるガス流の清浄装置 である。
The present invention provides: 1. A gas flow characterized by supplying moisture to a charged atmosphere in a method for cleaning a gas flow by charging fine particles in the gas flow and then removing the charged fine particles from the gas flow. 2. A gas flow cleaning device comprising at least a moisture supply section, a particulate charging section, and a charged particle collection section on a flow path from a gas flow inlet to a gas discharge port.

つぎに、第1図に基いて紫外線朋射法を用いたクリーン
ルームにおけるクリーンベンチ併用方式、即ち作業領域
の1部のみを高清浄度に保つ方式の空気清浄法について
説明する。
Next, based on FIG. 1, an explanation will be given of an air purification method using an ultraviolet radiation method in combination with a clean bench in a clean room, that is, a method of keeping only a part of the working area at a high level of cleanliness.

クリーンルーム1内には、配管2から導入される外気の
粗粒子をプレフィルタ3°で濾過した後、クリーンルー
ム1の空気取出し口4から取り出され九空気と共にファ
ン5を介して空気調和装置6にて温度及び湿度t−調節
しかつHKPAフィルター7により微粒子を除去した空
気が循環供給されており、清浄度(クラス)10,00
0程度に保持されている。
Inside the clean room 1, after filtering the coarse particles of the outside air introduced from the piping 2 with a pre-filter 3°, it is taken out from the air outlet 4 of the clean room 1 and sent to the air conditioner 6 through the fan 5 along with the air. Air is circulated and supplied with temperature and humidity control and particulates removed by an HKPA filter 7, with a cleanliness level (class) of 10.00.
It is maintained at about 0.

一方、クリーンルーム1内のファン部8、紫外線照射部
9、フィルター10を設けたクリーンペンチ11内の作
業台15上は、高清浄度(クラス10)の無菌雰囲気に
保持される。
On the other hand, the workbench 15 inside the clean pliers 11 provided with the fan section 8, the ultraviolet irradiation section 9, and the filter 10 in the clean room 1 is maintained in a sterile atmosphere of high cleanliness (class 10).

即ち、クリーンベンチ11においては、クリーンルーム
1内の清浄度(クラス) 10,000程度の空気がフ
ァン部8のファンにより吸引され、紫外線照射部9で紫
外線を照射することにより空気中の微粒子は荷電される
と共に、ウィルス、バクテリヤ、酵母、かび等の微生物
が殺菌された後、フィルター10で荷電された微粒子を
除去することにより、作業台13上は高清浄度に保持さ
れる。
That is, in the clean bench 11, air with a cleanliness level (class) of about 10,000 inside the clean room 1 is sucked by the fan in the fan unit 8, and fine particles in the air are charged by being irradiated with ultraviolet light in the ultraviolet irradiation unit 9. At the same time, after microorganisms such as viruses, bacteria, yeast, and mold are sterilized, the surface of the workbench 13 is maintained at a high level of cleanliness by removing charged particles with the filter 10.

クリーンペンチ11内の作業台15への器具、製品等の
出し入れは、クリーンベンチ11に設は九可動シャッタ
ー12にエフ行う。
Instruments, products, etc. can be taken in and out of the workbench 15 in the clean pliers 11 through a movable shutter 12 installed in the cleanbench 11.

空気流中の微粒子に荷11を行う加湿部を有する荷電部
は42図に詳しく示されている。
A charging section with a humidifying section for applying a charge 11 to particulates in an air stream is shown in detail in FIG. 42.

即ち、ファン部8のファンにより吸引された空気はプレ
フィルタ−23で濾過された後水蒸気供給部25で加湿
され、ついで網状光電子放出材21及び紫外線ランプ2
2からなる荷電部で微粒子が荷電された後荷電微粒子捕
集フィルター24で捕集され清浄な空気60が得られる
That is, the air sucked by the fan of the fan unit 8 is filtered by the pre-filter 23 and then humidified by the water vapor supply unit 25, and then passed through the reticulated photoelectron emitting material 21 and the ultraviolet lamp 2.
After the particles are charged in the charging section 2, they are collected by the charged particle collection filter 24, and clean air 60 is obtained.

なお、荷電部においては、光電子放出材に紫外線ランプ
22より紫外線を照射することにより光電子が放出され
、該光電子により、加湿された微粒子を含む空気50中
の微粒子が効率良く荷電される。
In the charging section, photoelectrons are emitted by irradiating the photoelectron emitting material with ultraviolet rays from the ultraviolet lamp 22, and the particles in the air 50 including the humidified particles are efficiently charged by the photoelectrons.

ガス流中への水分の供給量は、ガス流中に含ま九ている
微粒子の荷電が容易となる濃度となる童であればよく、
水分として相対湿度が50%、好ましくは60%よp好
ましくは80%以上となる量である。
The amount of water supplied into the gas stream may be such that the concentration will easily charge the fine particles contained in the gas stream.
The moisture content is such that the relative humidity is 50%, preferably 60% or more, preferably 80% or more.

水分の供給方法は周知の方法を用いることができ、例え
ば超音波により水を蒸発させる方法、加熱水蒸気を供給
する方法、ガス流中に水をスプレィする方法、ガスRを
多孔板などを介して水中を通過させる方法、ガス流を水
面に衝突させる方法など適宜用いることができる。
Moisture can be supplied using well-known methods, such as evaporating water using ultrasonic waves, supplying heated steam, spraying water into a gas stream, or supplying gas R through a perforated plate. A method of passing through water, a method of colliding a gas flow with the water surface, etc. can be used as appropriate.

供給する水の水質は、清浄な水であれば良く、例えば高
清浄な空気を得る場合には水中の微粒子を除去した純水
又は超純水等、適宜目的に応じた純度のものを用うれば
よい。すなわち、供給水の水質は清浄化ガスへの汚染が
無視できる程度の純度のものであればよい。
The quality of the water to be supplied may be as long as it is clean; for example, if you want to obtain highly clean air, use water with a purity appropriate for the purpose, such as pure water or ultrapure water from which fine particles have been removed. Bye. That is, the quality of the supplied water may be of such purity that contamination of the clean gas can be ignored.

つぎに、光電子放出材21は、紫外線照射により光電子
を放出するものであれば何れでも良く、光電的な仕事関
数の小さいもの程好ましい。
Next, the photoelectron emitting material 21 may be any material as long as it emits photoelectrons when irradiated with ultraviolet rays, and the smaller the photoelectric work function, the more preferable it is.

効果や経済性の面から、Ba、 Sr、 (a、 Y、
 Gd。
From the viewpoint of effectiveness and economy, Ba, Sr, (a, Y,
Gd.

La、 Ce、 Nd、 Th、 Pr、 Be、 Z
r、 Fe、 Ni、 Zn、Cu。
La, Ce, Nd, Th, Pr, Be, Z
r, Fe, Ni, Zn, Cu.

λg、  Pt、  Cd、  Pb、  AI!、 
 0.Mg、  Au、  In、  Bi、Nb。
λg, Pt, Cd, Pb, AI! ,
0. Mg, Au, In, Bi, Nb.

Si、 Ti、 Ta、 Pのいずれか又はこれらの化
合物又は合金が好ましく、これらは単独で又は二種以上
を複合して用いられる。複合材とじては、アマルガムの
如く物理的な複合材も用いうる。
Any one of Si, Ti, Ta, P, or a compound or alloy thereof is preferred, and these may be used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can also be used.

例えば、化合物としては酸化物、はう化物、炭化物が1
、酸化物にはBad、 SrO,Gap、 y2o6゜
Gd2O3,Nd2O3,The2.ZrO2,Fe2
O3,ZnO,Cub。
For example, as compounds, oxides, ferrides, and carbides are
, oxides include Bad, SrO, Gap, y2o6°Gd2O3, Nd2O3, The2. ZrO2, Fe2
O3, ZnO, Cub.

Ag、、O,PtO,PbO,AA’205. MgO
,工n203. BiO,NbO。
Ag, , O, PtO, PbO, AA'205. MgO
, Engineering n203. BiO, NbO.

BeOなどがあり、またほう化物にはYB6. GdB
6゜LaB6. CeB6. PrB6. ZrB2 
 などがl)、さらに炭化物としてはZrC,Tag、
 ?iC,NbCなどがある。
Examples include BeO, and borides include YB6. GdB
6°LaB6. CeB6. PrB6. ZrB2
etc.l), and carbides such as ZrC, Tag,
? There are iC, NbC, etc.

また、合金としては黄銅、青銅、リン青銅、AgとMg
との合金(Mgが2〜20wt%)、CuとBeとの合
金(Beが1〜10wt%)及びBaとA/との合金を
用いることができ、上記A(とMgとの合金、CuとB
eとの合金及びBaとA/との合金が好ましい。酸化物
は金属表面のみを空気中で加熱したり、或いは薬品で酸
化することによっても得ることができる。
In addition, alloys include brass, bronze, phosphor bronze, Ag and Mg.
(2 to 20 wt% Mg), alloys of Cu and Be (1 to 10 wt% Be), and alloys of Ba and A/ can be used. and B
Alloys with e and alloys with Ba and A/ are preferred. Oxides can also be obtained by heating only the metal surface in air or by oxidizing it with chemicals.

さらに他の方法としては使用前に加熱し、表面に酸化層
を形成して長期にわたって安定な酸化層を得ることもで
きる。この例としてはMgとAg  との合金を水蒸気
中で500〜400℃の温度の条件下でその表面に酸化
薄膜を形成させることができ、この酸化薄膜は長期間に
わたって安定なものである。
Still another method is to heat the material before use to form an oxidized layer on the surface to obtain a stable oxidized layer over a long period of time. As an example of this, a thin oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 500 to 400 DEG C., and this thin oxide film is stable for a long period of time.

これらの材料の使用形状は、板状、ブリーツ状、網状等
測れの形状でもよいが、紫外線の朋射面積及び空気との
接触面積の大きな形状のものが好ましく、このような観
点からは網状のものが好ましい。光電子放出材、使用す
る材質は装置の形状、構造成いは希望する効率等により
異なる。
These materials may be used in any shape, such as a plate, pleats, or net, but it is preferable to use a shape that has a large area of irradiation of ultraviolet rays and a large area of contact with the air. Preferably. The photoelectron emitting material and the materials used vary depending on the shape and structure of the device, the desired efficiency, etc.

紫外線の種類は、その照射により光電子放出材が光電子
を放出しうるものであれば倒れでもよいが、殺菌作用を
併せてもつものが好ましい。
The type of ultraviolet rays may be any type as long as the photoelectron emitting material can emit photoelectrons when irradiated with the ultraviolet rays, but it is preferable to use one that also has a bactericidal effect.

適用分野、作業内容、用途、経済性などにより適宜法め
ることができる。例えば、バイオロジカル分野において
は、殺菌作用、効率の面から遠紫外線を併用するのが好
ましい。
Laws can be established as appropriate depending on the field of application, content of work, purpose, economic efficiency, etc. For example, in the biological field, it is preferable to use deep ultraviolet rays together in terms of bactericidal action and efficiency.

死滅した生物を含む荷電された微粒子はフィルター10
.24で捕集される。
Charged particles, including dead organisms, are filtered through the filter 10.
.. Collected at 24.

荷電された粒子の捕集器は、何れでも良い。Any collector for charged particles may be used.

通常の荷電装置における集じん板(集じん電極)や静電
フィルタ一方式が一般的であるが、スチールウール電極
としたような捕集部自体が電極を構成する構造のものも
有効である。
A dust collection plate (dust collection electrode) or an electrostatic filter in a normal charging device is common, but a structure in which the collection part itself constitutes an electrode, such as a steel wool electrode, is also effective.

又、本発明者がすでに提案したイオン交換フィルターを
用いて捕集する方法も有効である。
Furthermore, a method of collection using an ion exchange filter, which has already been proposed by the present inventor, is also effective.

捕集は、これらの捕集方法を単独で、又はこれらの方法
を2種類以上組合せて適宜用いることが出来る。
For collection, these collection methods can be used alone or in combination of two or more of these methods as appropriate.

これらの捕集方法のうち好ましい方式としてはフィルタ
一方式例えばイオン交換フィルター(アニオン交換フィ
ルター、カチオン交換フィルター)、静電フィルターを
用いる方式が高効率で、かつ確実に荷電微粒子の捕集を
行なうことができるので好都合である。
Among these collection methods, preferable methods include filter-based methods such as ion-exchange filters (anion-exchange filters, cation-exchange filters), and electrostatic filters, which are highly efficient and can reliably collect charged particles. This is convenient because it allows you to

これは、過剰な水分も荷電し、フィルタ一部で荷電粒子
が水分で包含された形で捕捉されるためと考えられる。
This is thought to be because excess moisture is also charged, and charged particles are trapped in a portion of the filter in the form of being encapsulated in moisture.

イオン交換フィルターは、適宜の薄膜状の布、好1しく
けネット状、織物状又は繊維状の空隙性支持体にイオン
交換体が支持(担持)されたもので、周知の方法により
適宜作成することができる。
The ion exchange filter is one in which an ion exchanger is supported (supported) on a suitable thin film-like cloth, preferably a cage net-like, woven or fibrous porous support, and is appropriately prepared by a well-known method. be able to.

支持体としては、例えばポリエチレン、ボリグロビレン
、ポリブチレン、ポリブテン等の脂肪族系重合体、ポリ
スチレン、ポリα−スチレン等の芳香族系重合体、ポリ
ビニルシクロゞキサン等の脂環式系重合体あるいはこれ
らの重合体製造用モノマーの共重合体の如き炭化水素系
重合体、ポリ四フッ化エチレン、ポリ7ツ化ビニIJ 
fン、エチレン−四フッ化エチレン共重合体、四7ツ化
エチレンー六フフ化プロピレン共重合体、フッ化ビニリ
デンー六7ノ化プロピレン共重合体等の如き含フツ素系
重合体、或いはポリビニルアルコール、ポリアミド、セ
ルロース、ポリエステル、羊毛、絹あるいはこれらの混
合物が挙げられる。
Examples of the support include aliphatic polymers such as polyethylene, polyglobylene, polybutylene, and polybutene, aromatic polymers such as polystyrene and polyα-styrene, alicyclic polymers such as polyvinylcycloxane, or alicyclic polymers such as polyvinylcycloxane. Hydrocarbon polymers such as copolymers of monomers for producing polymers, polytetrafluoroethylene, polyvinyl 7-vinyl IJ
fluorine-containing polymers such as ethylene-tetrafluoroethylene copolymer, tetra7-ethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, or polyvinyl alcohol. , polyamide, cellulose, polyester, wool, silk or mixtures thereof.

これらは空隙性支持体として用いられ、その形状はガス
流との接触面積が広く、かつ抵抗の少ない形状であれば
良く、例えば、適宜の薄膜状の布、好ましくはネットな
どの織物状、又は繊維状のものが用いられる。
These are used as porous supports, and their shape may be any shape as long as they have a large contact area with the gas flow and have low resistance, for example, an appropriate thin film-like cloth, preferably a woven fabric such as a net, or A fibrous material is used.

空隙率は10〜95%、好ましくは50〜85%である
。支持体の形状、厚み、空隙率は、装置の形状、使用す
る材質、構造、希望する効果等により適宜法めることが
出来る。
The porosity is 10-95%, preferably 50-85%. The shape, thickness, and porosity of the support can be determined as appropriate depending on the shape of the device, the material used, the structure, the desired effect, etc.

支持体にイオン交換体を支持(担持)させる方法は特に
限定されることなく、周知の方法で支持させることがで
きる。
The method for supporting (carrying) the ion exchanger on the support is not particularly limited, and the ion exchanger can be supported by any known method.

例えば支持体に紫外線又はα線、β線、電子線、γ線な
どの電離性放射線の照射線の照射、或いは酸素、オゾン
、クロルスルホン酸、過酸化水素、過酸化ベンゾイル、
過酢酸などによる処理、あるいはこれらのうちの2種以
上による処理を行った後、イオン交換体(イオン交換基
を有するモノマー)又はこれらを形成しうるモノマーを
グラフトせしめこれ全支持体に支持せしめる方法、或い
は、倒えばポリエチレン(支持体)に電離性放射線を照
射した後アクリル酸及び/又はメタクリル酸水溶液を反
応させてグラフト共重合体を得、これを水酸化ナトリウ
ム水溶液で処理することによりイオン交換フィルターが
得られる。
For example, the support is irradiated with ultraviolet rays or ionizing radiation such as alpha rays, beta rays, electron beams, and gamma rays, or irradiated with oxygen, ozone, chlorosulfonic acid, hydrogen peroxide, benzoyl peroxide,
A method in which, after treatment with peracetic acid or the like, or treatment with two or more of these, an ion exchanger (a monomer having an ion exchange group) or a monomer capable of forming these is grafted onto the entire support. Alternatively, after polyethylene (support) is irradiated with ionizing radiation, a graft copolymer is obtained by reacting with an aqueous solution of acrylic acid and/or methacrylic acid, and this is treated with an aqueous sodium hydroxide solution to perform ion exchange. You get a filter.

また別の方法として、前述の支持体にスチレン又はその
誘導体、倒えばヒドロキシスチレンを主要構成成分とす
る側鎖をグラフト化し、かつジエン化合物によって部分
的に架橋網状化されたグラフト共重合体にイオン交換基
を導入する方法がある。
Another method is to graft side chains containing styrene or its derivatives, preferably hydroxystyrene, as a main component to the above-mentioned support, and to ionize the graft copolymer partially cross-linked and networked with a diene compound. There is a method of introducing an exchange group.

このようにして、繊維状又は織物状のアニオン交換フィ
ルター及びカチオン交換フィルターが得られる。
In this way, fibrous or woven anion exchange filters and cation exchange filters are obtained.

使用するアニオン交換フィルター及びカチオン交換フィ
ルターの種類、充填量及びその比率はガス流中の荷電微
粒子の荷電状態やその濃度、或いは同伴する酸性ガス、
アルカリ性ガス、臭気性ガスの種類、濃度等に応じて適
宜決めることができる。例えば、アニオン交換フィルタ
ーは負荷電微粒子や酸性ガスの捕集に、またカチオン交
換フィルターは正荷電の微粒子やアルカリ性ガスの捕集
に効果的である。フィルターの充填量やその比率は、上
述の捕集すべき物質の濃度や濃度比率に対応して、これ
らに見合う量を、装置の形状、構造、圧損等を考慮して
適宜決定すればよい。
The type, filling amount, and ratio of the anion exchange filter and cation exchange filter to be used depend on the charge state and concentration of charged particles in the gas flow, or accompanying acid gas,
It can be determined as appropriate depending on the type, concentration, etc. of alkaline gas and odorous gas. For example, anion exchange filters are effective for collecting negatively charged particulates and acidic gases, and cation exchange filters are effective for collecting positively charged particulates and alkaline gases. The filling amount of the filter and its ratio may be appropriately determined in accordance with the above-mentioned concentration and concentration ratio of the substance to be collected, taking into account the shape, structure, pressure drop, etc. of the device.

フィルタ一方式は取シ扱いが容易であることや、性能、
経済性の点で有効であるが、一定期間使用すると目詰t
pt生ずるので、必要に応じカートリッジ構造とし、圧
力損失の検出により交換するようにすることKより長期
間にわたって安定し之運転が可能となる。
Single-filter types are easy to handle, have good performance,
Although it is effective in terms of economy, it can become clogged if used for a certain period of time.
pt occurs, so by adopting a cartridge structure as necessary and replacing it by detecting pressure loss, stable operation for a longer period of time is possible.

なお、以上の説明において加湿部は粗フイルタ−25の
後光側で紫外線ランプの前流側に設置し九場合について
説明したが、設置場所に格別の限定はなく、例えば粗フ
ィルターの前流側又は紫外線ランプの後流側など、水分
の供給方法、装置の形状、用途、効果等により適当な場
所に設けることができる。
In the above explanation, the humidifying section is installed on the backlight side of the coarse filter 25 and on the upstream side of the ultraviolet lamp, but there is no particular limitation on the installation location. Alternatively, it can be provided at an appropriate location, such as on the downstream side of an ultraviolet lamp, depending on the moisture supply method, the shape of the device, its purpose, effects, etc.

また、空気中の微粒子への荷電方式として、荷電部に電
場を形成せずに荷電する方式について説明したが、比較
的高電圧を印加した電場において光電子放出材に紫外線
を照射することにより、光電子を効率良く放出せしめ、
ガス流中の微粒子を効率よく荷電せしめることも出来る
In addition, as a method of charging fine particles in the air, we explained a method of charging without forming an electric field on the charging part, but by irradiating the photoelectron emitting material with ultraviolet rays in an electric field with a relatively high voltage applied, photoelectrons can be charged. is released efficiently,
It is also possible to efficiently charge particles in a gas flow.

また、紫外線を照射する代シに放射線の照射によっても
同様に微粒子に荷電せしめ同様の効果を得ることができ
る。
Moreover, the same effect can be obtained by irradiating the fine particles with radiation instead of irradiating them with ultraviolet rays.

実施例1 第2図に示した空気清浄器を用いて水分量の影響を調べ
た 送気量: 51 / 1nin 発生粒子;煙草の煙(平均粒径Q、5〜α4μ)を適宜
希釈して用いた 紫外線光源;水銀−キセノンランプ 光電子放出面;黄銅 捕集フィルター;アニオン交換フィルター60容量チと
カチオン交換フィルタ ー40容量−の混合物 水分量は、超純水を蒸気として送シ調整した。
Example 1 The influence of moisture content was investigated using the air purifier shown in Fig. 2. Air supply amount: 51/1 nin Particles generated: Cigarette smoke (average particle size Q, 5 to α4μ) was diluted as appropriate. The ultraviolet light source used; the photoelectron emission surface of a mercury-xenon lamp; a brass collection filter; a mixture of an anion exchange filter of 60 volume and a cation exchange filter of 40 volume.The water content was adjusted by sending ultrapure water as steam.

結果を表−1に示す。The results are shown in Table-1.

表  −1 実施例で使用したイオン交換フィルターの製造法は次の
とおシであった。
Table 1 The method for manufacturing the ion exchange filter used in the examples was as follows.

■ アニオン交換フィルター 繊維状のポリプロピレン(30μ)に窒素中で電子線2
0 Mrad  を照射し、次いでヒドロキシスチレン
モノマーとイソプレンを含ム溶液に浸漬し、グラフト重
合を行なった。
■ Anion exchange filter Fibrous polypropylene (30μ) is exposed to 2 electron beams in nitrogen.
The sample was irradiated with 0 Mrad and then immersed in a solution containing hydroxystyrene monomer and isoprene to perform graft polymerization.

反応後、四級アミノ化を行ないアニオン交換フィルター
を得た。
After the reaction, quaternary amination was performed to obtain an anion exchange filter.

■ カチオン交換フィルター 繊維状のポリプロピレン(50μ)に窒素中で電子線2
0 Mrad を照射し、次いでアクリル酸水溶液に浸
漬し、グラフト反応を行なった。反応後、水酸化ナトリ
ウム溶液で処理しカチオン交換フィルターを得た。
■ Cation exchange filter Fibrous polypropylene (50μ) is exposed to electron beams in nitrogen
A graft reaction was carried out by irradiating with 0 Mrad and then immersing in an aqueous acrylic acid solution. After the reaction, a cation exchange filter was obtained by treatment with a sodium hydroxide solution.

〔発明の効果〕〔Effect of the invention〕

(1)  ガス流中の微粒子を水分の存在下に荷電せし
めることにより ■ 荷電を効率的に行うことができ、従って高効率で高
度に清浄なガス流を得ることができる。
(1) By charging the fine particles in the gas stream in the presence of moisture, (1) charging can be carried out efficiently, and therefore a highly efficient and highly clean gas stream can be obtained.

■ 荷電効率がよいので必要なエネルギーを減少せしめ
ることができ、かつ装置を小型化できる。
■ Since the charging efficiency is good, the required energy can be reduced and the device can be made smaller.

(2)バイオテクノロジーの分野等水分の多い雰囲気が
好ましい適用分野における実用性が一層向上した。即ち
、ニーズに対応した装置を供給できる。
(2) Practicality has been further improved in application fields where an atmosphere with high moisture content is preferred, such as the field of biotechnology. In other words, it is possible to supply devices that meet needs.

(3)荷電微粒子の捕集をイオン交換フィルターで行う
ことにより、 ■ 酸性ガス、アルカリ性ガス或いは臭気性ガスも同時
に捕集できる。
(3) By collecting charged particles using an ion exchange filter, (1) acidic gas, alkaline gas, or odorous gas can also be collected at the same time.

■ 従って、水力式の適用分野及び用途が一層拡大され
た。
■ Therefore, the application fields and uses of hydraulic power have been further expanded.

(4)荷電方式として紫外線照射又は放射線照射法で行
うことにより、 ■ 微粒子の荷電はもちろん、ガス流中の微生物や菌類
の殺菌も同時に行うことが出来、超高清静なガスが得ら
れる。
(4) By using ultraviolet irradiation or radiation irradiation as the charging method, it is possible to not only charge fine particles but also sterilize microorganisms and fungi in the gas flow at the same time, resulting in an ultra-highly clean gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用しうる紫外線照射法を用いたクリ
ーンルームにおけるクリーンベンチ併用方式における空
気清浄法を説明するための図面、第2図は微粒子への荷
電部及び加湿部を具体的に説明するための図面である。
Fig. 1 is a drawing for explaining an air purification method in a clean bench combined method in a clean room using an ultraviolet irradiation method to which the present invention can be applied, and Fig. 2 specifically explains a part for charging particles and a humidifying part. This is a drawing for

Claims (1)

【特許請求の範囲】 1、ガス流中の微粒子を荷電させた後荷電した微粒子を
ガス流中より除去することによりガス流を清浄にする方
法において、荷電雰囲気に水分を供給することを特徴と
するガス流の清浄方法。 2、水分の濃度が相対湿度50%以上となるように水を
供給する特許請求の範囲第1項記載のガス流の清浄方法
。 3、供給する水が純水又は超純水である特許請求の範囲
第1項又は第2項記載のガス流の清浄方法。 4、紫外線又は放射線を照射することによりガス流中の
微粒子に荷電する特許請求の範囲第1項、第2項又は第
3項記載のガス流の清浄方法。 5、荷電粒子の捕集をフィルター方式で行なう特許請求
の範囲第1項乃至第4項の何れか1つに記載のガス流の
清浄方法。 6、フィルターがイオン交換フィルター又は静電フィル
ターである特許請求の範囲第5項記載のガス流の清浄方
法。 7、ガス流の吸入口から排出口までの流路上に、少なく
とも水分供給部、微粒子への荷電部及び荷電粒子の捕集
部を設けてなるガス流の清浄装置。
[Claims] 1. A method for cleaning a gas flow by charging particles in the gas flow and then removing the charged particles from the gas flow, characterized by supplying moisture to the charged atmosphere. A method of cleaning gas streams. 2. The method for cleaning a gas stream according to claim 1, wherein water is supplied so that the concentration of water is at least 50% relative humidity. 3. The method for cleaning a gas stream according to claim 1 or 2, wherein the water to be supplied is pure water or ultrapure water. 4. A method for cleaning a gas stream according to claim 1, 2 or 3, in which fine particles in the gas stream are charged by irradiating them with ultraviolet rays or radiation. 5. A method for cleaning a gas stream according to any one of claims 1 to 4, wherein charged particles are collected by a filter method. 6. A method for cleaning a gas stream according to claim 5, wherein the filter is an ion exchange filter or an electrostatic filter. 7. A gas flow purifying device comprising at least a moisture supply section, a particulate charging section, and a charged particle collection section on a flow path from a gas flow inlet to an outlet.
JP61198084A 1986-08-26 1986-08-26 Method and apparatus for cleaning gas flow Pending JPS6354958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198084A JPS6354958A (en) 1986-08-26 1986-08-26 Method and apparatus for cleaning gas flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198084A JPS6354958A (en) 1986-08-26 1986-08-26 Method and apparatus for cleaning gas flow

Publications (1)

Publication Number Publication Date
JPS6354958A true JPS6354958A (en) 1988-03-09

Family

ID=16385245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198084A Pending JPS6354958A (en) 1986-08-26 1986-08-26 Method and apparatus for cleaning gas flow

Country Status (1)

Country Link
JP (1) JPS6354958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303558A (en) * 1989-05-16 1990-12-17 Ebara Res Co Ltd Method for charging fine particle in gas
JPH04171061A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Method and apparatus for cleaning hermetically closed space
EP1021212A1 (en) * 1995-09-06 2000-07-26 Universal Air Technology, Inc. Photocatalytic air disinfection
KR100340334B1 (en) * 2000-06-20 2002-06-12 윤종용 System For Purifying Gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138644A (en) * 1984-07-31 1986-02-24 Isao Miyahara Dust collector
JPS6193847A (en) * 1984-10-16 1986-05-12 Nissin Electric Co Ltd Air purifier
JPS61178050A (en) * 1985-02-04 1986-08-09 Ebara Corp Method and apparatus for purifying air by irradiation of ultraviolet rays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138644A (en) * 1984-07-31 1986-02-24 Isao Miyahara Dust collector
JPS6193847A (en) * 1984-10-16 1986-05-12 Nissin Electric Co Ltd Air purifier
JPS61178050A (en) * 1985-02-04 1986-08-09 Ebara Corp Method and apparatus for purifying air by irradiation of ultraviolet rays

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303558A (en) * 1989-05-16 1990-12-17 Ebara Res Co Ltd Method for charging fine particle in gas
JPH04171061A (en) * 1990-11-02 1992-06-18 Ebara Res Co Ltd Method and apparatus for cleaning hermetically closed space
US5225000A (en) * 1990-11-02 1993-07-06 Ebara Research Co., Ltd. Method for cleaning closed spaces with ultraviolet rays
JPH08211B2 (en) * 1990-11-02 1996-01-10 株式会社荏原総合研究所 Method and device for cleaning closed space
EP1021212A1 (en) * 1995-09-06 2000-07-26 Universal Air Technology, Inc. Photocatalytic air disinfection
EP1021212A4 (en) * 1995-09-06 2000-07-26 Universal Air Technology Inc Photocatalytic air disinfection
KR100340334B1 (en) * 2000-06-20 2002-06-12 윤종용 System For Purifying Gas

Similar Documents

Publication Publication Date Title
US4750917A (en) Method of and apparatus for cleaning air by irradiation of ultraviolet rays
EP2025351B1 (en) Air purification device with O3 neutraliser and air purification method
JPH04171061A (en) Method and apparatus for cleaning hermetically closed space
JP3129910B2 (en) Comfortable air generator and comfortable housing using it
CN212962104U (en) Movable air purifier
JPS6354958A (en) Method and apparatus for cleaning gas flow
JPS6377557A (en) Method and apparatus for cleaning gas flow
JP2623290B2 (en) Gas cleaning method and apparatus
JPS6377514A (en) Air cleaner
JPS6312315A (en) Filter for gas cleaning apparatus
JP3543593B2 (en) Gas cleaning method and apparatus
JP2750694B2 (en) Gas cleaning method and apparatus
JPS6354959A (en) Method and apparatus for removing particulate material from gas flow
JPS63147565A (en) Method and apparatus for cleaning gas
CN209399507U (en) A kind of air cleaning facility
JPH028638A (en) Method and apparatus for cleaning gas
JP2000312713A (en) Method and device for feeding negative ion enriched air
JP2000167435A (en) Generating method of negative ion and device therefor
JPH0810616B2 (en) Method and apparatus for obtaining gas containing anion
JPH0634941B2 (en) Method and apparatus for cleaning air by irradiation of ultraviolet rays or radiation
JPS62244459A (en) Method and apparatus for purifying air by irradiation of radioactive rays
JPS63147566A (en) Method and apparatus for cleaning gas
CN213577834U (en) Novel central air conditioning removes dust and disinfects device
JPH0674910B2 (en) Gas cleaning method and apparatus
JPH0674909B2 (en) Gas cleaning method and apparatus